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De novo transcriptome assembly
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Two classes of assembly evaluation measures

I Reference-based: compare assembly to ground truth reference.
I Reference-free: evaluate assembly without reference.
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Reference-based evaluation

A Contig level B Nucleotide levelA. Contig level B. Nucleotide level

55%
Contig Nucleotide

Recall values

99% A 100% 99%
B 0% 99%

44%

reference contig
sequence

g
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Reference-free evaluation

I N50: length of the longest contig such that all contigs of at least
that length compose at least 50% of the bases of the assembly.

I Statistical model-based scores for evaluating genome (CGAL:
Rahman and Pachter, 2013) and metagenome (Genovo:
Laserson et al., 2011; ALE: Clark et al., 2013) assemblies.
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Our contribution

Our contribution is a reference-free transcriptome assembly scoring
function, which can be used to choose the best assembly from a
collection of candidate de novo assemblies when no ground-truth
reference is available. The score is based on a statistical model of

the process of RNA-Seq read generation and of “true” transcriptome
assembly.
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Our reference-free score

score(assembly, reads) = logP(assembly, reads)

= log
∫

P(assembly|λ )P(reads|assembly,λ )dP(λ )

≈ logP(assembly|λ ∗)︸ ︷︷ ︸
prior

+ logP(reads|assembly,λ ∗)︸ ︷︷ ︸
likelihood

− 1
2

Ncontigs logNreads︸ ︷︷ ︸
BIC penalty

A contig’s “coverage” λi is the expected number of reads generated
from each position of the contig’s parent transcript, and λ ∗ is the
maximum likelihood estimate.
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The assembly prior P(assembly|λ )

The prior distribution over assemblies is specified indirectly:

I We specify a simple parametric distribution over transcriptomes
and reads from them.

I We define the “true” assembly, formed by joining reads whose
true positions (within the transcript set) overlap or are
contiguous.Ideal assemblies

“True” assembly
⇑

Ideal assemblies

Reads

Ideal assemblies

Transcript

I The above induces a distribution over assemblies.
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The assembly prior P(assembly|λ )

Practical contribution of the prior:

I Penalizes assemblies whose contigs have aberrant lengths
relative to the coverage.

I Penalizes assemblies with too many nucleotides.
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The data likelihood P(reads|assembly,λ )

RSEM (Li et al., 2010), introduced a generative model of reads,
given transcripts and their expression:

where
I θj is the expression of transcript j .
I N is the number of reads.
I Gn is the transcript read n comes from.
I Sn is the start position of read n within its transcript.
I On is the orientation of read n within its transcript.
I Rn is read n.
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The data likelihood P(reads|assembly,λ )

Key observation:

I Generating from contigs ≡ generating from transcripts,
except that contigs are guaranteed to be covered by reads.

Therefore, we define the likelihood to be the probability of the reads
given the contigs, according to RSEM’s model, divided by the
probability that the contigs are covered by reads.

Practical contribution of the likelihood:

I On one hand, the likelihood penalizes contigs that are not
well-supported by reads.

I On the other hand, the likelihood penalizes assemblies that do
not make use of all the reads.
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Experiment 1 - Random perturbation - Setup

The “true” assembly an approximate local maximum of the score.

Procedure:

I Simulate RNA-Seq data.

I Construct the “true” assembly.
I Perturb this assembly:

I Substitution - substitute a base.
I Fusion - join two contigs into one contig.
I Fission - split one contig into two contigs.
I Indel - insert or delete a fragment from a contig.

I Compute score for “true” and perturbed assemblies.
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Experiment 1 - Random perturbation - Results
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Experiment 2 - Correlation - Setup

Our reference-free score correlates well with simple reference-based
scores.

Procedure:
I For each dataset (real mouse and simulated mouse):

I Create ∼200 assemblies, by running several assemblers with
different parameter settings.

I For each assembly, compute:
I Our model-based score.

I Contig and nucleotide F1.

I Our reference-based k -mer compression score (next slide).
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Definition of k -mer compression score

k -mer compression (KC) score = weighted k -mer recall (WKR)
− inverse compression ratio (ICR).

I WKR = assembly’s recall of the k -mers present in the reference
sequences, with each k -mer weighted by its relative frequency
within the reference transcriptome.

I ICR =
number of bases in the assembly

number of bases in the set of reads
.
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Experiment 2 - Correlation - Results
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Experiment 2 - Correlation - Results
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Thanks

Software:
I DETONATE: http://deweylab.biostat.wisc.edu/detonate/
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Extra slide - RSEM-EVAL Example
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Extra slide - Runtime comparison
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Figure 9 Example scenario in which RSEM-EVAL correctly selects the true assembly whereas
Genovo and ALE select suboptimal assemblies. Because Genovo and ALE do not explicitly take
into account transcript abundance and read mapping uncertainty, scenarios in which multiple
isoforms of the same gene are present in an RNA-Seq sample can confuse these methods. In this
example, a gene has two isoforms, the first isoform (with length = 1000 bases) corresponding to
the first half of the second isoform (with length = 2000 bases). We simulated 5000 single-end
RNA-Seq reads of length 100 bases with 0.01% sequencing error from these transcripts and with a
90:10 abundance ratio between the first and second isoforms, respectively. Because RSEM-EVAL
models transcript abundances and takes into account read mapping uncertainty, it correctly scores
the true assembly the highest. In contrast, Genovo selects the assembly containing only the long
isoform and ALE selects the assembly containing only the short isoform.

Figure 10 Within-assembler correlation of the RSEM-EVAL and KC scores on the strand
non-specific data sets. Scatterplots are shown for the simulated (top row) and real mouse
(bottom row) data sets and for the Trinity (left column), Oases (center column), and
SOAPdenovo-Trans (right column) assemblers. TransABySS was omitted because it had only one
assembly. The Spearman rank correlation coe�cient (bottom-right corner of each plot) was
computed for each combination of data set and assembler.

Figure 11 RSEM-EVAL scores and Xenopus protein recovery for the axolotl blastema
transcriptome assemblies. The y-axis represents the percent of proteins with at least x percent of
their length (x-axis) recovered by an axolotl contig. The curve for each assembly is colored
according to its RSEM-EVAL score, with red representing the highest RSEM-EVAL score. The
assembly with the curve closest to the upper-right corner is the best in terms of its comparison
with the Xenopus protein set.

KC Score Contig F1 Nucleotide F1
RSEM-EVAL Score 0.99 0.83 0.46

Genovo Score 0.96 0.80 0.53
ALE Score 0.64 0.45 0.62

N50 0.22 0.33 -0.31
Number of Nucleotides in Assembly 0.13 0.29 -0.21
Number of Unique Proteins Matched 0.68 0.81 0.73

Average Ortholog Hit Ratio 0.31 0.31 -0.19
Table 1 The Spearman rank correlation coe�cient of the scores assigned by several alternative
transcriptome assembly evaluation measures, described in the main text, to the reference-based scores
from REF-EVAL. The evaluated assemblies were produced by Trinity, Oases, SOAPdenovo-Trans, and
Trans-ABySS, based on the subset of reads in the real (strand non-specific) mouse data that align to
genes on chromosome 1. This subset was used in the interest of computational e�ciency of the
alternative measures.

Assembly T Assembly O Assembly S
Program Runtime Memory Runtime Memory Runtime Memory

RSEM-EVAL⇤ 1h 4m 57s 2.02 GB 4h 40m 36s 8.18 GB 34m 57s 1.23 GB
Genovo 6d 11h 54m 3s 192.23 GB > 1 week – 4d 15h 3m 3s 188.79 GB
ALE⇤ 12h 39m 36s 0.67 GB 6d 23h 23m 13s 2.31 GB 7h 33m 1s 0.59 GB

REF-EVAL, contig⇤⇤ 3s 0.19 GB 8s 0.33 GB 2s 0.2 GB
REF-EVAL, nucleotide⇤⇤ 8s 0.39 GB 33s 1.27 GB 6s 0.33 GB

REF-EVAL, KC score 1m 18s 2.09 GB 1m 30s 2.37 GB 1m 13s 2.03 GB
Bowtie 15m 42s 0.11 GB 1h 1m 38s 0.31 GB 11m 16s 0.1 GB
Blat 35m 14s 0.0 GB 1h 51m 1s 0.01 GB 28m 19s 0.0 GB

⇤ Plus time to run Bowtie. We calculate Bowtie statistics separately because ALE takes Bowtie
alignments as input.

⇤⇤ Plus time to run Blat.

Table 2 Wall-clock runtimes (in hours, minutes, and seconds) and memory usage (as measured by
the maximum resident set size, in gigabytes) for several assembly evalution tools. Each tool was run
on three di↵erent assemblies of the real mouse data. Assembly T was produced by Trinity with its
default parameters (52667 contigs, 33 million nucleotides). Assembly O was produced by Oases with
its default parameters (160455 contigs, 115 million nucleotides). Assembly S was produced by
SOAPdenovo-Trans with its default parameters (79460 contigs, 28 million nucleotides). Multithreaded
programs (RSEM-EVAL, REF-EVAL, and Bowtie) were run with 16 threads. All programs were run
on a compute server with an “Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz” processor and 500
gigabytes RAM. Genovo had not finished running on assembly O after more than one week.
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Figure 9 Example scenario in which RSEM-EVAL correctly selects the true assembly whereas
Genovo and ALE select suboptimal assemblies. Because Genovo and ALE do not explicitly take
into account transcript abundance and read mapping uncertainty, scenarios in which multiple
isoforms of the same gene are present in an RNA-Seq sample can confuse these methods. In this
example, a gene has two isoforms, the first isoform (with length = 1000 bases) corresponding to
the first half of the second isoform (with length = 2000 bases). We simulated 5000 single-end
RNA-Seq reads of length 100 bases with 0.01% sequencing error from these transcripts and with a
90:10 abundance ratio between the first and second isoforms, respectively. Because RSEM-EVAL
models transcript abundances and takes into account read mapping uncertainty, it correctly scores
the true assembly the highest. In contrast, Genovo selects the assembly containing only the long
isoform and ALE selects the assembly containing only the short isoform.
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(bottom row) data sets and for the Trinity (left column), Oases (center column), and
SOAPdenovo-Trans (right column) assemblers. TransABySS was omitted because it had only one
assembly. The Spearman rank correlation coe�cient (bottom-right corner of each plot) was
computed for each combination of data set and assembler.

Figure 11 RSEM-EVAL scores and Xenopus protein recovery for the axolotl blastema
transcriptome assemblies. The y-axis represents the percent of proteins with at least x percent of
their length (x-axis) recovered by an axolotl contig. The curve for each assembly is colored
according to its RSEM-EVAL score, with red representing the highest RSEM-EVAL score. The
assembly with the curve closest to the upper-right corner is the best in terms of its comparison
with the Xenopus protein set.
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RSEM-EVAL Score 0.99 0.83 0.46

Genovo Score 0.96 0.80 0.53
ALE Score 0.64 0.45 0.62

N50 0.22 0.33 -0.31
Number of Nucleotides in Assembly 0.13 0.29 -0.21
Number of Unique Proteins Matched 0.68 0.81 0.73

Average Ortholog Hit Ratio 0.31 0.31 -0.19
Table 1 The Spearman rank correlation coe�cient of the scores assigned by several alternative
transcriptome assembly evaluation measures, described in the main text, to the reference-based scores
from REF-EVAL. The evaluated assemblies were produced by Trinity, Oases, SOAPdenovo-Trans, and
Trans-ABySS, based on the subset of reads in the real (strand non-specific) mouse data that align to
genes on chromosome 1. This subset was used in the interest of computational e�ciency of the
alternative measures.

Assembly T Assembly O Assembly S
Program Runtime Memory Runtime Memory Runtime Memory

RSEM-EVAL⇤ 1h 4m 57s 2.02 GB 4h 40m 36s 8.18 GB 34m 57s 1.23 GB
Genovo 6d 11h 54m 3s 192.23 GB > 1 week – 4d 15h 3m 3s 188.79 GB
ALE⇤ 12h 39m 36s 0.67 GB 6d 23h 23m 13s 2.31 GB 7h 33m 1s 0.59 GB

REF-EVAL, contig⇤⇤ 3s 0.19 GB 8s 0.33 GB 2s 0.2 GB
REF-EVAL, nucleotide⇤⇤ 8s 0.39 GB 33s 1.27 GB 6s 0.33 GB

REF-EVAL, KC score 1m 18s 2.09 GB 1m 30s 2.37 GB 1m 13s 2.03 GB
Bowtie 15m 42s 0.11 GB 1h 1m 38s 0.31 GB 11m 16s 0.1 GB
Blat 35m 14s 0.0 GB 1h 51m 1s 0.01 GB 28m 19s 0.0 GB

⇤ Plus time to run Bowtie. We calculate Bowtie statistics separately because ALE takes Bowtie
alignments as input.

⇤⇤ Plus time to run Blat.

Table 2 Wall-clock runtimes (in hours, minutes, and seconds) and memory usage (as measured by
the maximum resident set size, in gigabytes) for several assembly evalution tools. Each tool was run
on three di↵erent assemblies of the real mouse data. Assembly T was produced by Trinity with its
default parameters (52667 contigs, 33 million nucleotides). Assembly O was produced by Oases with
its default parameters (160455 contigs, 115 million nucleotides). Assembly S was produced by
SOAPdenovo-Trans with its default parameters (79460 contigs, 28 million nucleotides). Multithreaded
programs (RSEM-EVAL, REF-EVAL, and Bowtie) were run with 16 threads. All programs were run
on a compute server with an “Intel(R) Xeon(R) CPU E5-2660 v2 @ 2.20GHz” processor and 500
gigabytes RAM. Genovo had not finished running on assembly O after more than one week.
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Extra slide - Comparison on an example
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Extra slide - Different parameters give very different assembliesDifferent parameters give very different assemblies
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Extra slide - Experiment 1 - Random perturbation - Results
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Extra slide - The assembly prior P(assembly|λ )

The prior distribution is specified as follows:

I Transcript lengths follow a negative binomial distribution, iid.

I Given the transcript lengths:
I Transcript sequences follow a uniform distribution, iid.

I The number of reads starting at each position of a transcript
follows a Poisson distribution (mean = coverage), iid.

I The “true” assembly is formed by joining reads whose true
positions (within the transcript set) overlap or are contiguous.Ideal assemblies

“True” assembly
⇑

Ideal assemblies

Reads

Ideal assemblies

Transcript
I Based on the above, one can work out a recurrence for the prior

probability of the assembly.
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