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Manifold K-means clustering
via algebraic topology

We consider the problem of clustering n points X = {z1,...,2,}, x; € RP, when p is large.
This problem—clustering in high-dimensional spaces—is of practical importance, because high-
dimensional data abounds; for example, typical DNA microarray data has more than 10000 dimen-
sions [20], and it is of scientific interest to find patterns in this data.

Learning in high-dimensional spaces is associated with many difficulties due to Bellman’s “curse
of dimensionality” [2] and related issues (e.g., [6]). Manifold learning is attractive because it offers
a way to avoid these issues. If the points of interest are drawn from a ¢-dimensional manifold M
embedded in RP, and ¢ < p, then this offers the possibility of finding an algorithm whose theoretical
properties depend on ¢ rather than p.

There is good reason to believe that much data of interest does lie on low-dimensional manifolds:
frequently the process used to generate the data has only a few degrees of freedom. For example,
[10] uses physical properties of the human vocal tract to argue that speech sounds lie on a low-
dimensional manifold embedded in L.

Some classical approaches, such as principal component analysis [11], are effective, but are limited to
learning linear subspaces. In many cases, we have reason to believe that a dataset lies on a nonlinear
manifold. For this reason, a large number of methods, such as locally linear embedding [17],
Laplacian eigenmaps [1], kernel PCA [18], and others, have been proposed for learning nonlinear
manifolds. See [13, 19] for an overview.

In recent work, Niyogi, Smale, and Weinberger (NSW) have formulated a new manifold learning
framework based on insights from algebraic topology [15, 16]. A distinctive property of their
method is that, under appropriate conditions, its sample complexity is independent of p and its
computational complexity is only dependent on p insofar as the points must be examined initially.
Recent related work includes (3, 4, 5, 7].

NSW'’s method is based on the following result, stated here informally: If the curvature of the
manifold M is not too large, the variance of the distribution centered on M from which the
points X are drawn is not too large, the codimension of the manifold is not too small, and other
technical conditions hold, then with high probability the true homology of M can be found, using
an algorithm that depends on p only linearly in computational complexity and not at all in sample
complexity ([16], Thm. 2.1).

This result suggests an efficient way to cluster the points in X, in two steps [16]: (1) Use X to find
the homology of M. (2) Designate the connected components of the homology as clusters. The
number of connected components, and thus clusters, is equal to the zeroth Bette number 3 of the
homology.

A weakness of this approach is that in many cases there is not a one-to-one relationship between con-



nected components and clusters, as NSW’s method assumes. First, a single connected component
can be comprised of more than one cluster. Consider for example the following three manifolds:
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How many clusters are there? For many applications, we might want to say that there is one cluster
in (a) and there are two clusters in both (b) and (c). However, (a) is homeomorphic to (b), while
(b) is not homeomorphic to (c), so NSW’s algorithm above will find just one cluster for (b).

On the other hand, a cluster can be comprised of multiple disconnected components. Consider, for
example, a mixture of a large number of Gaussians, with means as shown below by a dot, and with
variance comparatively large:

Fach mean will have its own connected component, so NSW’s algorithm will find a large number of
clusters, but it might be better for some applications to find only two clusters in a dataset generated
from this mixture.

K-means, a classical clustering algorithm (e.g., [14]), would give reasonable results on both of the
above examples. The K-means algorithm assigns each point z; to the cluster j, centered at p;
(j =1,...,K), for which [|z; — p;|| is smallest in some norm. An assignment of z; to cluster j is
recorded in an indicator matrix w, where

1 if x; is in cluster j
wij = .
0 otherwise
A locally optimal choice of u and w is classically found by iterating between the following two steps
until convergence: (i) Update w so that each z; is assigned to the nearest p;. (ii) Update each p;

as the average > " | wijT;/ Y i | Wij.

Performed in the ambient space with a Euclidean norm, K-means can only find linearly separable
clusters. In light of this and the examples above, it is of interest to consider performing K-means
on the manifold M. This can be done, using existing methods that rely on a geodesic distance
function, e.g. [8, 12].

An interesting question, and the principal question we propose to consider this summer, is this:
how can it be done efficiently? NSW’s clustering algorithm is particularly efficient because the
clustering falls out as a natural byproduct of the learning of the manifold. Can we modify NSW’s
manifold learning algorithm so that a K-means clustering, on the manifold, falls out as a byproduct
of the construction? As an example of what is possible, we mention Ding and He [9], who showed a
close connection between K-means and PCA and used this connection to construct an alternative
K-means algorithm.



For ease of analysis, we will first consider a noiseless setting, where each point in X is drawn
uniformly at random from the manifold. After we find a suitable algorithm in the noiseless setting
and determine its sample and computational complexity, we will consider the more realistic noisy
setting where each point is drawn from a distribution centered on M but with support on all of

RP.

Finally, we will validate our results empirically, using both intrinsic and extrinsic measures, and
we will consider connections and differences with other results in the literature. An important
longer-term goal of this project is to develop connections between topology and machine learning.
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