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Abstract. This paper promotes the view that in numerous machine learning prob-
lems and domains it is valuable to represent instances as point sets and to use
the spatial overlap between these point sets as a measure of distance between in-
stances. Our specific contributions are as follows. First, we present a new measure
of spatial overlap, and we show that the measure is well-motivated and compu-
tationally tractable. Second, we use this measure of spatial overlap to solve three
concrete machine learning problems, in clustering, text processing, and protein
structure analysis. Finally, we contrast our approach with a variety of other meth-
ods that consider the spatial arrangement of point sets.

1 Introduction

One of the most popular and successful representation of instances for learning is as
fixed-length feature vectors. In this representation, each feature is represented as a dif-
ferent dimension in a space. This model is popular for several good reasons: (1) it can
be used to model a very large class of real problems; (2) it is simple; (3) many powerful
inference techniques are easily applied to this model, for example k-nearest neighbors,
support vector machines with standard kernels, linear regression, etc.

However, despite its strengths, one weakness of this representation is that it is not
easy to encode information about relations among the features themselves directly in
this representation. For example, in the bag-of-words model in natural language pro-
cessing, where each feature represents a term such as “cat”, “kitten”, and “block”, it is
not easy to (directly) encode that “cat” and “kitten” are more highly related than “cat”
and “block”. Similarly, in order to make movie recommendations, we might represent
each user as a fixed-length feature vector where each feature encodes the user’s rating
of a movie; a disadvantage of this approach is that it is not easy to directly encode
similarities among movies.

For example, we may represent proteins, documents, movies, and images as collec-
tions of atoms, words, reviews, and edges respectively.

In many machine learning problems, we have various features and relations amont
In this paper we present a general construction and we show how it can be used to
In this paper we address the question: how
If the paper’s thesis is: it is valuable to encode examples as point sets and to use the

spatial overlap between these point sets as a measure of the distance between examples
What does it mean for two things to be similar? This type of question is common-

place in computational sciences but its interpretation varies widely. For example, we
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may represent proteins, documents, movies, and images as collections of atoms, words,
reviews, and edges respectively. For each of these representations, we must then find
distance measures that enable meaningful comparisons.

Our contribution in this paper is to formulate a new measure, similarity distance,
that provides an intuitive basis for understanding such comparisons. In this paper, our
things are finite, weighted point sets. The notion of similarity presented here refers to a
measure of the spatial overlap between these point sets. Namely, when we consider the
similarity of two objects, we are asking: to what degree do their point set representations
occupy the same region in space? The contribution of this paper is to formalize and
answer this question; to compare our solution to other approaches; and to demonstrate
its utility in solving real-world problems.

It is easiest to begin with an intuitive, visual presentation of the problem and defini-
tion. After this, we motivate and derive our measure of similarity. We then examine why
this problem defies a number of standard normalization techniques that suggest them-
selves. This leads us to examine related statistical methods for measuring similarity
and explore examples where they fail to capture the simple intuition behind similarity
distance and our intended meaning.

1.1 Problem Statement
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Fig. 1. We consider the two point sets in Example A to be far more similar to one another than
those in Example B. This is the case even though they occupy far more area in absolute terms and
would be deemed further apart by many distance metrics.

In this paper, we focus on the concept of spatial overlap as our measure of similarity.
In other words, we would like to define a distance function with a range over [0, 1],
where a value of 0 means two point sets perfectly overlap and a value near 1 means
they occupy extremely different regions of space. We make no assumptions about the
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Fig. 2. In this figure, the red squares represent factories (sources) with differing degrees of pro-
duction and the blue triangles represent warehouse (sinks) with different storage capacities, on the
surface of a sphere. The Kantorovich-Wasserstein distance measures the most efficient amount
of work necessary to transport from the red squares to the blue triangles. We note the amount of
mass being “produced” must be equivalent to the amount of mass being “consumed.”

number of points in each set or how they were generated. Nor do we care about the
sizes of the regions of space involved, e.g., the hyper-volumes of their convex hulls.

An image is useful for illustrating this idea. Consider the two examples in Figure 1.
Each shows two overlapping samples drawn from Gaussian distributions; we would
like to compare the similarity of these samples, each of which is commonly called a
point set. Our intention is that the point sets in Example A should be judged much more
similar than those in Example B, based on their degree of spatial overlap. We want to
arrive at this result even though the points in Example A cover orders of magnitude
more area than those in Example B. We discuss the relationship between similarity and
distance below, but we note that the relatively tiny distances involved in Example B
would lead many distance metrics to indicate they are “closer” to one another; this is
the opposite of what we would like to find.

In the next section, we formally define this measure and discuss how to compute it,
examining the shortcomings of possible alternatives.

2 Similarity Distance

Similarity distance DS is derived from the Kantorovich-Wasserstein metric Dkw [1, 2],
which proposed a solution to the Transportation Problem posed by Monge in 1781. This
problem may be stated: What is the optimal way to move a set of masses from suppliers
to receivers, who are some distance away? Optimal in this definition means minimizing
the amount of total work performed, where work is defined as mass × distance. For
example, we might imagine a set of factories that stock a set of warehouses, and we
would like to situate them to minimize the amount of driving necessary between the
two. This problem has been rediscovered in many guises, most recently as the Earth
Mover’s Distance [3], which has become popular in computer vision.
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We can visualize the problem solved in the computation of Dkw in Figure 2. Imag-
ine the red squares are factories located around the world delivering identical goods
to the blue triangles, which represent warehouses, also located around the world. We
assume the amount of goods to be shipped is equal to amount of goods being received,
reflecting the fact that these objects represent probability distributions; they therefore
have equal masses of one. Dkw is the least amount of work that is required to move the
masses contained in the red squares onto the blue triangles.

It is useful to view the Kantorovich-Wasserstein distance as the maximally coop-
erative way to transport masses between sources and sinks. Here, cooperative means
that the sources “agree” to transport their masses with a globally minimal cost. In other
words, they communicate to determine how to minimize the amount of shipping re-
quired.

Let us contrast this optimal view with the notion that each factory delivers its mass
to all warehouses independently of any other factory, in proportion to its production.
We will call this naive transportation distance Dnt. In other words, the factories do not
communicate. Each simply makes its own deliveries to every warehouse proportion-
ally. Note this is not the worst (i.e., most inefficient) transportation schema, which we
define below. It is simply what occurs if the factories are oblivious to one another. It
happens when they do not take advantage of the potential savings that could be gained
by cooperation.

The similarity distance DS is defined as the ratio Dkw/Dnt. It measures the op-
timization gained by adding cooperation when moving the source A onto the sink B.
Thus, it is a dimensionless quantity that ranges between zero and one.

2.1 Formal Definitions

We now construct similarity distance precisely.

Kantorovich-Wasserstein Distance The discrete formulation of Dkw is easily ob-
tained through the discrete version of the Mallow’s Distance [4]. Thus, we have the
optimization problem for computing Dkw(A,B) corresponds to the following mini-
mization problem:

Consider two point sets A = {a1, . . . , am}, with associated nonnegative weights
pi, and B = {b1, . . . , bn}, with associated nonnegative weights qi, and with both sets
of weights summing to one. The Kantorovich-Wasserstein distance is defined as the
solution of the linear program

minimize
m∑
i=1

n∑
j=1

fij d(ai, bj) over F = (fij) subject to

fij ≥ 0, 1 ≤ i ≤ m, 1 ≤ j ≤ n∑n
j=1 fij = pi, 1 ≤ i ≤ m∑m
i=1 fij = qj , 1 ≤ j ≤ n∑m

i=1

∑n
j=1 fij = 1.
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Once so formulated, this optimization problem may be solved using the Transporta-
tion Simplex Algorithm. Although this algorithm is known to have exponential worst
case runtime, it is remarkably efficient on most inputs and therefore widely used. Our
implementation’s runtime fits the function f(max(m,n)) = αxβ + γ, where α =
1.38× 10−7, β = 2.6, γ = −2.5, with an R2 value of 1.1 For enormous point sets, we
use standard binning techniques to reduce the computational runtime. A more detailed
discussion of binning for this problem is contained in [4].

Naive Transportation Distance We now define a naive solution to the transportation
problem. Here, each “supply” point is individually responsible for delivering its mass
proportionally to each “receiving” point. In this instance, none of the shippers cooper-
ate, leading to inefficiency in shipping the overall mass from one probability distribu-
tion to the other. Note that this definition employs a degenerate case of Dkw, namely
where one of the point sets contains a single point. In this case, Dkw = Dnt, as no
optimization is possible and the naive distance is the best one can obtain.

Over weighted point sets corresponding to discrete distributions, we define naive
transportation distance Dnt defined as:

Dnt(A,B) =
m∑
i=1

n∑
j=1

piqj d(ai, bj) = Dnt(B,A) (1)

The naive distance is the weighted sum of the Kantorovich-Wasserstein distances
between each individual points and the entirety of another sample. It is straightforward
to directly calculate Dkw between a point and a sample and doing so requires O(k)
time and therefore calculating Dnt requires O(k2) time, where k = max(m,n). Also,
we note from these definitions that Dnt is symmetric.

2.2 Asymptotic properties

We consider some properties of similarity distance. First, note If DS(A,B) = 0, then
Dkw(A,B) = 0, implying the maximally cooperative distance between A and B is
zero. This can occur only when A = B; namely they perfectly overlap; this means
each “factory” is co-located with a “warehouse” expecting precisely as much mass as it
produces.

In contrast, suppose DS(A,B) → 1. This tells us that cooperation does not help
during transportation. When could this occur? It happens whenA andB are so far apart
that the points in A are much closer to other points in A than those in B and vice-versa.
Thus, cooperation does not yield any significant benefit. In this case, Dkw(A,B) →
Dnt(A,B), implying DS(A,B)→ 1. As Dnt(A,B) ≥ Dkw(A,B) by definition, this
provides the upper bound for DS(A,B) of one. We see this in Figure 3, where the
similarity distance between the two illustrated point sets quickly approaches 1 as they
are separated. However, as the point sets increasingly overlap, their similarity distance
approaches zero rapidly.

1 Our initial implementation was graciously supplied by Yossi Rubner.
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Fig. 3. The graph on the right plots similarity distance as a function of separation distance between
the two point sets shown on the left. As can be seen, similarity distance grows non-linearly as the
distance between the point sets increases and then asymptotically tapers off to 1.

2.3 Discussion

Given that similarity distance has a domain of [0, 1], one can ask what value indicates
“significant” similarity. Is there a particular threshold one can always use? Some appli-
cations, e.g., those based on nearest neighbor techniques such as the text classification
problem in Section 3.1, do not require such a threshold. In other domains, such as
comparing protein conformations (Section 3.2), we use ground truth knowledge about
similar and dissimilar proteins to find a domain specific threshold. Given that similarity
distance approaches its asymptotic value very quickly, a value of half the mean is of-
ten noteworthy, as it is in that domain. However, as with almost all distance measures,
establishing a meaningful threshold depends on why one is using it.

3 Applications

3.1 Document Classification

In this section, we use similarity distance, together with k-nearest neighbors, to solve
a document classification problem in the 20 Newsgroups dataset [5]. The goal is to
determine which newsgroup a given message came from based on the words that occur
in the message. We will compare the accuracy of similarity distance with C4.5, Random
Forests, and Naive Bayes for classification of this dataset.

Our setup is as follows. Let D be a collection of documents and V the collection of
distinct words occuring in those documents. We consider each document d ∈ D to be
the set of words {w ∈ V : w ∈ d} occuring in the document.
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Between any two wordsw, v ∈ V, the pointwise mutual information (PMI) between
w and v is defined as

PMI(w, v) = log
P (w, v)
P (w)P (v)

,

where P (w) is the probability that word w occurs in a document and P (w, v) is the
probability that words w and v both occur in a document. PMI, in this context, can be
thought of as a measure of word similarity; many such measures have been proposed
[?,?,?,?,?,?,?,?,?],

[?,?,?,6], but [6] found PMI to be more effective than numerous competitors, at
least judged by the task of predicting synonyms on multiple-choice TOEFL exams.

Next we construct a “semantic space”. We fix a set {w1, . . . , wp} ⊆W of “reference
words” having high mutual information with the labels. We then define a map f : V→
Rp taking each word to the vector of its PMI with each reference word, i.e., f(w) =
(PMI(w,w1), . . . ,PMI(w,wp)). Words that have similar PMI with the reference words
will be located near each other in this “semantic space”.

The image of each document under the map f is a point set in the semantic space Rp,
and inference can be performed using similarity distance on Rp. Compared to the most
common representation of documents for text classification as “bag of word” vectors,
our construction has a distinct advantage because it does not ignore semantic relations
between words.

Experimental Procedure We present the results of an experiment on the 20 News-
groups dataset [5]. For our experiment, we chose 30 articles at random from each of
two newsgroups, alt.atheism and sci.med. We applied simple preprocessing to each ar-
ticle: we tokenized, downcased, and removed punctuation, stopwords, and words occur-
ing only once in the collection; 2015 distinct words remained. We selected 6 reference
words (christian, doctor, god, medical, say, atheists) having high expected mutual in-
formation with the newsgroup label. To estimate the PMI between words, we recorded
the number of hits cw and cw,v reported by Google for each word w individually and
for each pair of words (w, v), and we set P̂ (w, v) = cw,v/N , P̂ (w) = cw/N , where N
is a normalizing constant. We estimate

P̂MI(w, v) = log
P̂ (w, v)
P̂ (w)P̂ (v)

= log
cw,v
cwcv

+ const,

and we set const = 0 for convenience. Thus, in this experiment, the map from words
into the semantic space becomes

f̂(w) = (P̂MI(christian, w), . . . , P̂MI(atheists, w)).

We perform classification on the collection of images of documents under f̂ .

Results As we see from Table 1, similarity distance is able to exploit semantic relation-
ships between words, as reflected by their mutual information, to successfully classify
samples in this experiment. This gives it a marked advantage over competing techniques
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Input space Procedure Accuracy Precision Recall F-Measure
BOW C4.5 73.33 0.763 0.733 0.726

Naive bayes 75.00 0.789 0.750 0.741
Random forest 78.33 0.784 0.783 0.783
SVM (RBF kernel) 76.67 0.800 0.767 0.760
SVM (polynomial kernel) 83.33 0.847 0.833 0.832

Semantic 1-nearest neighbor 85.00 0.860 0.850 0.849
(Sim. dist.) 2-, 3-, 4-nearest neighbor 85.00 0.854 0.850 0.850

5-nearest neighbor 81.67 0.835 0.817 0.814
SVM 90.00

Table 1. Results of textual experiment using 10-fold cross validation.

and the acquired mutual information over word pairs is additionally reusable. Addition-
ally, similarity distance provides an easy way to visualize and understand the results,
which is uncommon in many classification tasks, as shown in Figure 4.
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Fig. 4. In the example above, the point sets corresponding to two documents are plotted in the
semantic subspace defined by god and medical. In each plot, one document is display in a blue
italic font and the other is displayed in a red non-italic font. On the left, the two documents are
from the same newsgroups. On the right, the documents are from different newsgroups. Similarity
distance captures the intuitive notion of spatial overlap corresponding to these classifications.
(Note that although the similarity distance computations in semantic space are performed in R6,
only two dimensions are visualized here.)

3.2 Protein Structure Similarity

A fundamental problem in protein structure analysis is determining whether two pro-
teins have similar folded conformations, especially when they have low sequence ho-
mology. A widely used method for determining similarity between structures is the
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DALI algorithm, which is the basis behind the database Families of Structurally Simi-
lar Proteins (FSSP) [7].

We approach this problem by representing each protein molecule as a weighted
point set of its constituent atoms’ positions. Thus, given two proteins, we can derive a
measure of their structural similarity by finding the similarity distance between their
point set representations.

The first step in this process is spatially aligning the proteins to compute their sim-
ilarity distance. We perform this alignment using simulated annealing over gradient
descent, guided by the value of Dkw between the two structures.

Once the closest structural match has been found, we measure similarity distance
between the two proteins. In the example shown in Figure 5, we aligned and compared
two protein structures with PDB IDs 1ABA and 1GRX. These two proteins are func-
tionally similar and belong to the Glutaredoxin subgroup; however, they come from
different organisms and have different amino acid sequences. We performed the align-
ment on the first 25 backbone atoms (alpha carbons), and then applied the transforma-
tion to the residues corresponding to those atoms. The result of the alignment is shown
in Figure 5. The similarity distance between the aligned point sets is 0.236, indicating a
structural homology. The number 25 was chosen for visualization purposes; similarity
distance between the two full chains is 0.239. Between non-similar protein structures
similarity distance averages at 0.70. This type of analysis can be used to automatically
determine pairs of proteins with similar structures.

We were able to find this surprising result because similarity is determined between
entire protein structures; the biologically interesting question here is how well do two
proteins’ folded conformations overlap, as similar structure is often an indication of
similar function. Similarity distance can then be seen as a measure of how closely the
atoms in one structure mirror those in the other, with the magnitude indicating the qual-
ity of overlap.

4 Related Work and Comparisons

Prior work on quantifying similarity between point sets or measuring a distance be-
tween them generally falls within one of three categories, none of which are specifically
designed to measure overlap or similarity.

4.1 Modified statistical distance measures

Metrics for comparing probability distributions - such as Mallows distance - can some-
times be modified to measure distance between point sets. Because Mallows distance
computes the infimum of the expected value of functions on random variables, we can
transform this into a discrete minimization problem [4].

Other metrics compute differences between probability mass or density functions,
which have no immediate applicability in the discrete point set case without an interme-
diate step. It is possible to view coordinates of points as being values taken by discrete
random variables but it is rarely the case that multiple points have precisely the same
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Fig. 5. Similarity distance between parts of two proteins, 1ABA and 1GRX. The larger spheres
and sticks represent the backbone carbon chain, and the points represent atoms from their
residues.

coordinates, making probabilities for each location degenerate into zeros or 1
n , where n

is the number of points.
For sets with large numbers of points we can bin them into regions, treat each region

as having a probability value proportionate to the number of points lying within it,
and apply any of a number of probability divergence measures such as Bhattacharya
distance, KL-divergence, Hellinger distance or any of the family of such measures [2].
We note that this is an approximation that degrades with point sets of low density.
Comparisons are provided in the next section.

4.2 Point-set Distance extensions

Other approaches are inspired from point-set and Hausdorff distances. Point-set dis-
tance is defined between a single point x and a set of points A as infy∈A d(x, y).
Hausdorff distance is an extension of this concept. The directed Hausdorff distance
DHaus(A,B) between two sets of points A and B is supx∈A infy∈B d(x, y) and the
Hausdorff distance between setsA andB is the larger ofDHaus(A,B) andDHaus(B,A).
Other metrics inspired from point-set distance are the modified Hausdorff metric and
Busemann metric [2]. We discuss Hausdorff distance further below.
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4.3 Procrustes Distance and Variations

A third method of computing distances between point sets is to assume an order between
them and calculate distortion by summing up distances between corresponding pairs of
points. Clearly this method can only work for point sets of the same cardinality and
is susceptible to disproportionate influence by outlying points. Modifications exist to
overcome the cardinality problem by only considering pairs up to the cardinality of the
smaller set and ignoring the rest. These general methods of summing distances between
pairs of points do not yield any information about similarity or shape congruence, as
seen in the next section.

4.4 Others

The previous two types of distances reduce two point sets to pairs of points or a single
pair of points. In many domains this appears to work suitably, especially image match-
ing. But ignoring all points except for one pair (or a restricted set of pairs) yields no
information about how similar the shapes of the entire point sets are. It collapses all
information down to a single distance (or the sum of a few distances), stripping away
all information about the internal layout and structure of each point set, as well as the
relationship of points within each point set. There is also no easy way to determine how
different or similar two point sets are just by examining the distance returned because
there is no reference point for similarity or dissimilarity.

Finding similarity between multi-dimensional point sets is a core problem in im-
age matching. The driving concern in that domain however is to locate objects similar
to each other but transformed in some simple way, such as being rotated, reflected or
translated in one of the two images [8]. The focus is on preserving distance across trans-
formations and so the distance measures used are very primitive, e.g. minimal symmet-
ric set difference across all translations.

4.5 Normalization techniques

Similarity distance measures the amount of optimization provided by cooperative vs.
independent, naive transportation; intuitively, it measures the spatial overlap between
two weighted point sets. One might ask how else similarity might be computed from
Dkw. A number of schemes have been devised to rescale data in order to normalize
it, e.g., [9] for overviews and empirical evaluations. We compared Similarity distance
with linear scaling; sample mean and variance normalization; sample mean normaliza-
tion; sample variance normalization; Gaussianization, and Distribution matching. It was
straightforward to find examples for all of these where they did not capture any notion
of spatial overlap.

4.6 Comparisons

We compare similarity distance with several of the measures mentioned in the previous
section and demonstrate with representative examples that similarity distance captures
the notion of similarity more accurately.
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Fig. 6. The two pairs of point sets shown here are clearly different. There is no overlap in the
second case, and yet the Hausdorff distance and Procrustes distance between the two are almost
identical.

In Figure 6 we compare Hausdorff distance with similarity distance. Note that the
point sets on the left overlap more with each other than the ones on the right and are
more alike in their shape. However Hausdorff distance is unable to differentiate between
them, reporting a distance of 1.75 in both cases. Similarity distance reports 0.38 in one
case and 0.61 in the other.

Next we look at Procrustes distance between two point sets. In this case as well,
Procrustes returns almost equal distances of 1.87 and 1.91, unable to tell the two pairs
of point sets apart.

The final comparisons are with probability divergence measures. Each dataset is
processed into a set of Voronoi regions using k-means clustering, and each region is
treated as a value of a random variable, whose probability is equal to the fraction of
points of that point set lying within that region. In this way we make sure to operate
over the same domain, which allows the use of these measures. We chose Hellinger
distance as a representative of the family of measures.
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Fig. 7. The two pairs of point sets shown here are clearly different. There is no overlap in the
first case, and yet the distance according to probability divergence measures is 0.37 and 0.34
respectively.

In Figure 7(a) with k = 5 the Hellinger distance is 0.37 and in Figure 7(b) it is 0.34
. To put these values in perspective, note that the Hellinger distances between the point
sets in Figure 6 are 0.64 and 1.47 respectively. In contrast, similarity distance values are
0.45 and 0.32 respectively, indicating a clear difference.
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A conceptual drawback of using this technique is that it is approximate - the points
may lie anywhere within their Voronoi region and the divergence measure would return
the same value. There is also no clear way of choosing the regions or even their number.
Other divergence measures such as Bhattacharya distance, chi-squared distance, and
Jeffrey divergence result in similar values and behavior. None are suited to the measure
of similarity between point sets.

Normalization schemes.
Linear scaling. Fix a lower bound Li and an upper bound Ui on feature i. For

example, Li and Ui can be set to the largest and smallest values of feature i in the
corpus, or they can be set so as to capture some fraction of the variance of feature i in the
corpus. Define Ti(xi) = (min(max(xi, Li), Ui)−Li)/(Ui−Li). Then 0 ≤ Ti(xi) ≤ 1.

Sample mean and variance normalization. Given a corpus {xj}nj=1 of examples,
let mi = n−1

∑n
j=1 xji denote the sample mean of the ith feature and s2i = (n −

1)−1
∑n
j=1(xji − mi)2 denote the sample variance. Define Ti(xi) = (xi − mi)/si.

Then the collection {Ti(xji)}nj=1 has sample mean zero and sample variance 1. Used
by [9], who .

Sample mean and variance normalization. Given a corpus {xj}nj=1 of examples,
let mi = n−1

∑n
j=1 xji denote the sample mean of the ith feature and s2i = (n −

1)−1
∑n
j=1(xji − mi)2 denote the sample variance. Define Ti(xi) = (xi − mi)/si.

Then the collection {Ti(xji)}nj=1 has sample mean zero and sample variance 1.
Sample mean normalization. Given a corpus {xj}nj=1 of examples, letmi = n−1

∑n
j=1 xji

denote the sample mean of the ith feature. Define Ti(xi) = (xi−mi)/si. Then the col-
lection {Ti(xji)}nj=1 has sample mean zero.

Sample variance normalization. Given a corpus {xj}nj=1 of examples, let mi =
n−1

∑n
j=1 xji denote the sample mean of the ith feature and s2i = (n−1)−1

∑n
j=1(xji−

mi)2 denote the sample variance. Define Ti(xi) = xi/si. Then the collection {Ti(xji)}nj=1

has sample variance 1.
Rank normalization. Given a corpus {xj}nj=1 of examples, define Ti(xi) = n−1

∑n
j=1 I(xji ≤

xi), where I(A) is the indicator function of A. Then 0 ≤ Ti(xi) ≤ 1, and the collec-
tion {Ti(xji)}nj=1 becomes uniformly distributed as n increases,2 since Ti is feature i’s
empirical distribution function.

Distribution matching. Given a corpus {xj}nj=1 of examples, with cdf Fi and de-
sired cdf Gi, define Ti(xi) = G−1

i (Fi(xi)). If Fi is the empirical cdf and Gi is the
identity function r 7→ r, then distribution matching reduces to rank normalization.
Claim: Distribution matching also generalizes gaussianization.

5 Conclusion

References

1. Kantorovich, L.V.: On the translocation of masses. Journal of Mathematical Sciences (1942)
2. Deza, M.M., Deza, E.: Encyclopedia of Distances. Springer (2009)

2 Right?



XIV

3. Rubner, Y., Tomasi, C., Guibas, L.: The earth mover’s distance as a metric for image retrieval.
International Journal of Computer Vision 40(2) (2000) 99–121

4. Levina, E., Bickel, P.: The earth mover’s distance is the mallows distance: Some insights from
statistics. IEEE International Conference on Computer Vision 2 (2001) 251

5. Lang, K.: Newsweeder: Learning to filter netnews. In: Proceedings of the Twelfth Interna-
tional Conference on Machine Learning. (1995) 331–339

6. Terra, E.L., Clarke, C.L.A.: Frequency estimates for statistical word similarity measures.
Proceedings of the 2003 Human Language Technology Conference of NAACL (2003)

7. Holm, L., Sander, C.: Touring protein fold space with dali/fssp. Nucleic Acids Res 26 (1998)
316–319

8. Hubo, E., Mertens, T., Haber, T., Bekaert, P.: Special section: Point-based graphics: Self-
similarity based compression of point set surfaces with application to ray tracing. Comput.
Graph. 32(2) (2008) 221–234

9. Stolcke, A., Kajarekar, S., Ferrer, L.: Nonparametric feature normalization for svm-based
speaker verification. In: Acoustics, Speech and Signal Processing, 2008. ICASSP 2008. IEEE
International Conference on. (31 2008-April 4 2008) 1577–1580


