
Biostatistics (2019), 0, 0, pp. 1–19
doi:10.1093/Biostatistics/Supp

Supplementary Material: Dimension constraints
improve hypothesis testing for large-scale,

graph-associated, brain-image data

Vo, Ithapu, Singh & Newton

Version: November 24, 2019

Software versions

For statistical parametric (and nonparametric) mapping we used SPM12 and SnPM13. For vi-

sualizing and getting neuroscientific interpretation of the statistical findings, we used xjview8.

For R packages, we used

• stats v 3.5.2 (for B-H adjust)

• locfdr v 1.1-8

• qvalue 2.12.0

• ashr v 2.2-7

lfdr2 in toy problem

On the toy problem described in Section 1 of the main manuscript, we have observables X1

and X2 from the first condition and Y1 and Y2 from the second. Means are µX1 , µX2 , µY1 and

µY2 respectively, conditional upon which, the observables are independent normals with those

means and with constant variance σ2 > 0. The four latent means fluctuate over the system by

c© The Author 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com

2

Supplementary Table S1: mixture structure, toy problem; h encodes a Gaussian joint density
of arguments, with mean zero in all components, marginal variance 1 + σ2, and exchangeable
covariance with all correlations equal to 1/(1+ σ2); fourth column indicates the number of free
parameters integrated to give the last column.

Pair Unit 1 Unit 2 mix prob # free predictive density
block null null pblock p0 1 h(x1, x2, y1, y2)
block alt alt pblock(1− p0) 2 h(x1, x2)h(y1, y2)
split null null (1− pblock)p2

0 2 h(x1, y1)h(x2, y2)
split null alt (1− pblock)p0(1− p0) 3 h(x1, y1)h(x2)h(y2)
split alt null (1− pblock)p0(1− p0) 3 h(x2, y2)h(x1)h(y1)
split alt alt (1− pblock)(1− p0)

2 4 h(x1)h(x2)h(y1)h(y2)

a discrete mixture that indicates strict equality constraints; the unconstrained common levels

then fluctuate independently and according to the standard normal distribution. Discrete mix-

ing is by two coins; the first has success probability pblock; in that event, called block, µX1 = µX2

and µY1 = µY2 . Otherwise the units are split. A second coin has success probability p0; this is

tossed once if there is blocking and twice if not. Success on this second coin indicates µX1 = µY1

(which is the null hypothesis of interest). The following table shows the six discrete outcomes,

their mixing probability, as well as the joint density of the observables conditional on that

mixture component, but marginal to the latent mean values themselves.

From this table, the local FDR, is lfdr2 = P(µX1 = µY1 |x1, x2, y1, y2)

lfdr2 ∝ pblock p0h(x1, x2, y1, y2) + (1− pblock)(p2
0h(x1, y1)h(x2, y2) + (1− p0)p0h(x1, y1)h(x2)h(y2))

with proportionality resolved by summing over the six discrete possibilities.

Local approximation

In many applications it is impractical to apply the model of Section 2 on the entire graph

due to high dimensionality and general covariance structure. Since we expect most of the

information relevant to inference about one node to come through nearby nodes, we deploy a

local graph approximation which is amenable to parallel computing. For each node v, consider

3

a neighborhood Nv of node v. Nv is chosen such that it is a connected component of graph G.

GraphMM, then, is applied to model the data in this neighborhood

(XNv , YNv) := {(Xu, Yu) : u ∈ Nv}

The node-specific posterior probabilities are approximated by

lv := P(H0,v|XNv , YNv) = ∑
Ψ,∆

1(∆k = 0)1(v ∈ bk)P(∆, Ψ|XNv , YNv) (0.1)

The local approximation procedure is illustrated by Fig. S1.

Supplementary Figure S1: Illustration for local approximation pipeline. (a) shows pre-processed MRI images of two
conditions. (b) shows lattice graphs associated with the data. (c) shows local approximation procedure, in which
neighborhood Nv of node v includes v and eight adjacent nodes. GraphMM model is applied to neighborhood data to
get approximated posterior probability of null effects lv as in (0.1).

4

Algorithm 1 Local approximation

Input: pre-processed MRI data X, Y .

Output: per voxel posterior probability of differential structure.

1: procedure GraphMM(X, Y)

2: for v in nodes do

3: Glocal ← local graph around v

4: (XNv , YNv)← local data around v

5: hyp ← estimated hyperparameters(XNv , YNv)

6: for (Ψ, ∆) in graph-respecting partitions of Glocal do

7: p(XNv , YNv |Ψ, ∆) ← marginal density of data local to v

8: p(Ψ, ∆) ← prior mass of local state.

9: end for

10: Scale to get p(Ψ, ∆|XNv , YNv) for all graph-respecting partitons (Ψ, ∆)

11: lv ← P(H0,v|XNv , YNv)) # Using formula 0.1

12: end for

13: end procedure

For results in Sections 3.1 and 3.2, we did local approximation on a 3× 3 neighborhood

of each node, as illustrated in Fig. S1. In this case we can enumerate all the graph-respecting

partitions (we devised a data-augmentation sampling scheme that makes use of spanning trees

within the input graph; see last section of supplement). Then, we are able to enumerate all the

pairs (Ψ, ∆) and compute the exact posterior distribution.

5

Algorithm 2 General framework for all the simulation scenarios
Input: MRI dataset for condition 1, G1, a N ×MX matrix; real dataset for condition 2, G2, a N ×MY matrix.
Output: synthetic dataset 1 X; synthetic dataset 2 Y .

Step 1: S1 ← sample-covariance(G1).
Step 2: S2 ← sample-covariance(G2).
Step 3: V← S1 + 0.5I # I is identity matrix.
Step 4: W← S2 + 0.5I # Add a small value to the diagonal of

S1, S2 to get positive definite matrices.
Step 5: Avg← average-over-replicate(G1, G2) # Avg is a vector of length N

Implement for step 6 to 9 depends on specific scenario
Step 6: Ψ← cluster(Avg) # Ψ = {b1, . . . , bK} is a graph-

respecting partition on Avg
Step 7: ∆← changed-block indicator # ∆ = {∆1, ..., ∆K} is a binary vector,

∆k = 1 iff bk is a changed-block.
Step 8 & 9:

ϕ← simulated block means for condition 1
δ ← simulated changed effects # δk = 0 iff ∆k = 0; when ∆k 6= 0, δk is

simulated from some distribution (e.g
beta, uniform)

ν← φ + δ # ν is simulated block means for condi-
tion 2.

µX ← simulated node means for condition 1
µY ← simulated node means for condition 2 # µX , µY satisfy clustering constraints

on the means w.r.t Ψ as in (??).

##########
Step 10: X ← Multivariate Normal (µX , V)
Step 11: Y ← Multivariate Normal (µY , W)

Simulation study details

The graph associated with data is a lattice graph representing spatial dependence, in which

the vertices are the pixels and the edges connect neighboring voxels. The analysis of GraphMM

involves estimating hyper parameters: prior null probability p0, prior mean µ0 and standard

deviation τ2 of block mean of group 1, prior mean δ0 and standard deviation σ2 of difference

in block mean between 2 groups, prior covariance matrix A for group 1 and matrix B for group

2. Different strategies for estimating hyperparameters have been considered,

• Estimating prior null probability p0: We experimented with both qvalue or ahsr to get the

estimated value of p0. Package qvalue produces conservative estimate of p0 without any

assumption on the distribution of effects. Hence it is a safe and conservative choice un-

der general settings. Package ashr, on the other hand, provides conservative estimate

6

Supplementary Table S2: Description for simulation 1, 2 and 3. Text with blue color and figures
emphasizes that these simulations differ in the average size of latent blocks. In the figures,
area with magenta color shows changed-blocks. We can see that the size of changed-blocks
decreases in simulation 1, 2 and 3. Especially simulation 3 has no clustering effect, i.e the block
size is 1 for all blocks.

Scenario 1 Scenario 2 Scenario 3

Step 6

* Use greedy clustering method [?]
* Partition is adjusted to respect lat-
tice graph.
* There are 1313 blocks, average
block size is 3.9

Same as scenario 1
* Each node itself is a block.
* There are 5236 blocks, block size is 1

Step 7

* 50 blocks with size from 12 to 14
are chosen to be changed-block
* Average size of changed-block is
13.6
* Percentage of changed-nodes:
14.3%

* 300 blocks with size
from 2 to 5 are chosen
to be changed-block
* Average size of
changed-block is 2.6
* Percentage of
changed-nodes: 14.9%

* 15% of the nodes are chosen to be
changed-nodes

Step 8, 9

mx ← block average of MRI data
group 1
my ← block average of MRI data
group 2
max.d← max(my −mx)
min.d← min(my −mx)
ϕ← mx
For changed-blocks: δ ∼
Uniform(min.d, max.d)

Same as scenario 1

mx ← block average of MRI data group 1
sdx ← sample block standard deviation
group 1
mar.m← mean(mx)
mar.sd← mean(sdx)
ϕ ∼ Normal(mar.m, mar.sd)
my ← block average of MRI data group 2
max.d← max(my −mx)
min.d← min(my −mx)
For changed-blocks: δ ∼ Beta(2, 2)
δ← δ ∗ (max.d−min.d) + min.d

Figure

under the assumption that the distribution of effects is unimodal. Furthermore, in our

graph-based mixture model, the distribution of effects δk was assumed to be a mixture

of probability mass at 0 and normal distribution, which satisfies unimodal assumption.

Therefore, using package ashr to estimate for p0 meshes with our GraphMM. The estima-

tion of p0 is based on the whole dataset, computing prior to the local approximation

7

Supplementary Table S3: Description for simulation 4 and 5. Text with blue color and figures
emphasizes that these simulations differ in the percentage of changed-nodes. The figures show
histogram of block avergage shifts across 2 groups for all blocks (red area) and for changed-
blocks (green area).

Simulation 4 Simulation 5

Step 6 * Use greedy clustering method [?]
* Partition is adjusted to respect lattice graph.
* There are 1313 blocks, average block size is 3.9

Same as Simulation 4

Step 7 mx ← block average of MRI data group 1
my ← block average of MRI data group 2
di f f ← my −mx
prob← increasing function of |di f f | and belongs in (0,1)
∆ ∼ Bernoulli(prob)
* Percentage of changed-nodes: 16.4%

* Similar to simulation 4, except that
* Percentage of changed-nodes: 50.3%

Step 8 & 9 * If block k is a changed-block:
ϕ[k]← mx [k]
δ[k]← di f f [k]
* If block k is not a changed-block:
ϕ[k]← (mx [k] + my[k])/2
δ[k]← 0

Same as Simulation 4

Figure

8

procedure. In reported computations we used ashr package for p0.

• Estimating other hyperparameters: We consider 3 approaches: global, local and mixed es-

timation. With global estimation, the hyperparameters are estimated using the whole

dataset and computed prior to the local approximation procedure. With local estimation,

hyperparameters are estimated for each neighborhood, during the local approximation

procedure. With mixed estimation, all hyperparameters are estimated locally except for

matrices A and B, which are estimated globally. These approaches, local, mixed and

global provides increasingly conservative estimates in that order. In following simulation

and application, we present results using mixed estimation.

Computing marginal likelihood

We derive the marginal likelihood using Laplace approximation. Consider the notations as in

Section 2 of main paper. Let KΨ be the number of blocks corresponding to partition Ψ and Kdiff

be the number of changed blocks, which means

Kdiff =
KΨ

∑
k=1

1(∆k = 1)

Denote the ordered indices of changed blocks as (j1, j2, . . . , jKdiff). We re-parametrize the model

in order to remove the clustering constraints on the means

ε := (δj1 , δj2 , . . . , δjKdiff
)

Then, the free parameters are (ϕ, ε) and the marginal likelihood function can be written as

f (X, Y |Ψ, ∆) =
∫

f (X, Y ,ϕ, ε|Ψ, ∆)dP(ϕ)dP(ε)

= C1C2

∫
RKΨ+Kdiff

exp [(df + MX)F(ϕ, ε)]dϕ dε

where

C1 = C1(N, MX , MY, df) =
(|A||B|) d

2 ΓN

(
df+MX

2

)
ΓN

(
df+MY

2

)
[
ΓN

(
df
2

)]2

9

C2 = C2(Ψ, ∆, τ, σ) = exp
[
−KΨ log(τ

√
2π)− Kdiff log(σ

√
2π)

]

F(ϕ, δ) = −1
2

log |Ã| − df + MY
2(df + MX)

log |B̃| − 1
2τ2(df + MX)

KΨ

∑
k=1

(ϕk − µ0)
2

− 1
2σ2(df + MX)

Kdiff

∑
l=1

(εl − δ0)
2

Ã = A + (MX − 1)S1 + MXS2

S1 =
1

MX − 1

MX

∑
m=1

(Xm − X)(Xm − X)τ

S2 = (X − µX)(X − µX)
τ

B̃ = B + (MY − 1)T1 + MYT2

T1 =
1

MY − 1

MY

∑
r=1

(Yr − Y)(Yr − Y)τ

T2 = (Y − µY)(Y − µY)
τ

Apply Laplace’s approximation, we get

log f (X, Y |Ψ, ∆) ≈ log C1 + log C2 +
KΨ + Kdiff

2
log

2π

df + MX

+(df + MX)F(ϕ̂, ε̂)− 1
2

log |−H(F)(ϕ̂, ε̂)| (0.2)

In the next step, we derive the explicit formula for the gradient and Hessian matrix of F.

Let L be the allocation matrix with size N × KΨ where cvk = 1 if and only iff node v belong to

block k. Let R be a KΨ × Kdiff matrix such that column lth of R has value 1 at position jl and

has value 0 at other postions. Then we can relate the mean vectors with the new parameters

(ϕ, ε) as follows

δ = Rε

µX = Lϕ µY = L(ϕ+ δ)

10

We consider following notations.

S3 =
1

MX − 1
A + S1 T3 =

1
MY − 1

B + T1

vX = S−1
3 X vY = T−1

3 Y

s0 =
MX − 1

MX
+ XτvX t0 =

MY − 1
MY

+ YτvY

QX = LτS−1
3 L QY = LτT−1

3 L

wX = S−1
3 µX wY = T−1

3 µY

uX = Lτ(wX − vX) uY = Lτ(wY − vY)

bX =
1

s0 − 2vXτµX + µX τwX

bY =
1

t0 − 2vY
τµY + µY τwY

The formula for the gradient of F is.

∂F
∂ϕ

=

[
−bXuX −

df + MY
df + MX

bYuY −
1

τ2(df + MX)
(ϕk − µ0 JKΨ

)

]τ

∂F
∂ε

=

[
−df + MY

df + MX
bYuY −

1
σ2(df + MX)

(δk − δ0 JKΨ
)

]τ

R

∂F
∂(ϕ, ε)

=

[
∂F
∂ϕ

∂F
∂ε

]
where JKΨ

is a vector of ones with size KΨ.

Next, the formula for Hessian matrix of F is

∂2F
∂ϕ ∂ϕτ

= −bX(QX − 2bXuXuX
τ)− df + MY

df + MX
bY(QY − 2bYuYuY

τ)− 1
τ2(df + MX)

1KΨ×KΨ

∂2F
∂ε ∂ετ

= Rτ

[
−df + MY

df + MX
bY(QY − 2bYuYuY

τ)

]
R− 1

σ2(df + MX)
1Kdiff×Kdiff

where 1K×K is the identity matrix of size K× K.

∂2F
∂ϕ ∂ετ

=

[
−df + MY

df + MX
bY(QY − 2bYuYuY

τ)

]
R

11

H(F) =


∂2F

∂ϕ ∂ϕτ

∂2F
∂ϕ ∂ετ

∂2F
∂ε ∂ϕτ

∂2F
∂ε ∂ετ


Finally, the maximizer ((ϕ̂, ε̂)) can be found using Broyden–Fletcher–Goldfarb–Shanno algo-

rithm.

Importance of the graph-respecting constraint

We do a sanity check to confirm that statistical efficiency gains may arise by regularizing the

expected values through the graph-respecting assumption. In a predictive simulation of the

3× 3 lattice, we generate synthetic Gaussian data D as follows: expected values are guided

by some generative graph-respecting partition Ψ∗ (drawn from a prior); block-specific means

are realized as i.i.d. Gaussian(0, σ2 = 1/4) variables; the 9 data elements in D deviate from

these means by realizations of i.i.d. Gaussian(0, σ2 = 1) variables. Each simulated data set is

one instance of data when the generative setting is graph-respecting. We take each such sim-

ulated data set and work out what two different analysts would surmise about the generative

partition. Analyst A knows that the expected values follow some partition structure. Analyst B

knows also that the expected values follow a graph-respecting partition. Each analyst computes

a posterior distribution, say Panalyst(Ψ|D), over the set of partitions; indeed each posterior dis-

tribution is concentrated at some level around the generative partition Ψ∗. A simple measure

of the concentration is through the induced distribution on the Adjusted Rand Index, which

measures a similarity S(Ψ, Ψ∗) between two partitions. For any level of similarity, s, each ana-

lyst has a posterior probability panalyst(s, D) = P [S(Ψ, Ψ∗) 6 s|D]. Figure S3 compares analysts

by the average of these posterior similarity distributions panalyst(s, D) over data sets D. It re-

veals that by enforcing regularity on the prior distribution over partitions (i.e., by enforcing

the graph-respecting property), we tend to place greater posterior probability mass near the

12

generative partition. In applications where the graph conveys structure of expected values, the

graph-respecting assumption may usefully regularize the local FDR computations to benefit

sensitivity.

Numerical example on control vs late MCI

The Alzheimer’s Disease Neuroimaging (ADNI) project was launched in 2003 by the National

Institute on Aging, the National Institute of Biomedical Imaging and Bioengineering, the Food

and Drug Administration, private pharmaceutical companies, and nonprofit organizations. The

overarching goal of ADNI study comprises of detecting Alzheimer’s Disease (AD) at the earli-

est possible stage, identifying ways to track the disease progression with biomarkers and sup-

port advances in AD intervention, prevention and treatments. ADNI is the result of the efforts

of many co-investigators from a broad range of academic institutions and private corporations,

and subjects have been recruited from over 50 sites across the U.S. and Canada.

Number of significant voxels at various thresholds and cluster sizes

Figure S4 presents the number of significant voxels at various FDR thresholds; Figure S5 shows

sizes of clusters of significant voxels. In both cases we consider the 3D brain lattice.

Graph respecting partitions

Let G = (V, E) denote a simple undirected graph. Over the n nodes in V we are interested in

partitions π = {b}, corresponding to disjoint subsets of V, (i.e., blocks), whose union equals

the whole vertex set V. We say that π respects G if each block b induces a connected subgraph

Gb, and we are interested in probability distributions over this restricted class of partitions

as an avenue to improved statistical inference. Observe first that a graph-respecting partition

π may be encoded with a vector of binary edge variables: Z = {Ze : e ∈ E} such that any

13

two neighboring nodes in the same block have Ze = 1, and any two neighboring nodes in

different blocks have Ze = 0. In general, these requirements – that within-block edges are on

(Ze = 1) and between-block edges are off (Ze = 0) – are such that some binary vectors Z are

not allowed. One exception is when G is a tree:

Lemma 1: There is a 1-1 correspondence between graph-respecting partitions of a tree on n nodes and the

set of length n− 1 binary vectors.

Notice that we can recover the blocks of the encoded partition by creating a new graph G′

from the original G through the removal of edges where Ze = 0. Then the connected compo-

nents of what we call the decimated graph G′ are the blocks of π. In this special case where G

is a tree, we could develop MCMC proposals by randomizing the representation vector Z. But

how could we take advantage of this scheme if G is not a tree?

Suppose that G is connected. (If not, we need to consider the following computation per-

formed separately on the different connected components.) Let S denote the set of spanning

trees of G and ZS = {Ze : e ∈ edges(S)} be a binary edge labeling of spanning tree S ∈ S .

Together, the tree S and its edge labeling ZS provide a data augmentation of the partition

π. Clearly a partition can be derived from φ = (S, ZS) by decimating the edges of G that

are either not in S or are in S but with edge-label 0, and then associating blocks with the

connected components of the decimated graph. In general, there will be multiple φ’s corre-

sponding to a given partition π, each one associated with a different spanning tree of G; we

call Φπ = {φ = (S, ZS) : π(φ) = π}, where we’ve allowed notation π(φ) to denote the parti-

tion induced by the input. We find a formula for the cardinality of Φπ , which may be useful in

deriving MCMC samplers against a particular target distribution over partitions.

For each block b of a graph-respecting partition π, the induced subgraph

Gb = (Vb = b, Eb = {e = {i, j} : i, j ∈ b, e ∈ E})

14

is connected and has at least one spanning tree; the total number of such trees for Gb is Nb =

det(Lb), where Lb is any nb − 1× nb − 1 principal sub matrix of the graph Laplacian Db − Ab,

where Db is a diagonal matrix holding the node degrees in Gb, and Ab is the incidence matrix

describing this same subgraph. This is an application of Kirchhoff’s matrix-tree theorem. Of

importance in relating the different subgraphs Gb is the hyper-graph H in which nodes are

blocks of π and multi-edges between nodes correspond to all the between-block edges in G:

H =
(
VH = π, EH = E ∩ [∪bEb]

c) .

By another application of the matrix-tree theorem, the number NH of spanning trees of H is

det(LH), where LH is an nH − 1× nH − 1 principal sub matrix of DH − AH .

Lemma 2: The cardinality of Φπ , denoted N(π), satisfies N(π) = NH ∏b∈π Nb.

We augment the partition π of G to the pair φ = (S, ZS) holding both a spanning tree S

and a vector of binary labels ZS which encodes the partition of S. For any target distribution

p(π) we develop a Markov chain sampler by running a chain over the space of φ’s, which by

construction is a union of sets Φπ . The idea is that the target distribution of a Markov chain in

the augmented space is

p(φ) = p(π(φ))× 1
N[π(φ)]

. (0.3)

Generatively, this is equivalent to realizing π from p(π) and then selecting one of its N(π)

representations φ ∈ Φπ uniformly at random. Of course we cannot easily generate from p(π);

the point is that the data augmentation offers a variety of proposal mechanisms that might

drive a Metropolis-Hastings sampler. We envision two coupled proposals:

1. Update ZS for a fixed spanning tree (and thus change the partition).

2. Update spanning tree S but keep the same partition π(φ) (and thus update ZS).

Partition update: Suppose the chain is at state φ = (S, ZS) and we propose a new state φ∗ =

15

(S, Z∗S) by randomizing the representation vector ZS but keeping the spanning tree fixed. For

example, we could generate entries Z∗e as independent Bernoulli trials with some edge-specific

success probability. Data dependent probabilities might improve mixing, and we might ran-

domize only a fraction of the entries in order to simplify the update and improve its acceptance

rate. Call qS(Z∗S|ZS) the probability mass associated with this proposal; then the Metropolis-

Hastings ratio for this case is

MH =
p(φ∗)
p(φ)

×
qS(ZS|Z∗S)
qS(Z∗S|ZS)

=
p[π(φ∗)]

p[π(φ)]
× N[π(φ)]

N[π(φ∗)]
×

qS(ZS|Z∗S)
qS(Z∗S|ZS)

.

The first ratio on the right may be relatively simple, especially for product-partition models,

since only the blocks incurring some change are retained. The third ratio, of q’s, may also be

simple if we use independent Bernoulli’s to randomize the entries. What is critical then is the

middle ratio, whose value is available according to Lemma 2.

Tree update: Suppose the chain is at state φ = (S, ZS) and we propose a new spanning tree S∗

uniformly over the set of possibilities S , for example via Wilson’s loop-erased random walk.

Relative to the current partition π = π(φ), there is exactly one binary encoding vector Z∗S∗

corresponding to S∗, by Lemma 1, and so we have proposed the state φ∗ =
(
S∗, Z∗S∗

)
that

induces the same partition, and thus is an element of Φπ . The Metropolis-Hastings ratio for

target (0.3) is

MH =
p(φ∗)
p(φ)

× p(φ∗ −→ φ)

p(φ −→ φ∗)
= 1× 1.

Thus, any proposal obtained by randomizing the spanning tree while keeping partition fixed

is surely accepted.

The spanning tree representation above could be used to construct a posterior MCMC sam-

pler. We experimented with such a sampler, but the main paper reports local computations

16

based on explicit sumations over the discrete states; ordinary MCMC was not required. How-

ever, we did use a prior-sampler version of the spanning-tree sampler as a simple way to

enumerate all graph respecting partitions on a given local graph.

17

Supplementary Figure S2: Structure of data-driven simulation (Scenarios 1-5): Steps 1-4 make the correlation structure
of synthetic data similar to that of MRI data. Steps 5-7 aim to mimic the mean structure and clustering pattern of MRI
data. Steps 8-11 simulate data following multivariate normal distribution with specified correlation and mean structure.

18

Supplementary Figure S3: Shown are predictive averages of posterior similarity distributions between the generative
mean partition and the posterior distribution over partitions for two analysts. For each similarity value s (Adjusted
Rand Index), each curve records the predictive average E [P(S(Ψ, Ψ∗) 6 s|D)|OK], where OK is the event that the true
partition Ψ∗ is graph-respecting. One analyst uses a prior that ignores the graph; the other uses a graph-respecting
prior. The analyst who has regularized posterior computations tends to place more posterior probability near the
generative partition.

Supplementary Figure S4: Plot of Controlled FDR vs. Number of significant voxels on the whole brain data. The figure
confirms the high yield of GraphMM.

19

Supplementary Figure S5: Bar plot for summary on the size of significant clusters. By definition, a significant region
is a collection of significant voxels that is spatially connected.

