
Document Recovery from Bag-of-Word Indices

Abstract

1 Problem formulation

We seek a log-linear exponential distribution

p(wl
1) =

1

Z
p0(w

l
1) exp

{

K
∑

k=1

λkfk(w
l
1)

}

where p0(w
l
1) is the prior (discussed in §2), each

fk(w
l
1) is a feature function (§3), and each λk is

a weight that needs to be learned (§4) from a
training corpus. The normalizer

Z =
∑

vl′

1

p0(v
l′

1) exp

{

K
∑

k=1

λkfk(v
l′

1)

}

is impossible to compute but is not required for
some tasks, e.g. classification or optimization.

2 Prior

We have two choices for the prior p0(w
l
1): (a) a

uniform prior, or (b) an n-gram language model
as the prior. If we use a uniform prior, then
we would use the log of the n-gram language
model as a feature function.

Using a uniform prior is theoretically appeal-
ing, because it is neutral. In contrast, it is un-
clear in what sense an n-gram language model
is prior to other language models we may in-
corporate as feature functions. However, there

is no practical difference, since

p0(w
l
1) exp

{

K
∑

k=1

λkfk(w
l
1)

}

= exp

{

λ′
0 log p0(w

l
1) +

K
∑

k=1

λ′
kfk(w

l
1)

}

if
1

∑K
k=1 λk

=
λ′

0
∑K

k=1 λ′
k

3 Feature functions

In addition to an n-gram LM score, we can try
the following feature functions.

3.1 Class-based n-gram LM

First, we can try a class-based n-gram LM score:

fk(w
l
1) ≡ p(C(wl)|C(wk−1

1))

=
l
∑

i=1

p(C(wi)|C(wi−1
i−n+1))

where C(w) is the class of w. But how should
we define C(·)? (a) We can use part-of-speech
(POS) classes. (b) We can infer classes by clus-
tering based on co-occurrence, as in (Brown et
al., 1992). (c) We can define classes according to
the Google 1T unigram count; in other words, a
word w is in class Ci if

βi−1 ≤ c(w) < βi

where c(·) is the unigram count and β controls
the class boundaries (β = 10 might be reason-
able). These three class definitions are not mu-
tually exclusive: we could use all three classes
in the same model, but in different feature func-
tions.

Once we have defined C(·), we need to learn
the probability distribution p(C(·)). One ques-
tion is what training corpus to use: (a) the
Google 1T n-gram corpus, or (b) some other
corpus that contains complete documents or
sentences. If we use the Google 1T corpus,
we will use a stupid-backoff LM; if we use an-
other corpus, we may use modified Kneser-
Ney smoothing instead. Google’s 1T corpus is
much larger than any other corpus currently
available, but it may be more difficult to use
than a corpus of complete documents. For
example, state-of-the-art POS taggers such as
the Stanford Log-linear POS Tagger (Toutanova
and Manning, 2000; Toutanova et al., 2003) are
designed to tag whole sentences, not individ-
ual n-grams, and may not have high accuracy
on the Google 1T corpus. Similarly, it may
cause problem to infer clusters based on co-
occurrence within n-grams, and then use the
same n-grams to estimate the probabilities: this
may bias the probabilities against sequences
containing a diversity of classes. One solu-
tion could be to use a smaller corpus to learn
the clusters and the Google 1T corpus to learn
the probabilities. This will leave some words
in the Google 1T corpus without classes; these
words could be marked as UNK, or their n-
grams could be ignored. Another solution,
for either POS or clustered classes, would be
to use a sampling procedure (e.g., (Rosenfeld,
1997), §3.1) to generate a large corpus of com-
plete sentences from the Google 1T n-grams
using a word-based LM. Then this corpus can
be tagged or clustered and class-based n-grams
generated from it. Unfortunately, it may take
a prohibitive amount of time to sample a suffi-
ciently large number of sentences.

3.2 Fraction of words in a class

Instead of using classes in an n-gram language
model, it may be more useful to consider the

fraction of words in each class in a given docu-
ment. We define a separate feature function for
each class C:

fk(w
l
1) = p

(

1

l

l
∑

i=1

1(C(wi) = C)

)

= p(r(wl
1))

where 1(·) is 1 if its argument is true and 0
otherwise, and r(wl

1) is the fraction of class-C
words in wl

1.
We could estimate p(·) using the binomial

MLE based on some training corpus D (success
≡ a word is in class C; failure ≡ a word is in
some other class); that is, we can let the proba-
bility of a given document having a given frac-
tion of class-C words be the percentage of doc-
uments in the training corpus that have exactly
that fraction of class-C words:

p(r(wl
1)) =

1

|D|

∑

vl′

1
∈D

1(r(vl′

1) = r(wl
1))

However, this estimate will suffer from data
sparseness. For example, in a given test doc-
ument, 6/50 of the words may have class C;
in our training set, perhaps no documents will
have exactly 6/50 class-C words, but several
documents may have 6/51 or 11/100 class-C
words. The binomial estimate will improperly
assign probability of 0 to the test document.

A better estimate will use smoothing to avoid
this problem. For example, we can use the nor-
mal approximation to the binomial as follows.
Let the MLE mean and variance be

r̄ =
1

|D|

∑

vl′

1
∈D

r(vl′

1)

s2 =
1

|D|

∑

vl′

1
∈D

(r(vl′

1)− r̄)2

(To obtain an unbiased estimator for the vari-
ance, we can use 1

|D|−1 instead of 1
|D| .) Then the

normal

p(r(wl
1)) = N (r(wl

1)|r̄, s
2)

is the MLE.
For this type of feature function, I conjec-

ture that POS and count-based classes will be

useful, but co-occurrence cluster classes will
not, because the distribution of co-occurrence
classes will exhibit too much variation among
sentences.

3.3 Spacing of words in a class

We define a separate feature function for each
class C:

fk(w
l
1) = p(d̄(wl

1), s
2(wl

1))

where d̄(wl
1) and s2(wl

1) are the sample mean
and variance of the distance between consecu-
tive elements of class-C words in wl

1:

d(j) = ij+1 − ij , j = 1, . . . , |i| − 1

and i = {i : C(wi) = C, i = 1, . . . , l}. As before,
the probability distributions can be estimated
using the bivariate normal MLE on a training
corpus. To calculate the MLE, we let

θ(vl′

1) =
(

d̄(vl′

1) s2(vl′

1)
)⊤

Then the MLE mean and covariance of θ

θ̄ =
1

|D|

∑

vl′

1
∈D

θ(vl′

1)

Σ̂ =
1

|D|

∑

vl′

1
∈D

(θ(vl′

1)− θ̄)(θ(vl′

1)− θ̄)⊤

(Again, we could use the sample covariance in-
stead of the MLE.) Finally let

p(d̄(wl
1), s

2(wl
1)) = N (θ(wl

1)|θ̄, Σ̂)

Detailed classes may prove ineffective for
this type of feature function. Instead,
we could use, for example, the following
three classes: sentence boundaries (contain-
ing ”<S>”, ”</S>”, and the bigram ”</S>
<S>”), stopwords, and non-stopwords. It may
prove useful to include 1 and l in the set i for all
classes.

3.4 Parser

We could use an off-the-shelf parser as a fea-
ture function. Depending on the parser, the fea-
ture could be 0 = parses, 1 = doesn’t parse, or it

could be more fine-grained. We only parse up
to the end of the last complete sentence:

fk(w
l
1) = score(wj

1)

where j is the index of the last </S> in the doc-
ument.

3.5 Document length

For stopwords and indicator BOWs, we do not
know the true document length. We define a
feature function that scores the current length
of the document

fk(w
l
1) = p(l|x) = N (l|1⊤

x; l̄, s2)

where x is the BOW, 1 is the ones vector, and l̄
and s2 are the MLE mean and variance of doc-
ument length, given a BOW of length 1

⊤
x, on a

training corpus.
This approach may suffer from data sparse-

ness, since we need to estimate the mean
and variance separately for all possible BOW
lengths. A better solution is as follows. First
we use SVM regression on a training corpus to
estimate document length l̂(1⊤

x) given BOW
length. Then we estimate the variance of the
ratio of the estimated length to the true length,
assuming a unit mean:

s2 =
1

|D| − 1

∑

vl′

1
∈D

(

l̂(1⊤
x(vl′

1))

l
− 1

)2

We use as our estimate the normal whose mean
is the estimated document length l̂ = l̂(1⊤

x),
and whose variance is s2 scaled by the esti-
mated document length:

p(l|x) = N (l|1⊤
x; l̂, l̂ s2)

4 Feature weights

We present several different ways to learn the
feature weights λK

1 = λ1, . . . , λK .

4.1 Convex methods

We choose the feature weights so as to maxi-
mize the probability of a training corpus D:

λ̂K
1 = arg max

λK
1

{

∑

d∈D

p(d|λK
1)

}

where p(d|λK
1) is our exponential distribution

using the feature weights λK
1 , and d = vl′

1 . As
(Och and Ney, 2004) point out, this is a convex
optimization problem and can be solved using
standard methods such as gradient descent.

4.2 Generalized iterative scaling

Generalized iterative scaling ((Rosenfeld et al.,
2001), §2.2, and originally (Darroch and Rat-
cliff, 1972)) is an algorithm to learn the fea-
ture weights that takes advantage of the spe-
cific structure of our problem. We initialize
each λi arbitrarily, then iteratively set

λi ← λi +
1

Fi
log

Ep̃[fi]

Ep[fi]

where
Ep[fi] =

∑

d∈D

p(d)fi(d)

is the expected value of feature fi under the cur-
rent model,

Ep̃[fi] =
1

|D|

∑

d∈D

fi(d)

is the value of feature fi observed in the train-
ing corpus, and Fi is a parameter that con-
trols the rate of convergence. Each λi will con-
verge when Ep̃[fi] = Ep[fi], since in that case

log
Ep̃[fi]
Ep[fi]

= 0.

Unfortunately, it is impossible to compute
Ep[fi], since it is impossible to compute the
normalization factor Z of p(wl

1) (§1). Instead
we estimate Ep[fi] by sampling. (Rosenfeld et
al., 2001), §3.1, test Gibbs sampling, Metropo-
lis sampling, independence sampling, and im-
portance sampling for this purpose; they find
that independence and importance sampling
work well, but Gibbs sampling is too slow and
Metropolis sampling gives poor results.

4.3 Minimum error rate training

Instead of setting the feature weights to maxi-
mize probability with respect to a training cor-
pus D, we can set them to minimize error rate
L with respect to D (Och, 2003):

λ̂K
1 = arg min

λK
1

{

∑

d∈D

N
∑

i=1

L(d, d̂i)

}

where {d̂i} are the N -best documents recov-
ered from d’s BOW using A∗ search with
p(wl

1|λ
K
1) as the score function. This optimiza-

tion problem presents two difficulties: (a) it is
not convex—in fact, it has a very large number
of local minima (see (Och, 2003), figure 1), and
(b) even one iteration over the d ∈ D may re-
quire hours or days for a large training corpus,
because of the A∗ search. The first problem can
be mitigated by smoothing:

λ̂K
1 = arg min

λK
1

{

∑

d∈D

N
∑

i=1

L(d, d̂i)
p(d̂i)

γ

∑N
i=1 p(d̂i)γ

}

for some smoothing paramater γ.
However, even this smoothed optimization

problem is not convex. (Och, 2003), §5, fol-
lowing (Papineni, 1999), proposes a procedure
also used and elucidated by (Smith and Eisner,
2006), §6. Let B(d) be a list of (c, l′)-tuples,
where c = c(d, d̂) is the precision and l′ =
l′(d̂) is the length of some document d̂ recov-
ered from d’s BOW, and all B(d) are initially
empty. (Precision and length are used to com-
pute BLEU.) We iterate as follows.

• For each d ∈ D, and for each document
d̂i recovered from d, if (c(d, d̂i), l

′(d̂i)) 6∈
B(d), add it.

• If no new tuples have been added to any
B(d), we have found locally optimal fea-
ture weights λK

1 .

• Otherwise, we update the weights and go
to the first step.1

The feature weights can be initialized accord-
ing to the maximum entropy estimate. To ame-
liorate the problem (b) above, iteration can be
stopped after a fixed number of steps even if
convergence has not been reached.

References

Peter F. Brown, Peter V. deSouza, Robert L. Mercer,
Vincent J. Della Pietra, and Jenifer C. Lai. 1992.

1How? (Och, 2003)’s exposition is somewhat confus-
ing. It requires finding the minimum of a piecewise linear
function.

Class-based n-gram models of natural language.
Comput. Linguist., 18(4):467–479.

J. N. Darroch and D. Ratcliff. 1972. Generalized it-
erative scaling for log-linear models. The Annals
of Mathematical Statistics, 43(5):1470–1480.

Franz Josef Och and Hermann Ney. 2004. The
alignment template approach to statistical ma-
chine translation. Comput. Linguist., 30(4):417–
449.

Franz Josef Och. 2003. Minimum error rate train-
ing in statistical machine translation. In ACL ’03:
Proceedings of the 41st Annual Meeting on Associa-
tion for Computational Linguistics, pages 160–167,
Morristown, NJ, USA. Association for Computa-
tional Linguistics.

K. A. Papineni. 1999. Discriminative training via
linear programming. In ICASSP ’99: Proceedings
of the Acoustics, Speech, and Signal Processing, 1999.
on 1999 IEEE International Conference, pages 561–
564, Washington, DC, USA. IEEE Computer Soci-
ety.

Ronald Rosenfeld, Stanley F. Chen, and Xiaojin
Zhu. 2001. Whole-sentence exponential lan-
guage models: a vehicle for linguistic-statistical
integration. Computer Speech Language, 15(1):55–
73.

R. Rosenfeld. 1997. A whole sentence maximum
entropy language model. Automatic Speech Recog-
nition and Understanding, 1997. Proceedings., 1997
IEEE Workshop on, pages 230–237, Dec.

David A. Smith and Jason Eisner. 2006. Minimum
risk annealing for training log-linear models. In
Proceedings of the COLING/ACL on Main conference
poster sessions, pages 787–794, Morristown, NJ,
USA. Association for Computational Linguistics.

Kristina Toutanova and Christopher D. Manning.
2000. Enriching the knowledge sources used in a
maximum entropy part-of-speech tagger. In Pro-
ceedings of the 2000 Joint SIGDAT conference on Em-
pirical methods in natural language processing and
very large corpora, pages 63–70, Morristown, NJ,
USA. Association for Computational Linguistics.

Kristina Toutanova, Dan Klein, Christopher D.
Manning, and Yoram Singer. 2003. Feature-rich
part-of-speech tagging with a cyclic dependency
network. In NAACL ’03: Proceedings of the 2003
Conference of the North American Chapter of the As-
sociation for Computational Linguistics on Human
Language Technology, pages 173–180, Morristown,
NJ, USA. Association for Computational Linguis-
tics.

