1. Biological background.

There are whole genome expression profiles for n = 128 tissue samples, divided into four patho-
logic groups: putatively normal samples, early stage lesions (cervical intraepithelial neoplasia
[CIN] 1 and 2), later stage lesions (CIN 3) and frank cancer. Roughly an equal number of tissue
samples are in each group. Each tissue sample was measured by an Affymetrix whole genome mi-
croarray, which aims to measure the expression of essentially all genes in the genome (it contains
about 54,000 probe sets).

The SUCCEED members have already carried out several analyses of these data, including anal-
yses that aim to identify genes showing various patterns of differential expression among the four
pathological groupings. However, an alternative analysis can potentially be useful in helping us
understand these preliminary findings.

Motivation for the alternative analysis is given by the following biological and technical facts. Each
expression profile is measured from a collection of around 1000 cells - so it represents a mixture of
theoretical profiles. The stages of cancer progression of cervical tissue are characterized in part by
changes in the proportion of cells of particular types. E.g., normal tissue is organized in layers with
more well-differentiated cells at the surface and with less differentiated, but more actively dividing
cells further inside the tissue. Neoplastic lesions shift the balance of types, at least partly by having
relatively more of the less differentiated types and having fewer of the well-differentiated types.
Note that the different types will have different gene-expression profiles.

2. Notation and basic definitions.
See the written page R(1).
3. The model.

It is:
PXeA)=E(P(X€A|®))

E ﬁPX€A|®>

(
(]

i=1

T
P Zpsi,lcl,t S Az|®)>

n
i=1
3. Mathematical model where we model each tissue as being a mixture of types of cells.

Step 1. For now, we will just consider one fixed gene g. We have a bunch of tissue samples
X1,...,X, (of that gene) which we think of as realizations of random variables Xi,...,X,. Each
sample is from a stage sy, ...,s, between 1 and 4.

Step 2. Each tissue sample is a mixture of cells whose expression levels we cannot observe directly.
We assume that (i) there are T types of cells (7 > 0 but not too large), (ii) all tissue samples at
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a particular stage s have the same proportion of cells of type ¢, (iii) the expression level of a cell
depends only on its type. We will use p;, to denote the proportion of cells of type ¢ at stage s.
We will use the random variable C;, to represent the average expression level of cells of type ¢ in
sample i. (From assumption (iii), we have that, for a fixed type ¢, all the variables {Ci,t}l’.’:1 are
identical.) Thus:

T
Xi= Z psi,tci,t
t=1

We assume that each type-dependent average cell expression level C;, follows a Gamma(a, 6;)
distribution, where a is the shape and 6; is the scale parameter. In other words, C;; has density

friae)(€) = 6/c " exp(—c;) /T(a)

Step 3. Next, we want to find a density for the distribution of each X;. In the previous step, we
described how each tissue’s expression level is the average of its cells’ expression levels, so that
X; € A if and only if Zthl Ds;:Cis € A. We only know the density of each C;, individually. So we
integrate over all possible tuples ¢ = (cy,...,cr) of cell expression levels such that the weighted
average Y. ps,+¢; € A. In other words:

T
P(X;cA) = /RT 11 (@) () Lyt o iacainte>0pd€
t=

T
- /A/I%T[I—T] (fl"(aﬂ;)(ct)) l{thzlPsi,zC;:x}ﬂ{thO}dCdx
:/fone(i)(x)dx
A

(the exchange of integrals is justified because everything is nonnegative) where the density
T
Jone(i) (¥) = /RTII;I1 (fr(a,e,)(cr)) 1{Zf:1psi_y,c,:x}m{c,zo}dc

Step 4. We assume that tissues’ expression levels are independent, so that

n
P(X; €Ay,.... X, €Ay) =] P(Xi € Aj)
i=1

= H/Aifone(i) (x) dx
:/Hfone(i)(xi) dx
Ai=1



Step 5. We treat each type’s scale parameter 6; as a random variable ®;, which follows a prior
distribution I'(ag ;, v;). So in Step 4 we actually found

P(X;€Ay,....X, €A,|0; =6y,...,07 =0r)
1.e. (notation)
PX€A®=6)
in Step 3 we found
P(X; € Ai|®=0) and foe(i)(x]0)
and in Step 2 we found
Jr(a,0,)(c)
Now we want to again find (“for real”) the quantity P(X € A):
P(XeA)=EPXeA®)

= /RT P(Xe€A|®= O)ijl"(ao‘t,vt)(et)de
= /s [/Ailifone(i) (xz'|9)dx] [fllff(ao,uvt)(et)} de
— /A/RT [f!fone(i)(xﬂe)} [fllfr(ao‘mvr)(et)} do dx

:/Af(x)dx

(the exchange of integrals is justified because everything is nonnegative) where the “marginal
density”
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_ x,|e)} T frtao,(81)] @8

RT = t=1

= | (X,G

and the “complete density”
n T
£%,8) = [ [T fonets (:18)]| | TT a0 (81
i=1 =1

Step 6. We exchange some integrals in order to facilitate an EM algorithm. (Note that the complete
density of Step 5 is not easy to evaluate, due to the difficulty of evaluating f,e(;); see “Appendix
on simplifying fone(i)(x)” below.)



To do this, observe that in general

:/ g](x1)~--gn(xn)dx1-~~dxn

Also recall that we define

T
fone(i) ()Ci 6;61,(:7[)) = /RT ([];Ilfr(a,@,)(cf)) (l{th:1P‘vi,tCt:x}ﬂ{CtZO}) dC

:/ integrand(c, x;,a,0,p)dc
RT

where

~

integrand(c, x;,a,0.,p) = ([ [ frwe,) (c:)) (1{2,11 psl.,;ct:x}ﬁ{c;ZO})

=1

Applying the general observation,

n

Hfone(i)(xi|6;a7cap)

i=1
n

= H/ integrand(c,x;,a,0,p)dc
i=1/RT

= H/ integrand(c”), x;,a,0,p) dc?)
i=1/RT

n .

:/ / Hintegrand(c(’),xi,a,G,p)dc(l)-~~dc(”)
RT - JRT

_ T Q) ..
/RMTEmtegrand(c ,Xi,a,0,p)dT

whereir:(c(l),...,c(”)):(cw:i: l...,n,t=1,...,T).



Plugging this identity into the formula for f(x) from Step 5, we get
f(x)

/ [Hfone xl|6 a,c p)] [Hf (ao‘,hv,)(el)]de

~

T
/ /RHXTHlntegrand( () 1 Xir &, 0 p q} [Hfr(ao,t7vt)(0t):|de
t=1

T
/WT/ Hmtegrand ) xi,a,0 p)] [Hfr(ao"”v,)(et)]deda
=
n T
= /R,,Xf /]RT [II:I (tl;IlfF(a,G;)(Ci,t)) (I{ZZT:IPSi.tCi,t:xi}ﬂ{CiJZO})}
[Hfl“(ao,t,v,)(et)}dedﬂ‘

| friae V(i) Frtan, ) (8:)) 40 4T
Jra,0) (Ctt)\/m)dedir

;a,a0,v)dd

:/nxT /]RTH {Zz 1Pv,tczrfxz}ﬁ{(),f>0})(

n

B RnxT ( {):.z 1 Ps; tCzt—Xz}ﬂ{C”>O})/ (

l:

:ﬂ ||:~1

~.
~ —

N ( {Z; 1Pv,tsz—X,}ﬂ{c,,>()})fp0§t( (

where

fpost( »a,ap, vV / HfFaO, Cit \/fF(aoyt,v,)(et))de

and a9 = (a,);_y, v = (Vi)/_y-
Step 7. We try to simplify fpost- Note that

fpost( ,a,ap, v )

-/, Hfr(a,e,)(ci,t) 0/ (00,0 (B1)48

T
_ H eta lat 1 c,IG,/F( )) ({1/\/[6101 9[610,[—18_6[\/1/1—‘@107,))0'0

RT i1

T < n/ a ap;—1
= /O (67 e % /T (a ))(\/Vto’teto” e %V /T(ag,))d6;

=1

A VAT

ar\ags— n _c. — n

:Hr T(ag,) '/ / o et Oming,

=1 0,



Note that in general, for positive &, v,

/m 6%ev0d0 = T(E + 1)p ¢!
0

So
fpost(c(l ,a,ao,u)
cqflvtam/n
it - B B

- — =7\l -1 1)(c; (a+(ag,—1)/n)—1

gr(mrmm)vn (C((at- (a0, = 1)/m)+ D)cis +vi/n) )
_ﬁf(l—ka—f—(ao?,—l)/n) th_lvtaOJ/n

=1 T(a)T(ag, )/ (cig + vy /m)1Fat(ao=1)/n

CHANGES TO fpost HAVEN'T BEEN PROPOGATED PAST HERE.

Step 8. We express the overall density f(x) as the expected value of a density of the distribution
of X conditioned on the cell-type profiles 9. Indeed (from Step 6),

f(X) - /R H (1{21T:1 Psi.tCi,t:xi}m{Ci,tZO})fPOSt(c(i);a’ a0, V) aq

nxT <
i=1

- zIJl /RT <1{ZIT:1 psiafci-f:xi}m{ci,tzo}>fp08t(C(i) 1a,20, V) de)
- H/RT (1{2,T:1ci,,:1}m{ci,lzo})fpost((Ci,zx/Ps,-.,z)rT:1§a,ao,V)dc(i)

n
= /RMT (I{ZIT:] ci’tzl}m{ci’tzo})fpost((ci,zX/Ps,-7z)tT:1 ;a,a0,v)d9
i=1

Note that
T

AT:{CERTZZC,:1andC,20}
=1
is a standard (7 — 1)-simplex in RT, so its volume is % See “Appendix on volumes of simplices”
below for details. Thus

c— T—!IAT(C)

is a density for a probability measure on R, specifically the uniform distribution unif(Az), and

n

1 .
Jprior : T— (T1y" H Iar (c(l))

i=1

1 n
- (T!)n HI{ZZ:1C1‘J:1}Q{C1'120}



is a density for the probability measure on R"*” which is uniform on N {Te R Zthl Cit =
1 and ¢;; > 0}.

The point is that we can rewrite f(x) as follows:

fx) = /RM 131 (Nsr, cumnnfer,zop) foos (i) Pia)izii @ 80,v) dF

n 1 n
= [(T!)”gfpost«cmx/psi,»?_l;a,ao,uﬂ far [T, pn—l

RnxT i

= oner feond (X|T;a,a0, V., ) fprior(T) AT

where

n
fCOnd(X|q;aaa()7 v7p) = (T!)nprost((ci,tx/Psi,t)tT:1 ;a,ap, V)
i—1

1=

and fprior 18 as defined above. In other words,
f(X) = E[feond(X|&;a,20, v, p)]
where & is a random variable (taking values in R™T) with density fprior-

We also define the joint density

f(X,a;Cl,a(), Vap) = fCOHd(X|a-;a7 aOa V7p)fprior(a)



Doublecheck.
‘We doublecheck that
/ f(x,ﬂ';a,ao,v,p)dﬂ':/ f(xae;aaa();’/ap)de
RnxT RT

Recall (Step 5)

f(x,85a,20,,p) = [Hfone 518)] [T ranson (8]

=1

n T T
= [II(/RTH fr.a)(c) {z,T:Ipsi,tct=x,-}m{c,zo}dc)] [tl_llfr(ao,,,vt)(et)}

t=1

while
f(Xaa;a7a07V7p) = fCOnd<X|a;aaa()7V>p)fprior<a)
n 1 n
= [ Tl i/ po)siaao)] | e Tt i o1

[ ﬁ ﬁraﬂlm (CigXi/ Do) 1V )H ! ﬁl r }
,:11“ [(ao,) ((ciaxi/ psye) + Vo) Hoe /L L(T ) L1 e =10t =0}

i=1

Say T = 2. Note that py, 1¢1 + ps; 202 = x; (i) if ¢; = x;/ps;.1 and ¢ = 0, and (ii) if, for ¢; between
0 and x;/py, 1, we have pg, 2c2 = x; — py, 1¢1 1.e. 2 = [x; — pg,.1¢1]/ Ps; 2-

f(Xae;aaa()aV,p)
1—! (/R/R (fF(a,Ol)(Cl)fF(a,Oz) (02)) 1{psi,lcl+Psl~,252:xi}ﬂ{czZO}dC1 dCz)] [fl"(ao.hvl)(el)fl“(ao,z,w)(eZ)]

n Xi/ Ds; 1
[ (/0 (fl"(aﬁl)(Cl)fr(a,ﬂz)([xi _psivlcl]/psi@))dcl)} [fl"(ao,hvl)(el)fr(ao,zyvz)(ez)]
—1

n x,/ 5;
H / " Jr(a,60)(€1) fr(a,0,) ([x i_psulcl]/pshz))dcl[fl—‘(a()’l,vl)(el)fr‘(aojz,VZ)(ez)]l/n)

We can evaluate this using

fGamma := (a,theta,c) -> (theta”a) * (c”"(a-1l)) * exp(-cxtheta) / GAMMA (a);
upperLimit := x/pl;
integrand := fGamma (a,thetal,cl) x fGamma (a,theta2, (x-plxcl)/p2);

integral := int (integrand,cl=0..upperlimit) assuming a>0,thetal>0,theta2>0,;

prior := (fGamma (a0l,nul,thetal)*fGamma(a02,nu2,theta2))”(1/n);
wholeTerm := integralxprior;



but there isn’t a closed form. So we will use numerical integration to check it.
Next, still for T = 2,

f(X7a-;a7aO7 V7p)

:[znﬁ(r(aJrao,l) P(a+agn) (ciaxi/pe ) 'Vi™  (cioxi/py2)"'vy™ )] [lﬁ] ;
i1 T(@T(a0,1) D(@)T(a0.2) ((c,12/ psi,1) + Vi) 01 ((€i2xi/ pyyi2) + va) 02/ Lon L 3 ke cu=infeir

HERE



EM algorithm

Now we want to find an EM algorithm to learn the parameters. Note that the parameters are
o = (aaaO.,tavt?pl,tV"7p4,l)tT:1'

We follow Wasserman. We start with an initial set of parameters o, and then for j =0,1,2,...
we repeat the E step and the M step.

The E step is to calculate

f(x,g;a))

J(ala)) :E<10gf(x Tol)

where the expectation is over & (see Step 8).

The M step is to find a/*! that maximizes o — J(a|a).

E step
Begin tmp:
n
fCOnd(X|q;a1307 vap) = (T!)nprost((ci7tx/ij7t>Z:] ;aaa()?V)
i=1
L r (i)
fprior(q) - WH 1AT (C l )
1=
_ 1
- (T1)n I:I 1{ZtT:lCi-,t:1}m{Ci,t20}
T i 1,90z
a"’aOt Cit Vi
sa,ag,
fPost( 0,V I;I ao,) (Chf + vt)a—i-ao,t
End tmp.

10



We compute J (/) in more detail. Note

log f(x,T; o)
= logfcond (X‘a;av ap,V, p) + logfprior(q)

n
—tog [(T)" T] fpos((€iui/ Pas)1—13,80, )| +108 fovior(T)
i=1

" ﬁ D(a+aos) (cimxi/psis)™ v,
i=1t=1 [(a)I(a, t) ((Ci t'xi/pSh )+ Vi )a+a°”
n T
=nlog(T!)+ Z [logl“ a+ag;) —logI'(a) —logI'(ag,)
i=1t=1

+ (a—1)[logci; +logx; —log py; ] 4 ao s log v;

~ (a+a0,)10g((ci¥i/ pyyo) + V)| +108 foron ()

=log [(T!)n ] ""logfprior(q)

So (using & = a/)

f(x
2 x T a)

n T
= (nlog(T!) —1—2 Z {logF(a+a0’,) —logI'(a) —logI'(ap,)
i=11=1

+ (a—1)[logc;; +logx; —log py, ;] + aplog vy

(et an o1/ p) V)] + 108 () )

n T
- (nlog(T!) + Z Z [logl“(d+do7[) —logI'(a@) —logI'(do,)
i=11=1
+ (@ — 1)[logc;; +logx; — log ps; ] + do s log V;

- (d + dO,t) log((ci,txi/ﬁs,-,t) + \N/t)] + logfprior(q))

T
= ( 2 ) [logr(“ +ao,) —logI'(a) —logI'(ao,)
+ (a—1)[logc;; +logx; —log py, ] +ao log v;

(@ ao, ) og((ciex/ o) + )]

n T
- (Z ) [logl“(d—i—do’,) —logI'(a@) —logI'(Go,)
i=1
+ (@ —1)[logci; +logx; —log P, <] + o+ log Vi

a+adoy)log((cixi/Psii) + \7,)] )
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Next, we take the expectation. Note that fpo, 1 @ probability density on R™T 5o we can simply
pull out terms that do not involve 9.

f(x, & a)
Elog —f(x, &a)
_ . f(x,TFa)
- RnxT fprlor (q) log f(X, a, d) dq

T
= (Z )3 [logr(“JraO,t) —logI'(a) —logI'(ao,)
+ (@ — 1)[Jgner (forior(F) 1ogciy ) dT +logx; — log py, ;| + ao s log vy

—(a+ a()?t)fRnxT (fprior(q) log((cl’,le'/ps,»,z) + Vl)) dq} )

N
I
—_
-
I

T
_ (Z Y [log (a+do,) —log'(a) —logT'(ao,)
i—11=1
+(@—1) [fRnxT (fprior(a) log CiJ) d9+logx; —log ﬁsiJ] +do,log vy

—(a+ do,t)fRnxT (fprior(a) log((Ci,zxi/ﬁsht) + Vl)) dq} >

Before continuing, it would be convenient to evaluate or simplify the integrals here. There are two
forms of integrals:
LY Jraxt (fprior(er) log c,-7,) dg  and

def

b (xivps,‘,tv V) = fRnxT (fprior(q) log((cini/Psi,t) + Vt)) da

These integrals are evaluated in “Appendix on [ga«r ( forior(F) l0g ¢y ) @ and “Appendix on [gaxr (fprior(T) log((c
V;)) dT” below. The result is:

Hr
L =——"
SCEE
Do) = e [ Tog((eipsi/pag) + ) (1 —ei)
Xi, Ds. = og((cjxi/ps, —Cj Cj
2\Xis Psits Vi T!(T—l)! 0 Z\\CitXi/ Ds; t t it it

where Hr is the T'th harmonic number. So far, I haven’t been able to find a closed form for I,.

12



Plugging in, we get

+ (a—1)[I1 +logx; —log py, /| +aolog v;

(a + aO,Z)IZ(xi7pS,'7t7 Vt):| )

i=1t=
(@—1)[ +logx; —log py, ] + dolog V;

N
._.

(Zn: Z [logl“ a+dp,)—logI'(a) —logT'(do,)
_l_

—(@+ao ;) (xi, Ps;i f’t)] )
Next, we drop terms that are constant with respect to a. Note that this includes actually the entire

denominator, because the prior distribution does not depend on « at all:

f(x, & a)
(x, 8 &)

n T
(Z Z [logF a+ag,) —logI'(a) —logI(ap,)

i=1t=1

Elog

~

+ (a—1)[I; +1ogx; —log py; ]+ aolog v;

- (Cl + a07t)12(xi7 Psits vl)i| )

Is something wrong...?
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Appendix on simplifying fo,;) (%)

(This material originally followed Step 3. I think that the calculations here are correct, but they
don’t go anywhere, so they aren’t used anywhere else right now.)

We would like to rewrite this density so that it is easier to evaluate on a computer. Substituting
¢, = cipi/x, we get

T
Jone(i)(X) = /RT [T (frewe) (cx/p) st aoiynge =o€
=1
Recall that the Gamma density satisfies

Jr(a,0)(cx) = (1/%) fr(a,00)(€)

SO
T
Jone(i) (%) :/RTII:II(Pt/X) (fl"(aﬂrx/pz)(cm1{2210411}0{0220}“/
r T
= (gpt/x) /RTH (fF(a,OzX/pr)(C;)) l{zlecgzl}m{cgzo}dc/
T
= (tH1pt/ x) finner(i) (%)
where

T

finner(i) (X) = /RT 1;1 (fr(avetx/pt) (C;)) 1{2?:1 Cg:l}m{cizo}dc,

t=1

Note that fiper(i) (x) is an integral of a product of densities over a probability simplex. We can
therefore compute it via a Laplace transform as described in Wolpert and Wolf (1995), as follows.
First, note that the Laplace transform of fr, ¢)(c) is (Wikipedia)

Qa
(s+0)

fr(aﬁ)(s) =

So
6:x/p:)?
gf(a,@,x/l?z)(s) - (s—f— (9;/)5;1))0
_ (6x/py)*

((sp+ 6,x) /pr)
(spr +6x)¢
B 1
~ Gpi /(82 + 1)
= (1+3)™
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According to the Laplace convolution theorem (Theorem 2 in Wolpert and Wolf 1995), if ® denotes
the Laplace convolution operator defined by

(foe)(z /f T-1)g

then
T
L(@_1fi)(s) = Hli”(ﬁ)(S)

So specifically
g(finner(i) ) (S) - g(@)z:lfl“(a,e,x/pt) ) (S)

T

- H"?F(avetx/l’t) (S)

t=1

I
—1~

(I+53)

N
I
—_

To get finner(i)» We take the inverse Laplace transform and evaluate it at 7 = 1 (Wolpert and Wolf
1995, Theorem 1):

finner(i) (x) = (g_lg(finner(i)))u)

T

(7o g0])o

t=1

1 Y+iu T
:(— lim e”H 1—|—Sp’ “ds)(*c:l)

t=
1 y+iu T

=1

where “y is a real number so that the contour path of integration is in the region of convergence of”
Z( Sinner(i ) (Wikipedia). In particular (Wikipedia) choose ¥ so that Y >Re o for all singularities

of Z( fmner ))- In our case, Z(finner(i)) doesn’t have any singularities if y > 0, since p;/(6;x) >0

and a > 0. I guess that there are uncountably many singularities if Y < 0. So let’s choose ¥ = 0:

1 . 4 3piy—a
finner(i)( ) = — lim H pt ds

Note that

6;x etx/l’z
_ (6x/p;) +s
QzX/Pt
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SO

T
((6x/ps)+s)~¢
S
d
fmner 271'1 ugrolo/ i etx/pt — s
_(6 i
:HI_I(ZMH / ¢ H (8ix/py) +5)“ds
nl U—>00 —lM -
1, (6:x/p)"
- %gblalh((etx/pt)le)

where

i

u T
Zyan(@) = lim eSHl(qu)’“ds
t=

[Note that in genera]E] for v > 0, if the Laplace transform is

Z(p)=((p+a)(p+0b))”"
then the inverse Laplace transform of it is

£ = () e (- (45

where I, (x) is the modified Bessel function of the first kind.]

Another way to approach %, | is to use the following fac If the Laplace transform is g1 (s)g2(s)
then the inverse Laplace transform is (g1 ® g2)(7). So in general, if the Laplace transform is
[T, g:(s) then the inverse Laplace transform is (®1_,g;)(7). In our case above the Laplace trans-
form is

T
HC]H'S -

t=1

so the inverse Laplace transform is

(@11 (s (g1 +5)7))(2)

It seems that we need to give up on this for now.

http://eqworld.ipmnet.ru/en/auxiliary/inttrans/LapInv4.pdfl No. 3
2http://eqworld.ipmnet.ru/en/auxiliary/inttrans/LapInvl.pdf, No. 15
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Appendix on volumes of simplices

The material in this section is based mostly onhttp://www.math.niu.edu/~rusin/known-math/
97/volumes.polyh and Wikipedia s.v. “Simplex”.

The standard simplex has (T + 1) vertices 0,eq,e,...,er € RT. Let w; = e; —0,wy = e —
0,....wr =er —0. Let W be the T x T matrix whose rows are the row vectors w;. Then the
Gram determinant formula says that the volume of our simplex is

|detWww'|!/2
T!

Note that since W is the T x T identity matrix, detWW' = detl; = 1 so the volume of our simplex
is 1/T!, which agrees with Wikipedia. (Compare the section on ‘Probability” and the section on
‘Geometric properties” in the article on ‘Simplex”.)

Note also that if our simplex has (T + 1) vertices 0,ajey, . ..,arer € RT, where all the a; are strictly
positive, then as above the volume of our simplex is

|detWww'|!/2
T!

where W is a diagonal matrix with (z,7) entry a;. So the volume is

|detWW'|'/2 | detW]|
T! T
_Hthlal
T
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Appendix on [p.xr (forior(T) logciy ) d

First, note that
I dief fRnXT (fprl()r(a-) IOg CiJ) da‘
1 n
- /R"XT <(T1)n okt 1{Zthlci,z:1}m{Ci,z20}> (IOgCiJ) dq
Dt
1

T /RT (Lsr ey =1ynges,20p) (logeis) det

due to the normalization 1/T! for each n. Next, note that (dropping the i index for now), if the
integrand is logcy, we get

idéf/éT (1{2?:16121}m{ct20})(logCI)dc

blmar plma-e 1-r 5 e
:/ / / / (logcy)derder 1 ---dcey
0 Jo 0 0

1 (I=c1) p(l=ci)—c2 (I—c)-X/ 5 o

:/ (logcl)[/ / / dCTdCT,I---dCQ dC1
0 0 0 0
1

:/() (logcl)VT_l(l—cl)dcl

where Vr_1(a) is the volume of a simplex in R7=1 with T vertices 0,ae;,aes, ... ,aer_; € RT~1.
From “Appendix on volumes of simplices”, we know that

HIT:_la a1
Vr-i(@) = 77 —11)! — -1

So

- 1 (1—C1)T_1

I—/O (lOgcl)—(T—l)!
YT +Y(T)T +1
T TXT-1)!
= —% (Wolfram Alpha)
Hr

T

where 7 is Euler’s constant, ¥(x) is digamma function, and Hr is the T'th harmonic number 1+
% + % 4+ 4 % (Note: Maple and WolframAlpha agree, since according to Wikipedia ¥ (n) =

YTHY(T)T+1 _ y+¥(T)+L  Hr g+t Hr
T2(T-1)  T(-11 T Tl

dC1

(Maple)

H, 1—7,s0

By symmetry (since by Fubini we can perform the integration coordinatewise in any order), the
above holds also for integrands logc; when ¢ is bigger than 1.
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Thus, plugging in, we get

1
I

1 Hy

T!T!

(2
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fry ﬂ /]RT (1{23‘:1 Ci’z:l}m{CiJzO}) (log Ci,[) dc(l)



Appendix on [guxr (f prior () log((¢iXi/ psie) + Vt)) da
We approach this similarly to the previous integral. First, note that

def

I= fRnxT (fprior(q) log((ci,txi/Ps,-,z) + Vt)) dq
1 i
T /RT (g ety 20p) 108 (€0 psg) + vi) de”

Dropping the index i for now, if the integrand is log((c1x/p1) + V1), we get
% def
= /]RT <1{Z,T:1€t:1}ﬂ{ct20}) log((c1x/p1)+v1)de

= /01 log((c1x/p1) +vi)Vr_1(1 —c1)dcy

PR

:/Ollog((mx/l?l)*'vl)%dcl

_ (T_l 5 Y () Y P MeijerG (1], ], [1-1,~10, 01, Y2) | Maple)
= N4 NP teiierG ([ 1], (7] (11,11, [, V22

where MeijerG is the inverse Laplace transform

:L% (H?ilr(l—ai+y))(H?;1F(Ci—y))Zy
2mi Jo (TT:2, T(bi — y)) (T4, T(1 — di +))

and L is the contour from Y — ieo to Y+ ico for a particular . So in our particular case

MeijerG([a,b], [c,d],z)

dy

MeijerG([[~1], [7]]. [ 1, —1, [, 22%)

U= () )T 1) vipr s
D H A v i
1 [TR+YI(=1=y)* Vipi\y
=i} ST

Anyhow, this is way too complicated and we need to figure something else out.

For now, we will just leave the overall integral as

1—c; T—1
( CZJ) dCiJ

(T—1)!

1 1 )
- T!(T—l)!/o log((cisi/ Pyye) + Vi) (1 — i) deiy

1 1
I = —/ log((Cl’in/ps,',t) + vl)
T! Jo
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