
Reinforcement learning

The basic setup is as follows. At each time step t = 0, 1, 2, . . . , the agent (i) perceives a state
st ∈ S, (ii) takes an action at ∈ A, (iii) receives a reward rt = r(st, at), and (iv) moves to a
new state st+1 = δ(st, at). The agent’s task is to learn a policy π : S → A that maps each
state to the “best” action to take in that state. We define “best” in terms of the discounted
cumulative reward

V π(st) = rt + γrt+1 + γ2rt+2 + · · · ,

where γ ∈ [0, 1) is the discount factor. (Other possible reward functions include finite horizon
reward

∑h

i=0 rt+i for horizon h, or average reward limh→∞

1
h

∑h

i=0 rt+i.) Given such a reward
function, the optimal policy is

π∗ = arg max
π:S→A

V π(s) ∀s ∈ S (Mitchell’s formulation)

= arg max
π:S→A

(min
s∈S

V π(s)).

The difficulty with the above setup is that typically the agent knows neither the reward
function r nor the transition function δ. However, if the agent is currently in state s, the
agent can discover the value of r(a, s) and δ(a, s) for any single action a by simply taking
the action – and this information can be used to approximate the optimal policy π∗ even
without complete knowledge of r and δ, as follows. We first define the Q function as

Q(s, a) = r(s, a) + γV π∗

(δ(s, a)).

Note that for any state s, the optimal policy π∗(s) = arg maxa Q(s, a), and the optimal
reward is V π∗

(s) = maxa Q(s, a). Substituting for the optimal reward in the Q function, we
get the recurrence

Q(s, a) = r(s, a) + γ max
a′

Q(δ(s, a), a′).

By approximately solving this recurrence for Q, we also get an approximation to the optimal
policy as π∗(s) = arg maxa Q(s, a).

We can approximate Q as follows (Q learning algorithm):

Initialize Q̂ to the all zeros matrix.
Observe current state s0.
For t = 0, 1, 2, . . . ,
. Select action at and execute it.
. Receive reward rt.
. Observe new state st+1.
. Update Q̂(st, at) = rt + γ maxa′ Q̂(st+1, a

′).

1

Under certain conditions (deterministic MDP, bounded reward, and states visited infinitely
often) Q̂ can be shown to converge to Q.

The Q learning algorithm above does not specify how to select action at. One possibility is
to select action a in state s according to

P (a | s) =
kQ̂(s,a)

∑

a∈A kQ̂(s,aj)
,

where k > 0 is a constant that controls the tradeoff between exploration and exploitation:
actions with large Q̂ values are increasingly favored as k becomes large. The value of k can
start small and be increased over time so as to initially favor exploration and later favor
exploitation.

If the environment is not deterministic (i.e., is a nondeterministic MDP), then we change
the Q learning setup as follows. We define the objective as the expected value (over the
distribution of outcomes) of discounted cumulative reward:

V π(st) = E

[

∞
∑

i=0

γirt+i

]

.

We define the optimal policy π∗ and its reward V π∗

as before. We define the Q function as
the expected value of the deterministic Q function:

Q(s, a) = E[r(s, a) + γV π∗

(δ(s, a))]

= E[r(s, a) + γ
∑

s′

P (s′|s, a)V π∗

(s′).

In this nondeterministic environment, the previous Q learning algorithm does not converge
in general. To ensure convergence, we modify the Q̂ update to a decaying weighted average
of the current Q̂ value and the new estimate:

. . . .

. Copy Q̂t = Q̂t−1.

. Update Q̂t(s, a) = (1 − αt)Q̂t−1(st, at) + αt[r + γ maxa′ Q̂t−1(st+1, a
′)].

Here the weight αt = 1/(1 + visitst(s, a)) and visitst(s, a) is the total number of times this
state-action pair has been visited up to and including the tth iteration.

In the Q learning algorithm’s approximation to Q, we look at the current time step’s
(state,action) pair’s true reward, and combine that with our estimate of the reward after
that:

Q(1)(st, at) = rt + γ max
a′

Q̂(st+1, a
′).

2

Instead, we can look at more than one time step ahead in order to approximate Q. If we
look two steps ahead, we get

Q(2)(st, at) = rt + γrt+1 + γ2 max
a′

Q̂(st+2, a
′),

or in general if we look n steps ahead, we get

Q(n)(st, at) = rt + γrt+1 + · · · + γ(n−1)rt+n−1 + γn max
a′

Q̂(st+n, a
′),

One can combine these, obtaining the TD(λ) update:

Qλ(st, at) = (1 − λ)
[

Q(1)(st, at) + λQ(2)(st, at) + λ2Q(3)(st, at) + · · ·
]

= rt + γ
[

(1 − λ) max
a′

Q̂(st, at) + λQλ(st+1, at+1)
]

.

Another variant is to represent the Q̂ table using a function approximator, instead of storing
it explicitly. For example, (1) one can train a neural network with backpropogation, where
the (s, a) pairs are given as input and the output is the target values of Q̂ given in the
algorithms listed above. Alternatively, (2) one can train a separate neural network for each
action a, where the state s is input and the output is the target value of Q̂ for the (s, a) as
before. Or (3) one can use linear regression to approximate the map from (s, a) to Q̂(s, a).

This kind of representation can be good because it reduces memory requirements and can
allow one to generalize across states (?), but it can be bad because it can introduce additional
error that may prevent convergence.

——

In SARSA, we use

Q(st, at) = Q(st, at) + α[rt+1 + γQ(st+1, at+1) − Q(st, at)]

3

