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General normalization schemes

In this section we review some popular normalization
schemes. By “normalization scheme” we mean a technique
to transform features so as to make comparison of examples
(or sets of examples) easier. (Note that normalization is dif-
ferent from feature selection: feature selection schemes are
intended to make different features commensurable or or-
thogonal, while normalization schemes are intended to make
different point sets commensurable.)

Below x denotes a single training or test example, xi de-
notes its ith feature value, and Ti denotes a transformation
of the ith feature.

Linear scaling. Fix a lower bound Li and an upper
bound Ui on feature i. For example, Li and Ui can be
set to the largest and smallest values of feature i in the
corpus, or they can be set so as to capture some frac-
tion of the variance of feature i in the corpus. Define
Ti(xi) = (min(max(xi, Li), Ui) − Li)/(Ui − Li). Then
0 ≤ Ti(xi) ≤ 1. 1

Sample mean and variance normalization. Given a cor-
pus {xj}n

j=1 of examples, let mi = n−1
∑n

j=1 xji de-

note the sample mean of the ith feature and s2
i = (n −

1)−1
∑n

j=1(xji − mi)
2 denote the sample variance. Define

Ti(xi) = (xi − mi)/si. Then the collection {Ti(xji)}n
j=1

has sample mean zero and sample variance 1. 2

Rank normalization. Given a corpus {xj}n
j=1 of exam-

ples, define Ti(xi) = n−1
∑n

j=1 I(xji ≤ xi), where I(A)

is the indicator function of A. Then 0 ≤ Ti(xi) ≤ 1, and
the collection {Ti(xji)}n

j=1 becomes uniformly distributed

as n increases,3 since Ti is feature i’s empirical distribution
function.

Gaussianization. Given a corpus {xj}n
j=1 of examples,

let Ri =
∑n

j=1 I(xji ≤ xi) denote the rank of xi in the

corpus. Let f(y) = (
√

2π)−1 exp(−y2/2) denote the stan-

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Claim: Under some circumstances, Ti(xi) will be uniformly
distributed.

2Claim: Assumes gaussian-distributed data. Note that it is pos-
sible to perform just sample mean normalization (xi −mi) or sam-
ple variance normalization (xi/si).

3Right?

dard normal density. Define Ti(xi) so that the equation

(n − Ri + 1/2)/n =
∫ Ti(xi)

y=−∞
f(y) dy holds.

Distribution matching. Given a corpus {xj}n
j=1 of ex-

amples, with cdf Fi and desired cdf Gi, define Ti(xi) =
G−1

i (Fi(xi)). If Fi is the empirical cdf and Gi is the iden-
tity function r 7→ r, then distribution matching reduces to
rank normalization. Claim: Distribution matching also gen-
eralizes gaussianization.

Similarity distance isn’t just EMD, normalized

It is clear that similarity distance is not a simple application
of any of the above normalization schemes to earth mover
distance. Perhaps similarity distance could be formulated
as a kind of distribution matching, but certainly not in an
obvious way.

A classical rescaling method in NLP is TF-IDF. This has
the same purpose as in our setting, i.e., one wants to compare
two sets of documents, e.g. {query} and {corpus doc 1, . . . ,
corpus doc n} in the information retrieval setting, but these
two sets have different scaling properties, since for example
the query will typically be much shorter than any document
in the corpus.

Thus even if in a sense similarity distance is a “normal-
ization” of EMD, this does not preclude it being very useful.
TF-IDF is a “normalization” of TF but is used much more
frequently than TF.

Applications of similarity distance

Information retrieval. (I know mike doesn’t like NLP.)

See also

See also my summaries of papers and notes on them, in
../lit/citations.txt.

I need to add citations above. For now, here is a citation
to keep bibtex happy: (Stolcke, Kajarekar, and Ferrer 2008).

References

Stolcke, A.; Kajarekar, S.; and Ferrer, L. 2008. Nonpara-
metric feature normalization for svm-based speaker verifi-
cation. In Acoustics, Speech and Signal Processing, 2008.
ICASSP 2008. IEEE International Conference on, 1577–
1580.


