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Introduction
Poetry publication in the United States is a multi-hundred
dollar industry. Yet current methods of production are
inefficient—they’ve hardly changed since before the Indus-
trial Revolution. In this paper we present novel methods
for training a computer to generate poetry using a corpus.
(In all seriousness, it is interesting to see how well we can
make the computer create meaning and form when we re-
move the constraints on content and ordering present in ma-
chine translation and typical natural language generation.)

Previous attempts at using computers to automatically
generate poetry tend to rely on hand-coded rules. For ex-
ample, (Gervas 2001) uses a rule-based system to generate
Spanish poetry. The rules were manually created by review-
ing academic literature on poetry. (Manurung, Ritchie, and
Thompson 2000) and (Manurung 2003) use stochastic hill-
climing search to create poems. But evaluation and mutation
of candidates rely on a hand-crafted grammar and lexicon.
(Levy 2001) proposes a similar evolutionary algorithm, but
again using a hand-crafted lexicon, conceptual knowledge
base, and grammar. Other examples, going back at least
to the 1970s, use hand-crafted template poems and fill in
the blanks to create new poems. (See§2.3.2 in (Manurung
2003) for an overview.)

On the other hand, several techniques we present here are
similar to corpus-based approaches used in machine transla-
tion. These are referenced below.

Methods
We propose five novel methods for poetry generation. One is
a baseline, three improve separately on the baseline, and the
last is a hybrid. All require a tokenized, sentence-segmented
corpus of poetry and a trigram (or other n-gram) language
model trained on the corpus.

Unconstrained A∗ search

Our baseline method is simple. We use A∗ search with a cost
function based on a trigram language model to find high-
probability poems. A∗ search (along with similar algorithms
like beam search) is frequently used in machine translation
systems to order candidate translations, e.g. (Tillman and
Ney 2003; Och, Ueffing, and Ney 2001). Our procedure:

1. Sample a subset of the vocabulary from the unigram MLE
multinomial based on the corpus.

2. Use memory-bounded A∗ search to find the most likely
sequence of lengthl of words from that subset.

The first step, taking a sample of the vocabulary, was needed
to fit the problem in memory. The sample size was about
30 times the number of words in each poem. During the
second step, A∗ search, each candidate partial poemw =
w1, . . . , wk was assigned (inverse) path costg as follows:

g(w) = log p(w1) + log p(w2|w1) +
k∑

i=3

log p(wi|wi−2, wi−1)

Each candidate was assigned a heuristic valueh, the esti-
mated (inverse) path cost to the goal, as follows. Before the
search, precompute

S(u) = min
v1,v2∈V

log p(u|v1, v2), ∀u ∈ V

whereV is the sampled subset of the vocabulary. Then dur-
ing the searchh can be computed efficiently:

h(w) = min
u={uk+1,uk+2,...,ul}⊆V \w

∑
ui∈u

S(ui)

wherel is the desired length of the complete poem. Candi-
dates were popped and expanded based ong +h, but pruned
based on−g − h − αk, whereα is a small value aimed at
discouraging long candidates from being pruned.

IDF templates
Our next method aims to learn templates from the cor-
pus. (Bilingual) template extraction from a corpus, a form
of example-based machine translation, has also been used
by some machine translation systems, e.g. (Brown 2000;
Carl 1999; Lu et al. 2001). Their specific approachs are dif-
ferent than ours; for one thing, parallel texts are involved.
Our procedure:
1. First, as a preprocessing step, compute the IDF of each

word in the corpus. Replace each word whose IDF is
above a threshold (4.0) by a placeholder. These are con-
tent words; only stopwords remain. For example,
<S> the budding twigs spread out their fan , <S> the X X X X their X ,
to catch the breezy air ; </S> → to X the X X ; </S>

<S> and i must think , do all i can , <S> and i X X , X all i X ,
that there was pleasure there . </S> that X was X X . </S>



The threshold can be changed, of course; a lower thresh-
old will lead to more generalized templates.

2. Next, before generating a poem, uniformly samplek con-
tiguous lines from the preprocessed corpus, starting at an
<S> . This is our template. Note that sampling from
a uniform distribution over line tokens is equivalent to
sampling from a multinomial distribution over line types.
More common patterns will be chosen more frequently.

3. Run A∗ search as above. But if a stopword occurs at posi-
tion i in the template, force that word to occur at position
i in the generated poem.

POS templates
Our third method learns templates from the corpus in a dif-
ferent way. Instead of fixing stopwords, we force theith
word in the generated poem to have the same part of speech
as theith word in the template. The previous template be-
comes:

<S> TD VBG NNS VBN RP PRP$ NN ,
TO VB DT JJ NN ; </S>

<S> CC PRP MD VB , VB DT PRP MD ,
DT EX VBD NN RB . </S>

This kind of template requires us to change how we sam-
ple the vocabulary. On the one hand, what if our template
requires (for example) a PRP but our sample doesn’t con-
tain any PRPs? We won’t be able to generate a poem!
Conversely, although less important, if our sample contains
a PRP but the template doesn’t call for it, we will waste
space, since the PRP will certainly not occur in any gen-
erated poem. To solve both problems, we sample the vocab-
ulary from a mixture of unigram MLE multinomials, each
restricted to words of a single POS:

V =
⋃
p∈P

Vp ∼ Mult{v ∈ corpus : pos(v) = p}

whereP is the POS template.

Topic
Our fourth method aims to improve the meaning, rather than
the form, of the generated poems. We sample the vocabulary
from the unigram MLE based on the subset of sentencess
in the corpus that contain one of a set of given keywordsu:

V ∼ Mult{v ∈ s : s ∈
⋃
u∈u

{s : u ∈ s}}

We assume that sentences in the corpus which contain one
of our keywords are related to that keyword, so sampling the
vocabulary from only those sentences should encourage the
generated poem to have a similar topic. After sampling a vo-
cabulary we use unconstrained A∗ search as in the baseline.

Combination
Our last method is a hybrid, combining all three refinements.
We sample the vocabulary from a mixture of multinomials,
each limited to words of a particular POS and drawn from
the subset of sentences that contain one of the keywords:

V =
⋃
p∈P

Vp ∼ Mult{v ∈ s : pos(v) = p, s ∈
⋃
u∈u

{s : u ∈ s}}

We use a template like

<S> the VBG NNS VBN RP their NN ,
to VB the JJ NN : </S>

<S> and i MD VB , VB all i MD ,
that EX was NN RB . </S>

and constrain search by both stopwords and POS tags as be-
fore.

Experiments
Evaluating a poetry generator is difficult. (Popescu-Belis
2007) distinguishes two metrics for general NLG systems:
distance-based metrics and task-based ones. Distance-based
metrics such as BLEU (Papineni et al. 2001) or ROUGE
(Lin 2004) are quite unsuitable for evaluating a poetry gen-
erator. BLEU, for example, is computed by having a human
and a machine translate the same test set; the BLEU score
is proportional to the number of shared n-grams. But our
generator istrying to produce something new—there’s no
reasonable reference point to measure the distance from.1

A task-based metric, based on a user study, is more
promising. (a) Generate poems using each of our proposed
methods. (Optionally select human-created poems as well,
for reference.) (b) Have subjects rate each poem for gram-
maticality, thematic unity, poetic plausibility, etc. Then (c)
compare how significantly ratings vary among different ap-
proaches. We have not had time to conduct such a study.

Instead, we present example poems produced using each
of our methods. We collected a corpus of 19th-century
poetry from Project Gutenberg and built a smoothed tri-
gram language model based on the corpus using the CMU-
Cambridge SLM toolkit (Clarkson and Rosenfeld 1997). We
wrote a program, based partly on code from (Zhu et al.
2008), to run the A∗ search.

Figure 1 shows the top 15 poems produced by uncon-
strained A∗ search. Fragments of some poems make sense,
but overall each poem is ungrammatical and nonsensical.
Figure 2 shows the top 15 poems produced by A∗ search
constrained by an IDF template, and figure 3 shows the top
15 poems when a POS template is used. Both results are
substantially more plausible than the results from the un-
constrained case. Figure 4 shows the top 15 poems when
the search is unconstrained but the vocabulary is sampled
from a subset of sentences that contain “love” or “tears”.
The topic does seem to show up—the actual word “tears”
occurs in several of the generated poems. Grammatical co-
hesiveness is worse than in the template-based examples—
this is expected—but still better than in the baseline, a bit
of a surprise, probably because the sampled vocabulary is
more cohesive than in the baseline. Figure 5 shows the top
15 poems using a combination of all our strategies.

1Even when there is a point of reference, poetry presents a
special challenge. Compare, for example, the English transla-
tions of the first stanza of Horace’s Ode 1.38 by Gerald Hopkins
and William Cowper (in (Carne-Ross and Haynes 1996)). Both
were distinguished poets, and their translations were separated by
only 50 years—yet they share no words: the unigram BLEU score
would be 0!
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her . you yet may they
not strong ? and ,
there ’s not a soul as strong as could then
be it so ; and
log p = −236.7064

her . “ turn where we
will see or no ;
idon . but from thee which ‘ her
’ be ! and ,
log p = −236.7294

her . where is he not
strong ? and , in
idon . – be our ‘ hand ’
of man ; and ,
log p = −236.9815

– o care ! where is
he not strong ? and
there ’s not a soul as strong as could then
be it so ! and
log p = −237.0587

her . and we will see
or no ; and ,
her . – be our ‘ hand ’
of man ; and ,
log p = −237.1798

her . “ turn where we
will see or no ?
there ’s not a soul as strong as could then
be it so ; –
log p = −237.2298

this is noble ! where is
he not strong ? and
and , with a soul as strong as could then
be it so ; and
log p = −237.3875

her . we will see or
no ; and , in
there ’s not a soul as strong as could then
be it so ! –
log p = −237.4169

her . – we will see
or no ; and ,
there ’s not a soul as strong as could then
be it so . ’
log p = −237.4769

her . where is he not
strong ? and , as
idon . but we will see or no
; and , in the
log p = −237.5105

her . – o be thou
mute ! and , in
– idon . and who but this endured
not ; and , in
log p = −237.5225

– where – where – where is he
not strong ? and ,
idon . and there will see or no
; and , in the
log p = −237.5322

“ o death ! where is
he not strong ? and
there ’s not a soul as strong as could then
be ‘ there ’ on which the
log p = −237.5633

her . where is he not
strong ? and , with
– idon . – be our ‘ hand
’ of man ; and
log p = −237.6242

– o care ! where is
he not strong ? –
idon . but from thee which ‘ her
’ be true ? and
log p = −237.6372

Figure 1: Top 15 poems using unconstrained A∗ search and
a vocabulary sampled from the unigram MLE.



the grassy the greatness of their birth ,
to which the mind ’s ;
and i to thee , and all i thought ,
that it was in her .
log p = −263.280135

the most the greatness of their birth ,
to see the glory of ;
and i , who , with all i thought ,
that it was a time .
log p = −263.292844

the was the greatness of their birth ,
to see the glory of ;
and i , who , with all i thought ,
that there was a time .
log p = −263.308526

the potent the greatness of their birth ,
to which the blast , ;
and i , who , with all i thought ,
that it was in her .
log p = −263.352116

the man the greatness of their birth ,
to see the glory of ;
and i to thee , and all i thought ,
that it was a time .
log p = −263.519144

the was the greatness of their birth ,
to which the mind ’s ;
and i to thee , and all i see ,
that it was a time .
log p = −263.538126

the or the greatness of their birth ,
to see the glory of ;
and i to thee , and all i thought ,
that there was a time .
log p = −263.581126

the most the greatness of their birth ,
to which the blast , ;
and i , who , with all i see ,
that it was a time .
log p = −263.600326

the was the greatness of their birth ,
to which the blast , ;
and i , who , with all i see ,
that there was a time .
log p = −263.616007

the was the greatness of their birth ,
to which the shepherd ’s ;
and i , who , with all i was ,
that there was a time .
log p = −263.633826

the sail the greatness of their birth ,
to see the glory of ;
and i be silent , and all i thought ,
that it was a time .
log p = −263.691835

the a the greatness of their birth ,
to see the glory of ;
and i be silent , and all i thought ,
that there was a time .
log p = −263.708216

the noble the greatness of their birth ,
to see the glory of ;
and i , who , with all i be ,
that it was a time .
log p = −263.724335

the queen the greatness of their birth ,
to see the glory of ;
and i , who , with all i be ,
that there was a time .
log p = −263.730235

the be the greatness of their birth ,
to see the glory of ;
and i to thee , and all i be ,
that it was a time .
log p = −263.800726

Figure 2: Top 15 poems using A∗ search constrained by an
IDF template, with a vocabulary sampled from the unigram
MLE.

the yielding they been in his turn ,
to have a noble mind ;
and it may be , hope that we might ,
that there was she there .
log p = −266.247216

the yielding was left in his turn ,
to have a noble mind ;
and it may be , like that we might ,
that there was she there .
log p = −266.293316

the yielding they been in his death ,
to have a noble mind ;
and it may be , hope that we might ,
that there was need there .
log p = −266.469226

the yielding was left in his death ,
to have a noble mind ;
and it may be , like that we might ,
that there was need there .
log p = −266.515326

the yielding was made in her turn ,
to have a noble mind ;
and it may be , will that we might ,
that there was need there .
log p = −266.828016

the yielding they been in her turn ,
to have a noble mind ;
but it will be , hope that we might ,
that there was need there .
log p = −267.272916

the yielding was left in her turn ,
to have a noble mind ;
and it may be , like this we might ,
that there was need there .
log p = −267.318816

a yielding they been in his turn ,
to have a noble mind ;
but it will be , like that we might ,
that there was need there .
log p = −267.440416

a yielding was left in his turn ,
to have a noble mind ;
but it will be , like that she may ,
that there was need there .
log p = −267.567107

the ascending they been in his turn ,
to have a noble mind ;
but it will be , hope that we may ,
that there was need there .
log p = −267.763907

the ascending was left in his turn ,
to have a noble mind ;
and it will be , hope that we might ,
that there was need there .
log p = −267.788916

a yielding they been in his death ,
to have a noble mind ;
but it will be , like this we might ,
that there was need there .
log p = −267.825226

a yielding was left in his death ,
to have a noble mind ;
but it will be , like that we may ,
that there was need there .
log p = −267.835717

the ascending they been in his death ,
to have a noble mind ;
but it will be , hope that we might ,
that there was need no !
log p = −267.854226

the ascending was left in his death ,
to have a noble mind ;
and it will be , like that we might ,
that there was need there .
log p = −267.864226

Figure 3: Top 15 poems using A∗ search constrained by a
POS template, with a vocabulary sampled from a mixture of
multinomials.



– no – hopes spun in truth a
human voice hath said ;
and , as he may do all i can not
but be thou blest !
log p = −237.780191

no – hopes spun in simple truth a
human voice hath said ;
and there he may do all i can not but
be thou blest ! and
log p = −237.849291

to have a heart that had found a
human voice hath said ;
but , as he may do all i can not
but be thou blest !
log p = −238.1624

– no – hopes spun in her –
she hath eyes : –
her . but i can not but be
thou blest ! and ,
log p = −238.2489

– no – hopes spun in her –
she hath eyes : the
her . no turn she can not but
be thou blest ! and
log p = −238.429

– no – hopes spun in her light
to thy heart ; –
her . i can not but be thou
blest ! and , as
log p = −238.7468

no – hopes spun in truth a human
voice hath said ; –
and , as one whose own country , far less
could we but have thou there the
log p = −238.808691

thou whose happy hand had found a human
voice hath said ; –
and all that he may do all i can not
but be thou blest !
log p = −238.841091

– o ye , in simple truth a
human voice hath said ;
and he may do all i can not but be
thou blest ! and ,
log p = −238.8789

– no – hopes spun in her light
to thy heart ; the
her . and do all i can not
but be thou blest !
log p = −238.8972

no – hopes spun in truth a human
voice hath said ; the
her . and i could not but be
thou blest ! and ,
log p = −238.953291

thou whose happy hand had found a human
voice hath said ; the
her . and , far less could we
but have they not ?
log p = −238.985191

– her tears to flow , thou hast
thou thy own life ;
and that he may do all i can not but
be thou blest ! and
log p = −239.065191

was happy that she had found a human
voice hath said ; –
her hope she won , they can not but be
thou blest ! and ,
log p = −239.1032

a passing cloud , in simple truth a
human voice hath said ;
there he may do all i can not but be
thou blest ! and ,
log p = −239.1829

Figure 4: Top 15 poems using unconstrained A∗ with a
vocabulary sampled from a subset of the corpus matching
love,tears .

the shedding tears shed on their side ,
to note the old time ;
and i will praise , that all i can ,
that there was aught ever .
log p = −264.550417

the living eyes had in their weakness ,
to note the old time ;
and i will dare , where all i can ,
that there was aught ever .
log p = −264.566107

the shedding tears shed on their side ,
to preserve the old time ;
and i may say , we all i can ,
that there was aught ever .
log p = −264.693526

the living eyes had in their weakness ,
to preserve the old time ;
and i will die , that all i can ,
that there was aught ever .
log p = −264.738716

the shedding tears shed on their side ,
to find the old time ;
and i would give , that all i can ,
that there was aught ever .
log p = −264.894126

the living eyes had in their weakness ,
to find the old time ;
and i must die , that all i can ,
that there was aught ever .
log p = −264.978816

the living eyes had on their side ,
to find the old time ;
and i may say , tis all i can ,
that there was my heart .
log p = −265.544198

the living eyes had in their light ,
to preserve the old time ;
and i may dare , where all i can ,
that there was my heart .
log p = −265.590407

the shedding tears shed on their side ,
to please the gentle heart ;
and i will dare , where all i can ,
that there was my heart .
log p = −265.621107

the living eyes had in their weakness ,
to love the living nature ;
and i must be , that all i can ,
that there was aught ever .
log p = −265.781016

the living eyes had in their birth ,
to note the old time ;
and i may say , we all i can ,
that there was sorrow ever .
log p = −265.815216

the shedding tears shed on their side ,
to love the living god ;
and i may say , where all i can ,
that there was aught ever .
log p = −265.819426

the living eyes had in their weakness ,
to love the living god ;
and i will go , we all i can ,
that there was aught ever .
log p = −265.859816

the living eyes had in their weakness ,
to love the end i ;
and i may say , that all i can ,
that there was my heart .
log p = −265.867816

the shedding tears shed on their side ,
to find the old men ;
and i will die , that all i can ,
that there was my heart .
log p = −265.999716

Figure 5: Top 15 poems using our hybrid method.


