
Some 18c projects
Nathanael Fillmore

October 1, 2011



Outline

1. Basic cleanup.

2. Language detection.

3. Duplicate detection.

4. Alignment.

5. Decade comparison.



Basic cleanup.

In order to correct many of the most common errors introduced due to
OCR, we preprocessed the text of each document using the following
simple rules:

I Replace “ ’ d”→ “’d”, e.g., “reform ’d”→ “reform’d”.
I Replace “& c”→ “&c”, e.g., “& c”→ “&c”.
I Replace “- ”→ “”, e.g., “Spi- rit”→ “Spirit”.
I Replace “-”→ “ ”, e.g., “He boldly hiccups-but he cannot”→ “He

boldly hiccups but he cannot”.
I Remove all characters other than a-z, A-Z, 0-9, “&”, and “ ”.
I Lowercase everything.

The rules were performed one after another.

Examples:
- http://localhost:9000/doc/raw/47515
- http://localhost:9000/doc/tok/47515

http://localhost:9000/doc/raw/47515
http://localhost:9000/doc/tok/47515


Language detection

What counts as “English”? E.g., there are
I English-language books with non-English quotations,
I Foreign-language dictionaries, and
I Non-English texts with English facing-page translations.

Our criterion:
I A document is “English” if “substantially” more than half its text is

in English.



Language detection

For each document:
I Sample six 150-word contiguous blocks of text.
I Send each block separately to Google Translate’s language

detector.
I Get back six votes, each for “English” or “not English”.
I If at least three votes are for “English”, classify as “English”.



Language detection

Evaluation:
I Labeled 250 documents by hand.
I The following table shows the number of these documents that

received k “English” votes from Google Translate (0 ≤ k ≤ 6),
grouped according to whether I labeled them as truely “English”
or “not English”.

votes #English #not English #total
0 0 9 9
1 0 5 5
2 0 3 3
3 2 1 3
4 6 2 8
5 21 1 22
6 199 0 199

I On the entire corpus, 9570 documents out of 112040 total (8.5%)
were classified by the procedure as non-English.
http://localhost:9000/isenglish

http://localhost:9000/isenglish


Duplicate detection

Why care about duplicates?

I Want to know how many unique documents are in the database.
I Want to study publication history.
I Want to exclude duplicates from some kinds of downstream

analysis.
I Want to use clusters of duplicates to build better statistical

models.



Duplicate detection

What is a duplicate?

I Not completely obvious. Might as well choose something simple.
I Jaccard index:

g(D1,D2) =
number of terms in common

number of terms total

where D1 and D2 are documents.
I By thresholding g, we get a family {ft : t ∈ [0,1]} of

duplicate-or-not classifiers:

ft(D1,D2) =

{
1, g(D1,D2) > t
0, otherwise



Duplicate detection

What threshold works best, and how well does it work?
I For each ECCO-TCP document C:

I Let DC be the document in ECCO that maximizes the Jaccard
index g(C,DC).

I Check by hand whether C and DC are actually duplicates.
(Out of 250 pairs, I marked 218 as duplicates.)

I ROC curve:

FPR =
number said to be positive but actually negative

number actually negative

TPR =
number said to be positive and actually positive

number actually positive

“said to be positive” means that g(C, DC ) > t

“actually positive” means that I marked (C, DC ) as duplicates

Circle marks t = 0.35, the threshold used for further analysis.



Duplicate detection

I When we apply the duplicate scheme to the whole corpus, using
a threshold t = 0.35, 33769 documents (30%) are marked as
duplicates of earlier documents.
http://localhost:9000/isduplicate

I More interesting to look at connected components:
http://localhost:9000/dupconncomp

http://localhost:9000/isduplicate
http://localhost:9000/dupconncomp


Alignment

For each pair of documents:
I If the documents are long (more than 1000 words), divide and

conquer:
I Make a collection of anchors:

I Look for a good set of shared n-grams of words. (Try
n = 100, 50, 25, 10, 5, in that order. Limit to 80 n-grams.)

I Extend the n-grams to longer shared fragments if possible.
I If no anchors are found, use the trivial no-overlap alignment.

I Recurse for each between-anchor fragment.
I Concatenate the recursion output and the anchors.

I If the documents are short: use Smith-Waterman on characters.

Intuition:
I The documents share a lot of long word n-grams, despite high

errors. By anchoring to these n-grams we can speed up the
alignment considerably.

http://localhost:9000/alignment

http://localhost:9000/al/40078/49008

http://localhost:9000/alignment
http://localhost:9000/al/40078/49008


Decade comparison

Was there large-scale vocabulary change in written English across
decades in the 18th century?

I For each document, make a bag-of-words count vector, after
discarding all words occurring <100 or >5000000 times in the
corpus.

I For each pair of decades:
I Average the count vectors within each decade.
I Compute the cosine between the average vectors.
I 10,000 times, permute the decade labels and repeat the previous

two steps.
I Let r be the number of times a permuted cosine was less than the

observed cosine.
I The fraction (r + 1)/(10000 + 1) gives an estimate of the

probability that a cosine under a random permutation of decade
labels would be smaller than the observed cosine.



Decade comparison
00s 10s 20s 30s 40s 50s 60s 70s 80s 90s

00s 1.0000 0.9935 0.9917 0.9870 0.9779 0.9763 0.9646 0.9565 0.9484 0.9463
10s 1.0000 0.9923 0.9900 0.9802 0.9759 0.9664 0.9588 0.9528 0.9500
20s 1.0000 0.9958 0.9904 0.9889 0.9802 0.9734 0.9657 0.9628
30s 1.0000 0.9932 0.9905 0.9847 0.9788 0.9718 0.9692
40s 1.0000 0.9962 0.9896 0.9873 0.9814 0.9794
50s 1.0000 0.9935 0.9904 0.9844 0.9834
60s 1.0000 0.9927 0.9914 0.9878
70s 1.0000 0.9942 0.9917
80s 1.0000 0.9958
90s 1.0000

00s 10s 20s 30s 40s 50s 60s 70s 80s 90s
00s 1.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
10s 1.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
20s 1.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
30s 1.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
40s 1.0000 0.0015 0.0001 0.0001 0.0001 0.0001
50s 1.0000 0.0001 0.0001 0.0001 0.0001
60s 1.0000 0.0001 0.0001 0.0001
70s 1.0000 0.0002 0.0001
80s 1.0000 0.0001
90s 1.0000

(top) The observed cosines between count vectors, averaged by decade. (bottom) The
levels of the observed cosines against the permuted cosines. Both matrices are
symmetric, and only the upper triangles are shown.


