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Abstract

A class of probability models for inference about alterations in gene expression
is reviewed. The class entails discrete mixing over patterns of equivalent and
differential expression among different mRNA populations, continuous mixing
over latent mean expression values conditional on each pattern, and variation
of data conditional on latent means. An R package EBarrays implements in-
ference calculations derived within this model class. The role of gene-specific
probabilities of differential expression in the formation of calibrated gene lists
is emphasized. In the context of the model class, differential expression is
shown to be not just a shift in expected expression levels, but also an assertion
about statistical independence of measurements from different mRNA popula-
tions. From this latter perspective, EBarrays is shown to be conservative in its
assessment of differential expression.

2.1 Introduction

Technological advances and resources created by genome sequencing projects
have enabled biomedical scientists to measure precisely and simultaneously
the abundance of thousands of molecular targets in living systems. The effect
has been dramatic, not only for biology, where now the cellular role for all
genes may be investigated, or for medicine, where new drug targets may be
found and new approaches discovered for characterizing and treating complex
diseases, the effect has also been dramatic for statistical science. Many statisti-
cal methods have been proposed to deal with problems caused by technical and
biological sources of variation, to address questions of coordinated expression
and differential expression, and to deal with the high dimension of expression
profiles compared to the number of profiles. Our interest is in the question of
differential expression. We do not attempt to review the considerable body of
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statistical research that addresses this question; we focus here on methods for
this problem that are related to a class of hierarchical mixture models.

A model is hierarchical if it describes observed variation using both latent
random variables and the conditional variation of data given realizations of
these latent quantities. In our work, the latent random variables include gene-
and condition-specific expected values, these being the target quantities that
one would measure in the absence of either biological or technical variation.
Hierarchical models naturally incorporate multiple sources of variation, and
they have an important role in the analysis of experiments with few microarrays
because they can channel relevant information from other genes into gene-
specific calculations, thus improving sensitivity.

The term mixture model can be used in a very broad sense to describe
distributions; however, in expression work it has the following narrow inter-
pretation: gene-specific hypotheses about differential expression are treated as
latent discrete random variables. In comparing two mRNA populations, for
example, it is as if a gene tosses a coin to decide whether or not it is differen-
tially expressed, and then produces data distributed according to the particular
outcome. Mixture models are convenient in structuring high-dimensional in-
ference; genes become apportioned to different components of the mixture
model. Often this modeling is done late in the data analysis stream: a mixture is
fit to one-dimensional gene-specific summary measures (e.g., p values) rather
than to the full data, and thus it may be unable to recover information lost by
forming these summaries. Another problem is that some mixture methods rely
on permutation to develop null distributions. This can be effective but it can
fail when there is limited replication, as is often the case.

The first empirical Bayesian analysis of expression data was published in
2001. Focusing on preprocessed, two-channel microarray data, our group noted
an inefficiency of the naive fold change estimator R/G, obtained from each
gene’s intensity measurements R and G in the two color channels on a spot-
ted cDNA microarray (Newton et al. 2001). Our model-based estimate of fold
change was (R + c)/(G + c) for a statistic c which depends on sources of
variation affecting the intensity measurements and which is computed from
data on all genes. This modified fold-change estimator emerged as an in-
termediate between the posterior mode and posterior mean of the true fold
change in the context of a specific Gamma-Gamma (GG) hierarchical model.
We showed by simulation how this estimator has reduced mean squared er-
ror (log scale) and also how the gene ranking is improved. In addition, this
2001 JCB paper addressed the question of testing for differential expression
in the context of a parametric hierarchical mixture model, and gave formulas
for the posterior probability and odds of differential expression. The paper also
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noted a statistical curiosity of testing in this mixture model context, namely,
that the number of genes that may be confidently declared to be differen-
tially expressed may be much smaller than the estimated proportion of genes
that are truly differentially expressed. This concept is helpful in formalizing
power calculations. Further, in spite of improvements in statistical comput-
ing, we also recognized in this first paper the importance of computationally
efficient methods in the domain of high-throughput data; our models were
sufficiently simple that Markov chain Monte Carlo methods could be safely
avoided.

The 2001 JCB paper concerned both testing and estimation for high-
dimensional microarray data based on novel hierarchical and mixture-modeling
structures. However, the delivered methodology remained rather limited; it
handled single-slide spotted-array data comparing expression profiles in two
conditions. There was nothing intrinsic to the model development that forced
such restrictions, and so we pursued extensions that allowed replicate ex-
pression profiles in multiple mRNA populations (Kendziorski et al. 2003).
There, we extended the GG calculations to this setting and we also devel-
oped parallel calculations based on a log-normal-normal (LNN) hierarchical
specification. Emphasis was taken away from estimation of fold change and
was transferred to computing posterior probabilities for various patterns of
equality among gene- and condition-specific expected values. This has more
relevance for inference with multiple mRNA populations. Tools to implement
the multigroup inference calculations were offered in the Bioconductor package
EBarrays.

Data analysts tend to favor methods that are simply structured and that have
little reliance on modeling assumptions. A popular approach to differential ex-
pression, for example, is to apply ordinary statistical procedures (such as the
t-test) separately to each gene, and then to paste the inferences together in some
reasoned way (e.g., Dudoit et al. 2002). Although often effective, this approach
usually rests on implicit assumptions about variation and it can suffer inefficien-
cies when shared properties of genes are not well accommodated. EBarrays,
on the other hand, delivers inference summaries by attempting to capture the
relevant sources of variation of the entire high-dimensional expression profile.
It is explicit about the underlying assumptions:

(i) Parametric observation component (log-normal or Gamma)
(ii) Parametric mean component (conjugate to observation component)

(iii) Constant coefficient of variation
(iv) Only marginal information (rather than among-gene dependence) is

relevant
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Much experience with the package indicates good operating characteristics, es-
pecially when the number of replicate chips per condition is low. In examples
where the parametric fit is poor it is beneficial to have more flexible meth-
ods. Work since Kendziorski et al. (2003) has investigated these assumptions,
examined their significance, and generalized the methodology.

Adopting our proposed mixture structure, but not the hierarchical modeling
elements, Efron et al. (2001) described a nonparametric empirical Bayesian
analysis for assessing differential expression. The nonparametric nature of the
analysis is appealing, since it seems to alleviate parametric constraints and may
thus be favored in routine data analysis. However, the flexibility is somewhat
illusory; it enters mainly in estimation of a one-dimensional distribution of
gene-specific summary measures. The proposed method relies on permutation
to assess a common null distribution (so it can fail when the number of replicate
microarrays is low), and takes advantage of the large number of genes to develop
the nonparametric density estimate. Further, assumptions about the suitability
of the proposed gene-specific summary statistic are left implicit. Importantly,
the Efron et al. paper may have been the first to relate gene-specific posterior
probabilities of equivalent expression to rates of false detection in a reported
list of genes. Much subsequent research on the control of the false discovery
rate (FDR) seems to stem from this observation.

In the following sections we visit a few topics relevant to inference about
expression alterations that seem to be notable developments since our first work
in the area.

2.2 Dual Character of Posterior Probabilities

In the context of multiple simultaneous hypothesis testing, posterior probabili-
ties have a curious dual character that other testing summaries lack. The duality
is almost transparant once stated, but we think it is worth noting here because
it simplifies the interpretation of gene lists.

Each gene j from a large set of J genes may or may not be differentially
expressed between two mRNA populations. We say it is equivalently expressed,
EEj , if it is not differentially expressed; data are analyzed to assess this null
hypothesis. A Bayesian (or empirical Bayesian) analysis yields the posterior
probability ej = P (EEj |data); a non-Bayesian analysis might yield a p value
or some other gene-specific summary statistic.

Genes exhibiting the strongest evidence for differential expression will be
those with the smallest ej , and one could naturally consider forming a list of
discoveries, D = {j : ej ≤ τ }, for some threshhold τ . The duality is this: gene
j gets to be in D by virtue of the small magnitude of ej . At the same time, ej
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is the probability (conditional on the data) that this assignment is a mistake.
In other words, it is the probability of a type I error; that gene j should not
have been placed on the list of differentially expressed genes. The magnitude
ej conveys both a decision about j and the conditional probability of a faulty
decision. Other gene-specific summaries, like p values, do not have this dual
character.

The property is useful for multiple simultaneous inference because the ex-
pected number of false discoveries (conditional on the data) is simply

cFD(τ ) =
∑

j

ej︸︷︷︸
error rate

1[ej ≤ τ ]︸ ︷︷ ︸
discovery

(2.1)

and the conditional false discovery rate is cFDR(τ ) = cFD(τ )/N (τ ), where
N (τ ) = ∑

j 1[ej ≤ τ ] is the size of the list. A list D formed from all genes for
which ej < 5%, for example, has cFDR less than 5%. A more refined usage
tunes τ to set the conditional false discovery rate at some value like 5%, and
has been called the direct posterior probability approach to controlling this
rate (Newton et al. 2004).

In Efron et al. (2001), ej was called the local FDR because it measured
the conditional type I error rate for that specific gene. Storey (2002) criticized
the unmodified use of ej ’s for inference because they lack error rate control
simultaneously for a list of discovered genes. Averages of ej values over a
short list of reported genes convey a more useful multiple-testing quantity.
Storey (2002) introduced the q value as a gene-specific inference measure that
carries a multiple-testing interpretation. In our notation, the q value for gene
j is qj = cFDR(ej ). This is the expected proportion of type I errors among
those genes k with ek no larger than that of the input gene j . The procedure that
rejects all null hypotheses EEj for which qj ≤ 5% targets a marginal FDR
of 5%. Literature on q values centers on the analysis not of raw data (or ej ’s)
but of p values derived from separate gene-specific hypothesis tests. Since p
values do not have the dual character described above, their distribution needs
to be modeled as a mixture in order that q values can be derived. In this way,
modeling is transferred from the full data down to gene-specific p values. An
advantage is that it is easier to be nonparametric with one-dimensional statistics;
a disadvantage is that information may have been lost in first producing the
gene-specific p values.

The dual character of posterior probabilities was pointed out in Newton et al.
(2004), though the issue is understood in other work (Genovese and Wasserman
2002; Storey 2003; Müller et al. 2005). Notably, Müller et al. (2005) tackle the
issue from a more formal Bayesian position, and study list-making inference
as a general decision problem.
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2.3 Differential Expression as Independence

Consider replicate profiles available from two mRNA populations, and al-
low that preprocessing has removed systematic sources of variation. Gene
j provides measurements xj = (xj,1, xj,2, . . . , xj,m) in one condition and
yj = (yj,1, yj,2, . . . , yj,n) in the second condition. The concept of equivalent
expression, EEj , and its counterpart differential expression, DEj , are hypothe-
ses that require some definition in terms of their effect on the probability density
p(xj , yj ). Most studies focus modeling on the null hypothesis EEj . One could
state this in terms of a common expectation µj = E(xj,i) = E(yj,k) (for any
chips i, k) that the measurements are targeting, or one could state it in terms
of exchangeability of all the measurements. Then under the null hypothesis,
permutation of microarray labels would be valid, and this could be used to
generate a null distribution of a test statistic (e.g., Dudoit et al. 2002). Such an
approach can be effective when the number of microarrays is large, but notice
that the approach avoids defining differential expression as anything more than
the opposite of EEj . The approach adopted in EBarrays does not require per-
mutation and can be applied when there are very few replicate microarrays. In
it, DEj is defined as independence of xj and yj . This independence is marginal
with respect to any gene level parameters and is conditional on genomic-level
hyperparameters that are not specific to gene j . That is, gene j is differentially
expressed if measurements from one condition are not useful predictors of
measurements in the second condition. By contrast, all measurements xj and
yj on a gene j that is equivalently expressed are correlated by virtue of having
a shared, latent, random mean.

For the sake of demonstration, consider a comparison in which xj and yj

are univariate (m = n = 1). The calculations embodied in the LNN model
of EBarrays consider that these (log) expression values are conditionally
independent normally distributed variables with means (µ1, µ2) and with a
common variance σ 2. Further, the means (µ1, µ2) are random effects (sup-
pressing the gene dependence); their marginal distribution is conjugate, being
normal centered at a genomic mean µ0 and having variance τ 2

0 . Thus xj and yj

have equal marginal distributions obtained after integrating the latent means:
Normal(µ0, σ

2 + τ 2
0 ). The issue of EEj or DEj enters into the dependence

between xj and yj . We assert that on EEj , µ1 = µ2 with probability 1, and,
further, that on DEj , the component means are independent. Upon integrating
the latent means, we have (1) exchangeability of gene-level measurements on
the null EEj , and (2) independence between xj and yj on the alternative DEj .
Mechanistically, we can imagine that on EEj a single mean value is realized
for the gene j , and then all the observations are generated as a random sample



P1: JZP

chap CUNY477-DoMueller 0 521 86092 X April 11, 2006 20:17

46 Newton, Wang, and Kendziorski

under that parameter setting. Alternatively, on DEj , each mRNA population
selects its mean value independently of the others, from the same distribution,
and measurements arise conditionally on these different means.

A model is fully specified when in addition we consider the discrete mixing
on EEj (probability p0) and DEj (probability p1). The marginal distribution
of gene-level data is

p(xj , yj ) = p0f (xj , yj ) + p1f (xj )f (yj ), (2.2)

where, conveniently, f ( ) returns a marginal density of its argument treated
as a conditional random sample given a common, latent, random mean. For
instance in the case considered,

f (xj , yj ) = p(xj , yj |EEj ) =
∫

p(xj |µ) p(yj |µ) π (µ) dµ,

where π ( ) is a normal univariate conjugate prior, p(xj , yj ) is a normal density
with common margins, as above, and with correlation 1/(1 + σ 2/τ 2

0 ) between
xj and yj owing to them having a common, latent mean. General formulas for
this LNN case, and for the GG case, are presented in Kendziorski et al. (2003).
Two-group comparisons in EBarrays are based on (2.2); the code allows other
combinations and user input of the function f ( ).

Gene-level inference is based on posterior probabilities, such as

ej = P (EEj |xj , yj ) = p0f (xj , yj )/p(xj , yj ).

Any decision about gene j is based on ej ; in this normal no-replicate case, for
example, the odds favor differential expression if

1 − ej

ej

> 1 ⇔ (xj − yj )2 > C (2.3)

where, more precisely,

C = 4σ 2(a − µ0)2

σ 2 + 2τ 2
0

+ 4σ 2
(
σ 2 + τ 2

0

)
τ 2

0

[
log

p0

p1
+ 1

2
log

(
σ 2 + τ 2

0

)2

σ 2
(
σ 2 + 2τ 2

0

)
]

.

In other words, we favor DEj if the measurements in the two conditions are
sufficiently far apart, the necessary distance depending on overall expression
a = (xj + yj )/2 and global parameters that delineate the different sources of
variation. Ultimately, the analysis is empirical Bayes because these global
parameters are estimated from the genomic data using an EM algorithm to
maximize a marginal likelihood.

We have presented two views about differential expression. The rather direct
view considers DEj as a difference in expected expression measurements
between the two mRNA populations, as revealed by a large difference in the
observed expression values for gene j (the difference xj − yj above, or the
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difference of averages in the case of replication). The alternative view holds that
differential expression corresponds to independence of measurements between
the two conditions; one sample is not a useful predictor of the other. This view,
which is not so widely appreciated, has the advantage of supporting a specific
alternative hypothesis to EEj with which we can develop posterior inference.
Conveniently, these two seemingly different views are two sides of the same
coin.

There is an intermediate ground on which DEj entails a shift in expected
expression without marginal independence between xj and yj . However, this
formulation is related to a nonidentifiability of the mixture model, and thus is
difficult to work with (see Newton et al. 2004). It is possible to establish that
inferences derived using the independence view of DEj (i.e., using EBarrays)
are conservative if some positive dependence happens to exist between xj and
yj on DEj . Wang and Newton (2005) show that when σ 2/τ 2

0 is sufficiently
small, then the EBarrays even–odds threshold C [see (2.3)] is larger than the
threshold C ′ one would have computed if one were supplied with the correct
correlation between xj and yj . In other words EBarrays is conservative: DEj

is harder to declare using EBarrays than if you know the true distribution,
and so you make fewer claims of differential expression. It is a rather realistic
condition, furthermore, that σ 2/τ 2

0 is small, since we expect variation within a
gene (certainly variation of an average in the case of replication) to be small
compared to the variation between genes.

2.4 The Multigroup Mixture Model

Pairwise comparisons are the bread and butter of statistics, but they may not
be suitable when analyzing data from more than two mRNA populations.
Extending (2.2) to three groups by the inclusion of data zj , we mix over
ν = 4 possible discrete patterns of differential expression and one pattern of
equivalent expression:

p(xj , yj , zj ) = p0f (xj , yj , zj ) + p1f (xj )f (yj , zj ) (2.4)

+p2f (xj , zj )f (yj ) + p3f (xj , yj )f (zj )

+p4f (xj )f (yj )f (zj ).

For instance, p3 is the proportion of genes for which xj and yj are equiva-
lently expressed while being differentially expressed from zj , and p4 is the
proportion of genes that are differentially expressed among all three condi-
tions. More generally, let dj = (dj,1, . . . , dj,N ) denote the vector holding all
measurements on gene j taken across all conditions. We mix over equivalent
expression and ν patterns of differential expression so that the joint distribution
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p(dj ) = ∑ν
k=0 pkfk(dj ), where pk is the overall proportion of genes governed

by the kth pattern and fk is the distribution of data conditional on that pattern.
The patterns are hypotheses about possible clustering of the expected expres-
sion levels across the N measurements, and so, like the case above with ν = 4,
each fk becomes a product of contributions from each component of the clus-
tering. The null pattern k = 0 corresponds to µj = E(dj,s) being the same for
all samples s ∈ S = {1, 2, . . . , N}. Any pattern k partitions S into r(k) mu-
tually exclusive and exhaustive subsets {Sk,i : i = 1, 2, . . . , r(k)} on each of
which the expected expression level is constant. To complete the specification,
we write

fk(dj ) =
r(k)∏
i=1

f (dj,Sk,i
) =

r(k)∏
i=1

∫ 
 ∏

s∈Sk,i

fobs(dj,s |µ)


 π (µ) dµ, (2.5)

where π (µ) is a random effects distribution governing the latent, gene-specific
expression means and fobs is the observation component of the hierarchical
model. Model fitting amounts to estimating the mixing proportions pk , param-
eters of the observation component, and parameters of the mean component
π (µ).

As a brief illustration, we reconsider data on gene expression in mammary
epithelial tissue from a rat model of breast cancer. Each of 10 pools of mRNA
was probed with an Affymetrix U34 chip set having 26, 379 distinct probe sets;
the 10 pools represent rats of four different genetic strains (1 Copenhagan; 5
Wistar Furth; 2 Congenic I; 2 Congenic II) where each congenic strain was
genetically identical to the Wistar Furth parental strain except for a small
genomic region in which the genome is homozygous for Copenhagan alleles,
at least one of which confers resistance to the development of breast cancer
(Shepel et al. 1998; Kendziorski et al. 2003). Expression alterations among
these groups are relevant to understanding the Copenhagan strain’s resistance
to breast cancer.

Table 2.1 shows the ν = 14 patterns of differential expression among the
4 mRNA populations (strains), and the overall equivalent expression pattern.
Previous analysis of these data (Kendziorski et al. 2003) was restricted to a
subset of four patterns, as code at that point was not sufficiently flexible to
handle arbitrary sets of patterns. Figure 2.1 shows the proportions of genes
satisfying each pattern based on fitting the LNN model in EBarrays.

Detectable differential expression is rather limited in this example, as an esti-
mated 92.7% of genes are equivalently expressed among the four rat strains. DE
pattern k = 4 represents one case of interest as it concerns genes that may be
altered by the process of congenic formation. Filtering by gene-specific poste-
rior probabilities of this pattern P (µj,1 = µj,2 �= µj,3 = µj,4|data) =: 1 − ej ,
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Table 2.1. Patterns of DE Among Four Rat Strains

k Mean patterna k Mean pattern

0 µ1 = µ2 = µ3 = µ4 8 µ1 = µ2 = µ4 �= µ3

1 µ1 �= µ2 = µ3 = µ4 9 µ1 = µ2 �= µ3 �= µ4

2 µ1 = µ4 �= µ2 = µ3 10 µ1 = µ3 �= µ2 �= µ4

3 µ1 = µ3 = µ4 �= µ2 11 µ1 = µ4 �= µ2 �= µ3

4 µ1 = µ2 �= µ3 = µ4 12 µ1 �= µ2 = µ4 �= µ3

5 µ1 = µ2 = µ3 �= µ4 13 µ1 �= µ2 �= µ3 = µ4

6 µ1 �= µ2 = µ3 �= µ4 14 µ1 �= µ2 �= µ3 �= µ4

7 µ1 = µ3 �= µ2 = µ4

a (1) Copenhagan, (2) Wistar Furth, (3) Congenic I, (4) Congenic II. Here,
µi refers to the expected expression level for mRNA population i.

we can apply the direct posterior probability approach (2.1) to controlling FDR.
We find that five probe sets constitute a 5% cFDR short list of genes satisfying
this DE pattern. These probe sets have ej ≤ 0.013. One of the interesting ones,
rc_AI105022_at, corresponds to Cullin-3, a gene involved in the ubiquitin cycle
and related to breast cancer tumor suppression (Fay et al. 2003). Investigating
the biological significance of altered genes such as this is part of ongoing re-
search; it is important to have tools like EBarrays which can efficiently sort
and calibrate genes by alterations of interest.

2.5 Improving Flexibility

Utility of results from the hierarchical mixture model analysis, as obtained
from EBarrays, is limited by the suitability of the four structural modeling
assumptions described in the introduction. Each of these has been the subject
of analysis, and we find that certain assumptions seem to be more important
than others. For example, the use of a parametric observation component is
often innocuous. Tools in EBarrays provide diagnostic qq-plots for this com-
ponent; both Gamma and log-normal distributions often fit well, though a search
for improved robust alternatives would be valuable. Calculations in Gottardo
et al. (in press) allow log-t errors, and thus are less susceptible to heavy-tailed
observations.

The diagnostic plots often indicate suitability of the observation component;
however, marginal diagnostics can suggest an overall poor fit from EBarrays.
This has to do with inflexibility of the distribution π (µ) of latent means.
The issue was studied in Newton et al. (2004), and there a nonparametric
mean component was proposed. A nonparametric version of the EM algorithm
enabled model fit. Comparisons indicated improvements in terms of error rates
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 k = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Pattern k

p_k

µCOP

µCI

µCII

µWF

100

10−2

10−4

100

Fig. 2.1. Estimated mixing proportions for 15 patterns of mean expression among four
mRNA populations in a rat breast cancer study: Equality of angles in a column stands
for equality of the means. Above, height of lines indicates estimated proportion of genes
in each pattern.

on short lists compared to the parametric model, gene-specific t-testing, and
the method of Efron et al. (2001). That paper also showed how to formulate the
mixture model in terms of directional alternatives, which can further improve
flexibility, but it left unaddressed an extension beyond two-group comparisons
to multigroup comparisons.

It may be that improvements obtainable by nonparametric analysis of the
mean component are modest compared to improvements that would be possible
through a more effective modeling of gene-specific variances. Advances in this
direction by Lonnstedt and Speed (2002) and Smyth (2004) are significant,
though their empirical Bayesian formulation is rather different than the one
described here underlying EBarrays. In that work, expression shifts have to do
with nonzero contributions in a linear model for expected expression, rather than
separately realized mean values. The relative merits of the two forms of mean
modeling remain to be worked out (e.g., the role played by discrete mixing
proportions is present but less prominent in the linear-model formulation).
With regard to variances, Lonnstedt and Speed (2002) and Smyth (2004) put
a prior on gene-specific variances, and this provides some flexibility beyond
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the constant variance assumption in the LNN version of EBarrays. The idea
was also used by Baldi and Long (2001) and also by Ibrahim et al. (2002).
Kendziorski and Wang (2005) investigate flexible variance modeling in the
context of EBarrays.

Among-gene dependence is an ever-present concern, though it is difficult
to handle owing to the dimensions involved. Permutation-based methods are
helpful in guarding against ill-effects of dependence, but they are not always ef-
fective. Note that FDR controlling procedures are popular in part because they
are fairly robust to among-gene dependencies compared to other multiplicity-
adjustment methods. Dahl (2004), generalizing Medvedovic and Sivaganesan
(2002), investigates methodology that directly models dependence among
genes using a Dirichlet process mixture (DPM) formulation. In the Bayesian
effects model for microarrays (BEMMA), different genes share parameters in
much the same way that different mRNA populations share mean parameters
on a given gene in EBarrays. Thus, correlation among genes is explained in
terms of shared, latent parameter values. The grouping of genes into clusters
where sharing occurs is mediated by the discrete clustering distribution inher-
ent in the DPM model, and is assessed by posterior sampling via Markov chain
Monte Carlo. Dahl (2004) shows improvements in the assessment of differential
expression when one accommodates coordinated expression by this BEMMA
approach. We note that BEMMA uses DPMs in a different way than Do, Müller,
and Tang (2005), which used them to improve nonparametric inference based
on one-dimensional reductions of the gene-level data. Using a novel mixture
formulation, Yuan and Kendziorski (in press) offer another approach for using
between-gene dependencies to improve differential expression analysis.

In summary, we see rapid development of methodology for altered gene
expression based on the flexible class of hierarchical mixture models reviewed
here. As new data analysis and data integration problems emerge in genomics,
there will be further demand for such modeling in order to organize variation
and to provide effective analysis of data.
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