
1 High order treelet

Inspired by HOSVD, we apply treelet to each mode of the tensor. That is, for
each particular x, we have

x = G ×2 A(2) . . .×N A(N) (1)

where A(i) is the basis given by ith mode. As the treelet algorithm gives an
orthonormal basis, so eq 1 could be rewritten as

G = x×2 A(2) . . .×N A(N) (2)

Here is an example of this approach. Although we present it in an order-3
tensor case, it is easy to generalize it into higher order cases. If our Xl1×l2×l3

is a order-3 tensor, and the first mode is samples(so we have l1 samples here),
then the feature is l2 × l3 matrix. We begin with a standard basis,
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where ei means the ith entry is 1.
Then we apply treelet algorithm to the second mode, and pick the first r2
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Similarly, we apply treelet algorithm to the third mode, and the basis finally
becomes
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So we compressed the original l2 × l3 variables into r2 × r3 variables. It
is appealing if the energy aggregates in a submatrix of the basis given by the
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treelet algorithm. Fortunately, this is the case for some kinds of signal. (how to
say this better)

Notice that the treelet algorithm needs covariance matrix, and this is obvious
when each sample x is a vector. However, it is not that straightforward in high
order case. In this paper, to compute the covariance matrix of ith mode, we
unfold the whole tensor X along ith mode, so it becomes a li ×

∏
lj,j 6=i matrix,

and we treat each column as a sample. Here is an interpretation of this approach:
for each sample, we average out the observations of each feature. So the final
result is still an expectation of each feature. (shall i write this more clearly...in
math)
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