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SUMMARY

The integrated likelihood (also called the marginal likelihood or the normal-
izing constant) is a central quantity in Bayesian model selection and model
averaging. It is defined as the integral over the parameter space of the like-
lihood times the prior density. The Bayes factor for model comparison and
Bayesian testing is a ratio of integrated likelihoods, and the model weights in
Bayesian model averaging are proportional to the integrated likelihoods. We
consider the estimation of the integrated likelihood from posterior simulation
output, aiming at a generic method that uses only the likelihoods from the
posterior simulation iterations. The key is the harmonic mean identity, which
says that the reciprocal of the integrated likelihood is equal to the posterior
harmonic mean of the likelihood. The simplest estimator based on the iden-
tity is thus the harmonic mean of the likelihoods. While this is an unbiased
and simulation-consistent estimator, its reciprocal can have infinite variance
and so it is unstable in general.

We describe two methods for stabilizing the harmonic mean estimator. In
the first one, the parameter space is reduced in such a way that the modified
estimator involves a harmonic mean of heavier-tailed densities, thus resulting
in a finite variance estimator. The resulting estimator is stable. It is also
self-monitoring, since it obeys the central limit theorem, and so confidence in-
tervals are available. We discuss general conditions under which this reduction
is applicable.
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The second method is based on the fact that the posterior distribution of
the log-likelihood is approximately a gamma distribution. This leads to an
estimator of the maximum achievable likelihood, and also an estimator of the
effective number of parameters that is extremely simple to compute from the
loglikelihoods, independent of the model parametrization, and always positive.
This yields estimates of the log integrated likelihood, and posterior simulation-
based analogues of the BIC and AIC model selection criteria, called BICM
and AICM. We provide standard errors for these criteria. We illustrate the
proposed methods through several examples.
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1. INTRODUCTION

The integrated likelihood, also called the marginal likelihood or the normalizing
constant, is an important quantity in Bayesian model comparison and testing: it is
the key component of the Bayes factor (Kass and Raftery 1995; Chipman, George,
and McCulloch 2001). The Bayes factor is the ratio of the integrated likelihoods for
the two models being compared. When taking account of model uncertainty using
Bayesian model averaging, the posterior model probability of a model is proportional
to its prior probability times the integrated likelihood (Hoeting, Madigan, Raftery,
and Volinsky 1999).

Consider data y, a likelihood function 7(y|f) from a model for y indexed by a
parameter 6, in which both y and 6 may be vector-valued, and a prior distribution
m(0). The integrated likelihood of y is then defined as

w(w) = [ w(lo)e(o) .

The integrated likelihood is the normalizing constant for the product of the like-
lihood and the prior in forming the posterior density 7(f|y). Furthermore, as a
function of y prior to data collection, w(y) is the prior predictive density.
Evaluating the integrated likelihood can present a difficult computational prob-
lem. Newton and Raftery (1994) showed that m(y) can be expressed as an expecta-
tion with respect to the posterior distribution of the parameter, thus motivating an
estimate based on a Monte Carlo sample from the posterior. By Bayes’s theorem,

= S = > zm ) .

Equation (1) says that the integrated likelihood is the posterior harmonic mean of
the likelihood, and so we call it the harmonic mean identity. This suggests that the
integrated likelihood m(y) can be approximated by the sample harmonic mean of
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the likelihoods,

fam(y) =

&1 ]
Bgmeﬂ] ’ )

based on B draws 6*,6?,..., 6" from the posterior distribution 7(6|y). This sample
might come out of a standard Markov chain Monte Carlo implementation, for ex-
ample. Though 7tum(y) is consistent as the simulation size B increases, its precision
is not guaranteed.

The simplicity of the harmonic mean estimator (2) is its main advantage over
other more specialized techniques (Chib 1995; Green 1995; Meng and Wong 1996;
Raftery 1996; Lewis and Raftery 1997; DiCiccio, Kass, Raftery, and Wasserman
1997; Chib and Jeliazkov 2001). It uses only within-model posterior samples and
likelihood evaluations which are often available anyway as part of posterior sam-
pling. A major drawback of the harmonic mean estimator is its computational
instability. The estimator is consistent but may have infinite variance (measured
by Var{[r(y|6)]"'|y}) across simulations, even in simple models. When this is the
case, one consequence is that when the cumulative estimate of the harmonic mean
estimate (2) based on the first B draws from the posterior is plotted against B, the
plot has occasional very large jumps, and looks unstable.

In this article we describe two approaches to stabilizing the harmonic mean
estimator. In the first method, the parameter space is reduced such that the modified
estimator involves a harmonic mean of heavier-tailed densities, thus resulting in a
finite variance estimator. We develop general conditions under which this method
works. The resulting estimator obeys the central limit theorem, yielding confidence
intervals for the integrated likelihood. In this way it is self-monitoring.

The second approach is based on the fact that the posterior distribution of the
loglikelihood is approximately a shifted gamma distribution. This leads to an esti-
mator of the maximum achievable likelihood, and also an estimator of the effective
number of parameters that is very simple to compute, uses only the likelihoods
from the posterior simulation, is independent of the model parametrization, and is
always positive. This yields estimates of the log integrated likelihood, and poste-
rior simulation-based analogues of the BIC and AIC model selection criteria, called
BICM and AICM. Standard errors of these criteria are also provided. We illustrate
the proposed methods through several examples.

In Section 2 we describe the parameter reduction method and in Section 3 we
give several examples. In Section 4 we describe the shifted gamma approach and we
report a small simulation study and an example. In Section 5 we discuss limitations
and possible improvements of the methods described here, and we mention some of
the other methods proposed in the literature.

2. STABILIZING THE HARMONIC MEAN ESTIMATOR BY PARAMETER
REDUCTION

An overly simple but helpful example to illustrate our first method is the model in
which 0 = (p,%) records the mean and precision of a single normally distributed
data point y. A conjugate prior is given by
¥~ Gamma(a/2,a/2)
(.UW) ~ Norma’l(lu‘o, n0¢)7
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where a, ng, and po are hyperparameters (e.g., Bernardo and Smith, 1994, page 268
or Appendix I). The integrated likelihood, m(y), is readily determined to be the
ordinate of a ¢ density, St(y|uo, no/(no+1), &) in the notation of Bernardo and Smith
(1994, page 122 or Appendix I). Were we to approximate 7(y) using equation (2),
instead of taking the analytically determined value, we could measure the stability
of the estimator with the variance Var{[r(y|0)]"'|y}. This variance, in turn, is

determined by the second noncentral moment E{[r(y|0)]*|y}, which is proportional
to

//W” exp {%[(y — p)* = no(p — po)® — oc]} dipdy,

and which is infinite in this example owing to the divergence of the integral in
w for each 1. The reciprocal of the light-tailed normal density forms too large an
integrand to yield a finite posterior variance, and hence the harmonic mean estimator
is unstable.

An alternative estimator, supported equally by the basic equation (1), is

Tsam(y) = % Z 7T(y1|,ut):| ) (3)

t=1

which we call a stabilized harmonic mean. In (3), p* is the mean component of
0" = (u',%"), and thus is a draw from the marginal posterior distribution 7(uly).
The stabilized harmonic mean is formed not from standard likelihood values, but
rather from marginal likelihoods obtained by integrating out the precision parameter
1. It is straightforward to show that this integrated likelihood has the form of a ¢
ordinate,

m(ylp) = St {ylp, (@ +1)/[a+ no(p — po)°],a + 1} .

The intuition motivating (3) is that since 7(y|u) has a heavier tail than w(y|0),
averages of reciprocal ordinates become averages of less variable quantities than
in (2). Measuring stability as above, we observe that

— )2+ no(p— 02aa/2+1
i L e

is finite when « > 1 and no > 0. This result is proved in Appendix II.

Figure 1 compares the harmonic mean 7um(y) to the stabilized harmonic mean
#sam(y) for various parameter settings of this simple normal example. For each
case, both estimates use a common sample of B = 5,000 independent and identically
distributed posterior draws for the mean p and precision ¥. Shown for each sample
is the value of both estimators using ever larger amounts of the sample. Figure 1
shows clearly how the infinite variance of the harmonic mean estimator manifests
itself in practice. Every so often a parameter value with a very small likelihood is
generated from the posterior, and this yields a very large value of the reciprocal
of the likelihood, which in turn greatly reduces #um(y). Subsequently, 7rum(y)
increases gradually, until another very small likelihood is encountered. Improved
performance of the stabilized harmonic mean is evident in Figure 1. The ¢-based
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estimator #sum(y) converges much more rapidly than the standard estimator, and
does not exhibit the same pattern of occasional massive changes. To further validate
this observation, we recomputed both final estimators on 1000 independent posterior
samples of size B = 1000 (Figure 2). Relative stability of the #smm(y) is clearly
indicated.
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Figure 1:  Normal (bold line) and stabilized t-based (dotted line) harmonic
mean estimates of the log integrated likelihood compared with the true value
(dashed line), when the data y follow a univariate mormal distribution as
described in Section 2. The estimate based on the first B values simulated
from the posterior distribution is plotted against B for one set of 5,000 values
stmulated from the posterior in each situation. The top row of the figure
displays the harmonic mean estimates when y =5 and po = 0. The second
row corresponds to y = 3 and pog = 0. The bottom row gives the figures for
y =0 and po = 0. The three columns correspond to o values of 2, 6 and 10.
The value of ng is 1. The plot shows that the normal estimate is unstable
but the stabilized estimate is much more stable and converges rapidly to the
correct value.

The reciprocal estimator {#sgm(y)} " is a sum of quantities that have finite
variance, and so it has a limiting normal distribution by the central limit theorem.
This fact can be used to obtain a confidence interval for the integrated likelihood.
Table 1 gives the coverage probabilities and the average length of the confidence
intervals for the parameter values in Figures 1 and 2, using 1000 independent Monte
Carlo samples each of size B = 1000. The empirical coverage probabilities are close
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Figure 2: Bozplots to assess the variability of the estimated integrated

likelihood. Shown are the true integrated likelihood, and the normal and sta-
bilized t-based harmomnic mean estimators, both on the logarithmic scale. The
estimates are obtained from 1000 Monte Carlo samples of size 1000. These
estimates are shown for the same configurations of parameters as in Figure 1.

to their nominal levels. This makes the method a self-monitoring one, in that even
if the estimate it provides is imprecise, this will be made clear to the user.

The multivariate normal model is a direct extension of the univariate normal
example discussed above. The standard estimator, obtained using equation (2), is a
harmonic mean of multivariate normal densities. This can be easily shown to be an
unstable estimator of the integrated likelihood. Integrating the precision parameter
leads to a heavier tailed multivariate ¢ density, which can be used to obtain a stable
estimator analogous to equation (3).

The stabilized harmonic mean estimator was first reported in a statistical ge-
netics application in which numerical stability of a t—based harmonic mean was
observed (Satagopan, Yandell, Newton, and Osborn 1996). Section 3.1 presents a
detailed study of this case. Although the genetical model used by these authors was
rather specialized, the method to obtain a more stable estimate is quite general: ap-
proximate 7(y) by a harmonic mean of values w[y|h(6")], where 0,02, ...,0F form
a sample from the posterior distribution 7(6|y). The function h(f) must reduce
the parameter space as much as possible, while not making the calculation of the
marginal likelihood 7[y|h(6)] too difficult. In the examples we work out, h(6) is of
lower dimension than 6, typically obtained by integrating out one or several of the
components. Taking h(6) to be constant is an extreme case; 7[y|h(0)] then becomes
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Table 1:  Cowverage Probabilities for 50%, 80%, 90%, and 95% Confidence
Intervals for the Stablilized Harmonic Mean FEstimator, for the situations
shown in Figures 1 and 2, for 1000 Monte Carlo samples each of size 1000.
The average lengths of the confidence intervals for the reciprocal of the likel-
hood are shown in parentheses. Column 1 shows the parameters used in the
simulation, column 2 shows the true value of {m(y)}~', and columns 8, 4, 5,
and 6 give the coverage probabilities.

(y, wo, @)  True {m(y)} T 50% 80% 90% 95%
(5,0, 2) 78.09 0.49 0.79 0.90 0.94
(5.46)  (10.38)  (13.32)  (15.88)
(5, 0, 6) 190.19 0.50 0.81 0.90 0.95
(23.87)  (45.36)  (58.22)  (69.37)
(5, 0, 10) 314.38 0.53 0.78 0.88 0.93
(62.44) (118.64) (152.27) (181.44)
(3,0, 2) 23.44 0.49 0.82 0.90 0.95
(1.29) (2.44) (3.14) (3.74)
(3,0, 6) 26.20 0.49 0.78 0.89 0.93
(2.41) (4.57) (5.87) (6.99)
(3, 0, 10) 28.05 0.48 0.79 0.88 0.93
(3.57) (6.78) (8.71) (10.37)
(©,0, 2) 4.00 0.47 0.79 0.90 0.93

(0.17)  (0.32)  (0.41)  (0.49)

(0, 0, 6) 3.70 0.48 0.77 0.87 0.93
(0.12)  (0.22) (0.28) (0.34)

(0, 0, 10) 3.63 0.47 0.81 0.86 0.93
(0.12)  (0.22) (0.28) (0.34)

the integrated likelihood 7 (y). Of course, if this were computable there would be no
need to calculate an approximation, and in any case, the harmonic mean estimator
would have zero variance. To form harmonic means from reduced distributions is a
general variance reduction technique.

Theorem 1 If h is a measurable function of 6 then

el a7} = e sl o)

Either variance may be infinite. If the left hand side is infinite, then the right hand
side is infinite also.

To avoid measure-theoretic considerations, we prove Theorem 1 only under
the additional condition that h(f) is a dimension-reducing transformation: i.e.
0 = (o, 8), h(f) = «a, and both a and (3 range freely so that the prior density
m(0) = mw(a)w(B|e) is well-defined. See Appendix III for a proof. In certain hi-
erarchical models, where analytical integration is possible on one or two levels, it
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may be possible to identify useful reductions h() to facilitate stable harmonic mean
calculations.

Gelfand and Dey (1994) noted an extension of the basic identity (1) which justi-
fies estimating the integrated likelihood by the harmonic mean of 7(y|0")7(6")/ f(6%)
where, as before, the 6"’s are sampled from the posterior, but now 7 () is the prior
density and f(0) is any (normalized) density on the parameter space. The idea is to
choose f carefully so as to minimize Monte Carlo error. We show in Section 3.3 that
our proposed stabilization can be combined with this technique for improved per-
formance. Indeed there is some synergy in this combination because the proposed
stabilization reduces the dimension of 6, thus making it simpler to identify a useful
f function.

3. STABILIZED HARMONIC MEAN ESTIMATOR: EXAMPLES
3.1. Statistical Genetics Example

Linear models are used frequently in quantitative genetics to relate variation in
a measured trait (phenotype) to variation in underlying genes affecting the trait
(genotype). Doerge, Zeng, and Weir (1997) provide a useful review from a statistical
perspective. We reconsider the particular model

Yi = u+za]‘g’i7j+6i7 7::1,"'7']1, (5)

j=1

used by Satagopan et al. (1996) to infer the genetic causes of variation in the time-
to-flowering phenotype in the plant species Brassica napus. In (5), the ¢ indicates
different plants in a sample of size n = 105, the phenotypes y = (y;) are the
logarithms of the times to flowering, and the decomposition on the right-hand-
side characterizes the expected phenotype conditional on the genotype g; = (gi,;)
at a set of s different genetic loci. Here ¢; is modeled as a mean zero normally
distributed disturbance with variance o? independent of genetic factors, u is the
marginal expected phenotype and «; is the genetic effect of the jth quantitative
trait locus (QTL). From the particular experimental design, each genotype g; ; takes
one of two possible values, coded as {—1, 1}, with equal marginal probability.

The model (5) would be rather standard except that the genotypes g = (g;) are
unobserved; in fact, for each i they represent the values of a random process defined
over the whole genome and evaluated at s distinct positions A = (A1,...,\s), the
s putative QTLs. The number of QTLs, s, is unknown, as are their positions A
and their effects o = (a1, ..., as). Indirect information about the QTL genotypes
comes through genotype data m = (m;), obtained in this example from a panel of 10
molecular markers in the chromosomal region of interest. The statistical problem is
to infer the unknown parameters 0 = (u, o, A, 02) from marker and phenotype data
(m,y), and considering missing genotypes g.

Satagopan et al. (1996) presented a Bayesian solution in which Markov chain
Monte Carlo (MCMC) was used to sample the posterior distribution of all the un-
knowns conditional on s, the number of QTLs, separately for a range of values of
s. To infer s, the integrated likelihood 7 (y|m, s) was approximated for each s via a
harmonic mean, and this enabled calculation of Bayes factors

BF(s1,52) = m(y|m, s1)/m(y|m, s2). (6)
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We reconsider this calculation in further detail. We can condition on marker infor-
mation m because its marginal distribution w(m) does not depend on any of the
unknown parameters.

The prior for 0 factorizes into a uniform prior over ordered loci A = (A1, ..., As)
within the chromosomal region under consideration and a conjugate prior for u,
a = (a;), and o*:

n(plo?) = Normal(uo,o”/no),
m(ajlo?) = Normal(ao,;,0°/n0,;), j=1,---,s
n(0?) = TInverse Gamma((/2,¢/2),

where po =5, no = 1, an,j = 5, no,; = 1, for each j and ¢ = 8. Fixing the number
of loci s, one complete scan of the MCMC sampler updates each element of 6 and
all the missing genotypes in g. See Satagopan et al. (1996) for further details on
the component updates. A total of 3 chains, corresponding to s = 1,2, and 3, were
obtained. For a fixed s (= 1, 2, or 3), we report results below based on a chain of
length 400,000 complete scans, subsampled every 100 scans, with the first 100 saved
states removed as burn-in; diagnostics indicated that the resulting subsampled scans
were close to being independent. Thus this corresponds to an effective independent
sample size of about 3,900 for estimating the genetic effect parameters.

Unknowns (6%, g*) are sampled from their posterior distribution conditional on
observed phenotypes y, marker genotypes m and the model dimension parameter s.
Invoking the standard harmonic mean argument, as in (2), we approximate 7 (y|m, s)
by

Fam(ylm,s) = % Z 1] . (7)

t t
= m(ylm, 0%, ", 5)

As in the simple normal example of Section 2, a problem arises with (7) because
we are averaging reciprocals of normal ordinates. To stabilize the estimator, we
integrate out the variance parameter ¢ and obtain

fsum(y|m,s) =

1 & 1 o
Bzmmm,h(ef),gﬂs)} ’ ®

where h() returns all components of 6 except the variance parameter. In (8),
m(ylm, h(0Y), g%, s) is a scaled ¢ density, St (y|u + a,g, 1,0).

Figure 3 shows the cumulative Bayes factor estimates obtained from three chains,
(s = 1,2, and 3), based on integrated likelihood estimates in either (7) and (8).
Evidently the stabilization has worked in this more complicated example: there are
fewer massive changes in the estimate. Numerically, we obtain BF(1,2) = 0.368
using (7), and BF'(1,2) = 0.395 using the stabilized estimator (8). The estimates
of BF(2,3) are rather more disparate: 13.15 and and 4.39, respectively. In any case
we would conclude that the two-locus model is most likely a posteriori.

Figure 4 indicates the Monte Carlo sampling variability of the two estimators.
The above computations were replicated 75 times. To reduce the computational
burden of the simulation, we used a value of B equal to half of the earlier value.
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Figure 3: Log Bayes Factor Estimates for the Flowering Time Data,

based on MCMC. The log Bayes factor based on the first B saved scans of
the MCMC run is plotted against B. The comparison between the one-locus
and two-loci models is shown on the top. The bottom figure corresponds to the
comparison between the two-loci and three-loci models. The bold line is the
standard harmonic mean estimate of the log Bayes factor, and the dotted line
is the stabilized t-based estimate. The plot shows that the stabilized estimate
is much more stable than the standard one.

The side-by-side boxplots further confirm the success of the stabilization in the
present example.

We note that other dimension-reducing transformations () could be used in this
example. For example, we could sum out the genotype values g and thus average
reciprocals of finite mixtures of normals (or ¢’s). It may also be possible to integrate
out the genetic effects a. Neither of these has been attempted here.

3.2. Beta—Binomial Example

A naturally occurring hierarchical model has observable counts y = (y;), ¢ =
1,...,m, arising as conditionally independent binomial random variables with num-
bers of trials (n;) and success probabilities p = (p;). In turn, the p;’s are modeled
as conditionally independent beta variables with canonical hyperparameters, a and
b say, upon which some further prior distribution m(a,b) is placed. To obtain the
probability of y in this model, we must integrate out both the p;’s and the hyperpa-
rameters a and b. It is routine to sample the full parameter set 8 = (p, a, b) from its
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Figure 4:  Assessing the Variability of the Log Bayes Factor Estimates for
the Flowering Time Data, using 75 replications of the MCMC run. The top
panel shows the comparison between the one-locus and two-loci models, and
the bottom panel shows the comparison between the two-loci and three-loci
models. In each panel, the variability among the stabilized t-based estimates
is shown on top, and that among the standard normal estimates is shown
below.

posterior distribution (Gelman, Carlin, Stern and Rubin, 2003). For example, an
MCMC simulation might update each p; from its Beta full-conditional distribution,
and then resort, perhaps, to a random-walk proposal to update a and b.

The basic harmonic mean combines reciprocals of binomial likelihoods from the
posterior sample, and, it turns out, can be quite unstable. As before, stability is
determined by the second noncentral moment

E{[n(y0)] *ly} o<//H{/pa—l—wu—p)b—l—"ﬁyi dp} 7(a,b) da db.

Unless we take an extreme prior 7(a,b) which ensures that a > max(y;) and b >
max(n; — y;), this integral can diverge. Typically, a prior extreme enough to avoid
this divergence would be unrealistically peaked. This is unsatisfactory, ruling out
the standard (unstabilized) harmonic mean estimator as a practical tool for the
beta-binomial model.

It is straightforward to stabilize the harmonic mean by reducing the dimension
of 6 as in previous examples. One possibility is to take h(0) = (a,b); i.e. to
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integrate out all the binomial success probabilities. In this conjugate structure, we
have a closed form beta-binomial expression for w{y|h(6)}, namely

3 [(ni+1) Pa+b) T(a+y) b+ ni—yi)
m{ylh(0)} = H T —yi + D0y + D T(a+ b+ n0)  T(a) I'(b)

(9)

The harmonic mean of these beta-binomial probabilities, calculated from the (a, b)’s
sampled from their posterior, is consistent for the integrated likelihood. We may
expect this to be more stable since the beta-binomial distribution is more diffuse than
the binomial, and so the reciprocals of the probabilities may not be as extreme. The
stability of this estimator is determined by the second noncentral moment, which
satisfies

E{[r(yla, )] *ly} < /(a + b+ Numax — 1) (a, b) da db,

where nmax = maxn,. Stability is ensured when prior moments of a and b exist.

Data on free-throw percentages from the National Basketball Association (NBA)
provide an interesting demonstration of the harmonic mean calculations. On March
9, 1999, there were 414 active NBA players of whom 374 had attempted at least
one free throw by that point in the season. Among these 374 players, the numbers
of attempts (n;) ranged from 1 to 205, with a mean of about 35. We model y;, the
number of made free throws by player i, as Binomial with n; trials and unknown
success probability p;. The average free throw percentage y;/n; is about 70% in the
data reported at www.yahoo.com (and available from the authors).

We consider the problem of evaluating the integrated likelihood 7(y) under the
hierarchical beta—binomial model given above. This would be useful when compar-
ing this model with other hypothesized models for these data. We place independent
standard exponential priors on a — € and b — ¢ where ¢ = 1 is a lower truncation
point of the prior. MCMC was used to simulate the posterior. The following nu-
merical results are based on a single chain of length 2.5 million complete scans,
subsampled every 50 scans, and with the first 100 saved states removed as burn-in.
Significant trends were not detected in the output and standard MCMC diagnostics
indicated that little dependence remained in the saved states. Computations were
done separately on a second run and we saw no appreciable differences.

We calculated natural logarithms of the product binomial likelihood and the
product beta-binomial likelihood (9). From these values we obtained the standard
harmonic mean estimate and the stabilized one. The log estimates were —-817.0 and
—942.9 respectively; these are quite different. The standard estimate is known to be
unstable. Indeed the variance of the sampled loglikelihood values was 146.3 while
that of the sampled log beta-binomial values was only 4.1. Variance on the log
scale does not tell the whole story because we are averaging on the anti-log scale;
it is outliers (having very low likelihood) that are particularly influential, but still
variance gives some indication.

Suspecting that some additional improvements could be made, we combined the
stabilization technique with the method of Gelfand and Dey (1994) discussed at the
end of Section 2, using a Gaussian approximation to the posterior 7 (a,bly) as the
density f. The estimate becomes a harmonic mean of the values w(y|a,b)w(a,b)/
f(a,b), with (a,b)’s sampled from their posterior. The main advantage of this ad-
justment is that now the influence of individual sample points is greatly diminished.
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The estimated log integrated likelihood is -951.4, which matches a brute force grid-
based numerical integration of 7(y|a, b)7w(a,b) almost exactly. Thus we see that the
initial stabilization method worked fairly well and was easily improved.

3.3. Other Reductions: A Simple Poisson-Gamma Model

Sometimes useful reductions are hard to find, and the natural approach we have
considered of integrating out a parameter does not work. A simple example is when
y has a Poisson distribution with mean <\, and + is exponentially distributed with
mean 1 and independent of A a priori. The standard harmonic mean estimator of
m(y) uses samples ' = (\*,~") from 7(f]y), and averages the reciprocals of Poisson
probabilities. Stability depends on the second noncentral moment

E{lr@lo)] v} o / / ﬁexp{—ww}m)dwdx

Note that the inner integral diverges for any A > 1, so that the standard harmonic
mean is unstable. The natural reduction would be to take h(#) = A. Thus the
marginal likelihood 7[y|h(0)] = 7(y|A) is a geometric distribution AY/(1 4 )@+,
Stability here hinges upon

E{[ryN]*ly} o /(%)y(uww(x)d,\.

For small A, the dominant term of the integrand is m(\)/AY, and so stability of the
modified harmonic mean depends on the prior, though for a standard Gamma prior,
for example, this integral can diverge. In other words, both variances in Theorem 1
equal infinity. Thus integrating out v does not produce a stabilized harmonic mean
estimator in this case.

Another, further reduction does work, however. Consider the case where \, like
-, has a prior exponential distribution with mean 1. Suppose that h(8) =0 if A <,
and h(0) = X if X > €, where € is a small predetermined constant. Then n[y|h(0) =
0] = €¥*'/(y+1) (better approximations are readily available if necessary), and it is
easily shown that E{r[y|h(0)] ?|y} < co. Thus, with this refinement, the modified
harmonic mean estimator is stable.

4. SHIFTED GAMMA ESTIMATOR OF THE INTEGRATED LIKELTHOOD
4.1. Shifted Gamma Estimator

We now consider a different approach to stabilizing the harmonic mean estimate. If
MCMC is used to simulate from the posterior, we suppose that the the output has
been thinned in such as way that we have an approximately independent sequence
of loglikelihoods {¢: : t =1,..., B}.

We use the fact that asymptotically (as the amount of data underlying the
likelihoods increases to infinity, not the number of samples from the posterior), the
posterior distribution of the loglikelihoods is given by

lmax — ¢ ~ Gamma(a, 1), (10)

where fmax is the maximum achievable loglikelihood, and @ = d/2 where d is the
dimension of the parameter 0, i.e. the number of parameters in the underlying model
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(Bickel and Ghosh 1990; Dawid 1991). In (10), a Gamma(ca, A™') distribution with
shape parameter o and scale parameter A has the density

(o) = T B, ()

With this definition, E(X) = a, and Var(X) = aA?. This can also be viewed as
a scaled x? distribution with d = 2« degrees of freedom. Fan, Hung, and Wong
(2000) showed that (10) holds under more general conditions than the usual Wald-
tygpe conditions required for the likelihood ratio test statistic to be asymptotically
X

In principle, we could use the asymptotic approximation (10) directly to ap-
proximate the posterior harmonic mean and hence the integrated likelihood. There
are three main difficulties with this, however. First, in general we will not know
Imax from a posterior sample, because the maximum likelihood will typically not be
reached. In practice, the difference between f,,,x and the maximum observed log-
likelihood in the MCMC sample can be quite large when the number of parameters
is big. Second, in general, we will not know the effective number of parameters, d, es-
pecially in hierarchical and other random effects models of the kind often estimated
using MCMC. Third, with the posterior distribution (10) of the loglikelihoods, the
posterior harmonic mean, and hence the integrated likelihood, is infinite.

The first two difficulties can be resolved by noting that simple moment estima-
tors of fmax and « are available. Under the assumption (10), E[fmax — ¢¢] = o and
Var(4;) = a. Replacing the expectation and variance of ¢; by their sample equiv-
alents and solving, we thus get the moment estimators & = 52 and brax = 0+ 52,
where £ and s? are the sample mean and variance of the £;’s.

It is clear that fmax is at least as big as the largest observed loglikelihood,
maxy £;. Thus we could refine the moment estimator of /max to take account of
this, as {nax = max{lmax, maxt ¢}, Or Linny = max{lmax, maxs & + d}, where 0 is
some small positive number that is small on the typical scale of loglikelihoods, such
as 0.01. We have found, however, that it rarely happens that frmax is smaller than
max; /¢, and that even when it does, the difference is very small. Thus we have not
found this refinement of much use in practice.

The third difficulty implies that the approximation (10) is not accurate enough
for any actual data that would be encountered. One possibility is to modify it by
allowing a scale parameter that is not exactly equal to 1, so that the approximate
posterior distribution becomes

lmax — l: ~ Gamma(a, )fl), (12)
where A\ < 1. In practice, A will be less than 1, but not much less than 1.

Given the approximation (12), we can find the integrated likelihood using the
fact that if X ~ Gamma(a, A™"), then the moment generating function of X is

mx (t) = E[eX] = (1 — xt)™. (13)

Combining the harmonic mean identity (1) with equations (12) and (13), we see
that the integrated likelihood is given by

log 7(y) = log Ele” " |y] = fmax + alog(1 — ). (14)
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This has an interesting similarity to the BIC approximation to the log integrated
likelihood,

N ~d
log ftprc (y) = £(6) — 5 log(n), (15)
where  is the maximum likelihood estimator, so that £(f) = fmax, the maximum
achievable loglikelihood. In general, under regularity conditions,

log 7(y) = log #igic(y) + Or (1), (16)

(Schwarz 1978), so that the relative error in log #gic(y) tends to zero asymptotically.
If the prior () is a normal unit information prior, then the approximation is more
accurate and the Op(1) term in (16) is replaced by Op(n~*/?) (Kass and Wasserman
1995, Raftery 1995). We have that o = d/2, and so —log(1 — \) in (14) corresponds
to log(n) in (15).

We already have estimates of €max and « in (14), and so to obtain an estimate
of the integrated likelihood it remains only to estimate A. Unfortunately this is
difficult, because A is typically close to 1, and so the value of w(y) is sensitive to
its precise value. On the other hand, the loglikelihoods {¢;} typically do not allow
us to distinguish well between values of A close to 1. We have experimented with
Bayesian and other estimators of A, but so far the estimates we have tried have not
been very accurate. This is a topic of ongoing research.

In the meantime we suggest a posterior simulation-based version of BIC. BIC is
defined by

BIC = 24(0) — dlog(n), (17)
and by analogy we define

BICM = 20y — dlog(n), (18)

where BICM stands for BIC-Monte (Carlo). This yields the following approximation
to the log integrated likelihood:

logBrem(y) = fmax — = log(n) (19)
= [—s{(log(n) —1). (20)

One difficulty with this criterion is that the sample size n is not always well-
defined, particularly in the kind of models commonly estimated by MCMC. Volinsky
and Raftery (2000) showed that in another context, when different choices are possi-
ble, they each give valid approximations to the integrated likelihood, corresponding
to different unit information priors, that differed in the definition of a “unit”. Thus a
reasonable choice may follow by considering what a reasonable definition of a “unit”
is. Volinsky and Raftery (2000) gave an example of one way of determining this.

The definition (17) of BIC, on which BICM as defined by (18) is based, is ade-
quate for fixed effects models, but not for hierarchical or random effects models, as
shown for example by Pauler (1998) and Berger, Ghosh, and Mukhopadhyay (2003).
Pauler (1998) in her equation (11) proposed a modified definition of BIC for hierar-
chical models, called Sjs, and showed its validity in her Theorem 2. In this approach
each parameter potentially has a different “n” associated with it, corresponding to
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the effective sample size, or order of information involved in estimating it, and the
definition of BIC becomes

BIC = 2(0) — » " log(ny), (21)
k=1

where ny, is the effective sample size involved in the estimation of the k-th parameter,
0. We consider a slight modification of this, namely

BIC = 2(0) — » _log(ny + 1). (22)
k=1

This is asymptotically equivalent to (21), but unlike (21) it assigns a nonzero, al-
though small penalty even when nj; = 1. It also remains defined even when nj = 0,
i.e. when there are no data relevant to that parameter, assigning no penalty in that
case, which seems appropriate. In general, determining ny involves assessing the
Fisher or observed information for 6, (Pauler 1998), but we will take as a rough
approximation the number of data points that participate in the estimation of 6.

This leads to a modified definition of BICM. Parameters are divided into classes
according to the number of data points that participate in the estimation of each
one, and are ordered according to the value of ny. The random effects will be last,
and will be assigned an effective number of parameters equal to d—K ' where K’
is the number of parameters already accounted for. Thus we have

KI
BICM = 2lmax — Y _log(nk + 1) = (d — K') log(nxr11), (23)
k=1

An example of the use of equation (23) is given in Section 4.3.
In a similar way, we can write down a posterior simulation-based version of AIC
(Akaike 1973). AIC can be defined as

AIC = 2‘€max - 2d7 (24)

which we can estimate by
AICM = 20pax —2d (25)
= 2Wax — 433 (26)

Thus AICM is seen to be a very simply computed penalized version of the pos-
terior mean of the loglikelihoods, using only the loglikelihoods from the posterior
simulation. There is a substantial literature on the relative merits of AIC and BIC,
and many of the same arguments could probably be made about AICM and BICM.
Our derivation of BICM is as an approximation to the log integrated likelihood, but
AICM does not have such an interpretation. ~

We can obtain standard errors of BICM and AICM using the facts that Var({) =
d/(2B) and

Var(s;) ~ d(11d/4 + 12)/B,
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together with the approximate posterior independence of £ and s?. The criteria
BICM (in both the forms we have given) and AICM are both of the form af — bs?.
The standard error of a criterion of this kind is thus

\/aQJ/(ZB) +b2d(11d/4 4+ 12)/B.

Note that this standard error takes account only of the Monte Carlo variation, i.e. it
is an estimate of the standard deviation of the criterion over repeated posterior simu-
lation runs of the same length. It does not take account of error in the approximation
to the log integrated likelihood or of sampling variation in the data themselves. It is
a standard error of BICM, when BICM is viewed as an estimator of the BICM value
that would be obtained asymptotically if the number of draws from the posterior
grew without bound; similarly for AICM. Note also that it depends crucially on the
assumption that the posterior simulation draws are approximately independent, so
that if MCMC is used, the posterior sample would have to be thinned enough for
this to be the case. )

As we have noted, the moment estimator of o implies that d = 2s? can be viewed
as an estimator of the effective number of parameters. Spiegelhalter, Best, Carlin,
and van der Linde (2002) proposed a different estimator of the effective number of
parameters from posterior simulation, pp = 2(logw(6|y) — £), where 6 is the mean
of the values of 6 simulated from the posterior. In our limited experience, we have
found that pp and d are similar and that both work well in situations where the
number of parameters is known.

However, Spiegelhalter et al. (2002) have pointed out that pp is not invariant to
the model’s parameterisation because it involves the posterior mean of the parame-
ters, 0, and that this noninvariance can be consequential. They also pointed out that
pp can be negative. In addition, pp may not be well defined in situations where the
meaning of 6 is not clear, such as multinomial parameters, or finite mixture mod-
els where the unobserved group memberships are included in the MCMC scheme
(Diebolt and Robert 1994). A similar problem arises when there is near posterior
nonidentifiability such as label-switching in mixture models or random effects with-
out identifying constraints (Celeux, Hurn, and Robert 2000; Stephens 2000). One
way around this is to use a posterior mode of 6 instead of 6, but Richardson (2002)
gave several examples of mixture models where pp with this definition inadequately
penalizes model complexity. The estimator d is defined simply and unambiguously
in all those cases.

The estimator d was also derived by Gelman et al. (2003, Section 6.7), and
used by them instead of pp in their alternative definition of DIC, the measure of
fit originally defined by Spiegelhalter et al. (2002). AICM is equivalent to Gelman
et al. (2003)’s definition of DIC. Gelman et al. (2003) used this alternative definition
because the deviance function was not available to their MCMC program and so
their program could not compute pp routinely, whereas it could compute cz; see also
Sturtz, Ligges and Gelman (2005).

An interesting observation follows from the results of Fan et al. (2000). They
consider the situation where, roughly speaking, the level-w contour of the likelihood
function has the form 6 + anw”S, where 0 is the maximum likelihood estimator,
r > 0 is a constant, a, — 0 is a sequence, and S is a surface in R?. The standard
situation where the likelihood contours are elliptical has r = 1/2, a, = O(n~/?),
and S = {6 : #7X0} where ¥ is the Fisher information matrix, so that S is an ellipse.
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When the contours are not elliptical, they say that the distribution is “fan-shaped.”
They show that in general under these conditions

lmax — £ ~ Gamma(rd, 1). (28)

In the standard, elliptical situation with r = 1, this reduces to (10) as before.

They give several simple examples within their class where the likelihood con-
tours are not elliptical. One is inference about the minimum of a shifted exponential
distribution whose scale parameter is known. In that case they show that » = 1.
Thus the “effective number of parameters” in that case is 2, even though there is
only one actual parameter. This illustrates the fact that the term “effective number
of parameters” is really just a figure of speech. It suggests that what is important
for estimating the integrated likelihood is the shape parameter of the approximating
gamma distribution, not a literal count of the parameters in the model. The argu-
ments above suggest that the former may continue to be well approximated by 2s2
even when this does not coincide with a simple count of the number of parameters.

Finally, we note that when the number of parameters (not necessarily data
points) becomes large, the shifted gamma approximation to the posterior distribu-
tion of the loglikelioods (12) becomes approximately normal. The posterior distri-
bution of the reciprocal of the likelihood is then approximately lognormal, leading
to the estimator ~

log i (y) = £ — Ls7. (29)
This was proposed by Pritchard, Stephens, and Donnelly (2000), who also noted
that a better approximation might be available by using a gamma distribution for
the loglikelihoods, thus prefiguring the present work, although they did not develop
their observation further. Pritchard et al. (2000) proposed and used log 7L~ (y) as a
model choice criterion rather than an estimator of the log integrated likelihood. It
is interesting to note that

log TLN (y) = Cmax — %d,

so that log #Ln(y) is a penalized version of the estimated maximum loglikelihood,

with a penalty similar to but smaller than that of AICM, equal to %af rather than d
as for AICM.

4.2. Multivariate Normal Simulation FExperiment

In order to assess the estimators d, fmax and meicMm(y), we first carried out a
small simulation study using a canonical multivariate normal situation. The data
Y1,--.,Yn are independent and identically distributed MVNy(u, I) random vectors,
and the prior for p is p ~ MVNg(0,I). The sufficient statistic is then just the
d-dimensional § ~ MVNg(p, I/n). We simulated values of u from its posterior dis-
tribution ply ~ MVNg(ng/(n + 1),1/(n + 1)). The loglikelihoods are then given
by

d
_ d n _
b =logp(glu') = 3 log(n/2m) — 5 > (@ — my)”.
j=1

The true maximum likelihood is £ log(n/27) and the true log integrated likelihood

" d n n ¢
-2 ") 72
w(y)—Qlog((TH_l)%) n+1; -

[NIES
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Our goal was to see how the method worked under a wide range of values of d and
n, so we fixed p at (0.15,...,0.15). We simulated values of the number of parameters
d from a discrete uniform distribution on the integers from 1 to 100, and we simulated
values of the sample size n from a discretized log-uniform distribution with log(n) ~
UJ3,9], so that approximately, n ranged from 20 to 8,000, with a median of 400,
subject to the constraint that d < n. Thus the simulation encompassed standard
situations with a small number of parameters and a large sample size, and also
situations where there were almost as many parameters as data points, ranging up
to moderately large numbers of parameters (100). For each pair of values of d and
n sampled, a dataset consisting of § was drawn, and then the posterior distribution
was simulated. Altogether, 1000 datasets were simulated, and for each dataset a
sample of size 100,000 was drawn from the posterior. This is a standard fixed effects
model and so for BICM we used the definition (18).

The results are shown in Figure 5. The upper left panel shows the histogram
of loglikelihoods for one dataset with d = 10 and n = 100, together with the fit-
ted gamma distribution superimposed. The fit is extremely good, and this was
the case for all the datasets that we examined. The upper right panel shows the
estimated maximum achievable loglikelihood plotted against the true maximum like-
lihood for the 1000 simulated datasets. The estimation was good, even in cases with
larger number of parameters, where the largest loglikelihood among those sampled,
max; £+, was much smaller than the true maximum loglikelihood. The lower left
panel shows the estimated number of parameters plotted against the true num-
ber; again the estimation was very good. Finally, the lower right panel shows the
approximated and true log integrated likelihoods; again the estimation was good.

In the simulated situation, the prior used was a unit information prior, so it is
of interest to see what happens if a different prior is used. We experimented with
situations where the prior was y ~ MVNg4(0,02) where o # 1. Note that the unit

information prior corresponds to 02 =1. The good results for d and é\max remained
unchanged. As long as o2 was larger than about 0.2, i.e. as long as the prior was
not highly informative, the value of log igicm(y) remained very highly correlated
with the true value of log7(y). The slope of the line in the lower right panel of
Figure 5 was no longer unity, but the fact that the correlation remained very high
means that model comparisons based on the estimated log integrated likelihoods
would remain accurate. A more accurate approximation to the absolute value of
7(y) could be obtained by replacing log(n) by log(c?n) in the expression (19) for
#sicm (y). However, this would be a model-specific adjustment and would take us
beyond the generic estimates that we are aiming for here.

4.3. Example: Latent Space Models for Social Networks

Social network data consist of observations on relations between actors, for example
whether one individual says she likes another. Often such data are binary, in which
a directed or undirected relation between actor ¢ and actor j either exists or does
not. In this case, the data consist of values of y;; for 4,7 = 1,...,n, where ¢ and j
index the n actors, and y;; = 1 if the relation from i to j exists and y;; = 0 if it
does not.

Hoff, Raftery, and Handcock (2002) introduced the latent position model for
data such as these. In this model, each actor i is assumed to be associated with an
observed or latent position in an unobserved g-dimensional Euclidean “social space”,
denoted by z;. Then the model says that the y;; are conditionally independent given
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Figure 5: Multivariate Normal Simulation Study of the Shifted Gamma
Estimator. Upper left: Histogram of the loglikelihoods for one dataset with
d = 10 parameters and n = 100 data points, with the fitted gamma density
superimposed. Upper right: The estimated maximum achievable loglikelihood,
émax, plotted against the true maximum loglikelihood for the 1000 simulated
datasets. Lower left: The estimated number of parameters, cf, plotted against
the true number of parameters for the 1000 datasets. Lower right: The es-
timated log integrated likelihood, log Aipicm(y), plotted against the true log
integrated likelihood for the 1000 simulated datasets. In the last three plots,
the solid line is the y = x or identity line.

the latent positions, with

Pr(y;; = 1) _ L
log (m) = B—lz— 2zl (30)
iid

zi o~ MVNg(0,0°1). (31)

There are just two parameters for which priors are needed, 8 and o2, and we use
the priors 8 ~ N(0,10%) and 0® ~ /10 Inverse x3. These priors are proper but
reasonably spread out. Estimation is carried out by MCMC on 8, o2 and the z;’s.

Here we consider a well-known dataset on the relations among 18 monks collected
by Sampson (1968). Each monk was asked with which other monks he had positive
relations. Based on extensive analyses of these and much other data, the 18 monks
have traditionally been classified into three groups: the Loyal Opposition, the Young
Turks, and the Outcasts. Hoff et al. (2002) analyzed a subset of these data, and the
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fuller dataset we analyze here was previously analyzed by Handcock, Raftery, and
Tantrum (2005).

Interest focuses here on the choice of dimension, and MCMC estimation is carried
out for each dimension ¢ = 1,2, 3,4. In computing BICM, the issue of how to define
the penalty term arises. This is a random effects model, and so we use the form
(23). There are three “groups” of parameters: 3 (one parameter) with associated
effective sample size n1, 0% (one parameter) with associated effective sample size ne,
and the latent positions z;, which are random effects (all remaining parameters),
with associated effective sample size ng.

The number of actors in the data is 18 so that the number of potential links is
(128) = 306, and the number of actual links is 88. The parameter [ is estimated from
a logistic regression with 306 cases and 88 “successes”, and we take the associated
effective sample size to be n; = 88, following arguments analogous to those of
Volinsky and Raftery (2000). The parameter ¢ is estimated from data on the 18
actors, and so we take the associated effective sample size to be no = 18. Finally,
most of the information about an actor’s latent position z; comes from the links to
and from that actor. There are an average of 88/18 = 4.9 links per actor, and so
we take the effective sample size associated with the random effects to be n3z = 4.9.
BICM is then defined as

BICM = lpmax — log(ni + 1) — log(ng + 1) — (d — 2) log(ns + 1). (32)

Note that the values of n; and m2 chosen do not affect model selection, because
the corresponding terms cancel in computing differences between BICM values for
different models, which are what matter for model comparisons.

The results are shown in Table 2. In addition to our estimates of the maximized
likelihood, estimates of the maximized loglikelihood by numerical optimization are
shown. These agree reasonably closely with our estimates. Also, the number of
parameters involved in the MCMC simulation is shown, and this corresponds fairly
well with ci, the estimated number of parameters. There is no reason to expect
the effective number of parameters to be the same as the number of parameters
over which the MCMC algorithm iterates in this kind of hierarchical latent variable
model, but in this case they do line up rather well.

Table 2: Comparing Dimensions in the Latent Space Social Network
Model. q is the dimension of the latent space, {max is the mazimized loglike-
lthood from a numerical optimisation routine, and # par is the total number
of parameters estimated, including the latent position coordinates. The best
values of BICM and AICM are shown in bold.

q Crmax Crmax d # par log ﬁ'BICl\{ (y) SE %AICM SE
1 -128.6 —-129.1 20.4 20 —148.6 0.3 -149.0 0.4
2 | -109.6 -110.3 | 38.0 38 —-145.3 09 | —147.6 0.7
3 —87.8 -89.9 | 66.1 56 -148.4 1.0 -154.0 1.1
4 -79.3 -73.3 78.6 74 -151.0 1.2 -157.9 1.3

According to the #igpicm(y) estimate of the integrated likelihood, the preferred
latent space model for these data is a two-dimensional one. These data have usually
been visualized in two dimensions, so this agrees with previous practice, although
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we are not aware of any previous efforts to choose the dimension of the latent space
in a formal way. AICM makes the same choice, although by a small margin over
the one-dimensional model.

Figure 6 shows the estimated latent positions for these data. The left panel
shows the estimated two-dimensional positions. The three well-known groups are
clearly delineated. It is clear that the density of links is highest within each group.
However, the Young Turks have some links to both of the other groups, while the
Loyal Opposition and the Outcasts are joined by very few links. This suggests that
a one-dimensional arrangement with the Young Turks in the middle might represent
the main features of the data adequately.

Figure 6: Estimated Latent Positions of Monks in Social Network Ex-
ample. Left panel: Two-dimensional latent positions with links also shown.
Right panel: One-dimensional latent positions. In both plots, the known
groupings of the monks are shown: Red = Loyal opposition; Green = Young
Turks; Blue = Outcasts. Both the one-dimensional and the two-dimensional
latent position models give results that are consistent with the known group-
ings.

The right panel of Figure 6 shows the one-dimensional estimated latent positions.
The three main groups are as well identified by the one-dimensional model as by
the two-dimensional model. Again it seems reasonable that the Young Turks have a
more central position, suggesting that a one-dimensional latent space captures most
of the main features of the data, as suggested by the relatively small differences in
BICM and AICM between the one- and two-dimensional models.

Our method provides standard errors for BICM and AICM, and these are also
shown in Table 2. These increase rapidly, and roughly proportionally with the num-
ber of parameters. They can be used to calculate standard errors of the difference
between the BICM values for two different models using the fact that the values for
different models are independent. We use the standard formula

SE (BICM, — BICMz) = {/SE(BICM, )2 + SE(BICM, )2,

A similar formula holds for differences between AICM values. On the key model
comparison, between the one- and two-dimensional latent space models, the stan-
dard error of the difference between the values of log Agicm(y) for the two models
is about 0.95, suggesting that the observed difference of 3.3 would be unlikely to
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change sign if more MCMC runs were done. The standard error of the difference
between the two values of AICM is about 0.8, casting some doubt on whether
the observed difference of 1.3 would persist in a longer MCMC run. If one wanted
to select one model on the basis of AICM, this suggests that a longer MCMC run
should be used.

5. DISCUSSION

Our final goal is a generic method that estimates the integrated likelihood using
only the likelihoods given a set of draws from the posterior. We have investigated
approaches to this based on the harmonic mean identity, which says that the in-
tegrated likelihood is the posterior harmonic mean of the likelihood. The most
obvious esimator from this, the sample posterior harmonic mean of the likelihoods,
is unbiased and simulation-consistent, but does not have finite variance in general
and so is often unstable (Newton and Raftery 1994).

We have investigated two approaches to more stable estimation of the integrated
likelihood using the harmonic mean identity. The first is to reduce the parameter
space and then use the sample posterior harmonic mean; by judiciously choosing
the likelihood to be used this can yield stable and finite variance estimators. The
second approach involves modeling the posterior distribution of the loglikelihood by
a shifted gamma distribution. This leads to estimates of the effective number of
parameters and the true maximum likelihood that seem to work well, and hence to
posterior-simulation-based analogues of the well-known BIC and AIC criteria, called
BICM and AICM.

Our first approach takes advantage of dimension-reducing transformations on
the parameter space. The proposed variance stabilizing method extends a very
simple tool into a range of widely used hierarchical statistical models. As illustrated
in Section 3, dimension reduction is straightforward in certain hierarchical models.
Sometimes the natural approach of integrating out a nuisance parameter does not
yield a stabilized estimator, however, and one must search farther. We have given
one example in Section 3.3, a simple Poisson-Gamma model, where the natural
approach does not work directly, but a slight refinement of the h(-) function does
yield a stabilized estimator. The trick used there to find this refined h function
was based on the fact that the estimator is stable if and only if E{x[y|h(0)] %y} <
oo. We wrote this expectation as an integral, identified the part of the range of
integration responsible for the integral being infinite, and effectively carried out
the integration over that small part of the space via analytic approximation, thus
defining a new h function. Dimension reduction for variance stabilization may not be
an effective method to compute normalizing constants in certain very hard problems.
In the cases we have studied, we have shown that it is possible to stabilize the
harmonic mean estimator and obtain estimates that are much more accurate, but
still easy to calculate.

Another application of our first stabilization approach includes robust linear
models (Andrews and Mallows 1974; Carlin and Louis 1996). The robust linear
model has an error term distributed as Z/ VU, where Z and U are independent,
Z has a centered normal distribution, and U has a x? distribution. The standard
harmonic mean estimator can have infinite variance. A stabilized harmonic mean
estimator can then be obtained by integrating out the denominator U.

Hierarchical models that involve standard distributions may be good candidates
for our first approach. For one thing, MCMC is well understood for within-model
posterior simulation. Furthermore, the integrations required for dimension reduction
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may be solved analytically. The simplicity of the resulting stabilized harmonic mean
is its main advantage.

Our second approach involves modeling the posterior distribution of the log-
likelihoods by a shifted gamma distribution. This fits the observed distribution of
loglikelihoods well in some applications, and leads to very simple estimates of the
effective number of parameters and the true maximum likelihood that seem of good
quality. This in turn yields posterior-simulation-based analogues of the BIC and
AIC criteria, BICM and AICM. It also provides simple standard errors for these
criteria, which can be useful both for assessing the results and for deciding whether
enough samples have been drawn from the posterior for model comparison purposes.

The BICM criterion we have defined requires the specification of sample size, and
this may be problemmatical in some applications. The analogies with the results of
Volinsky and Raftery (2000) suggest that in fixed effects models acceptable choices
may be possible by considering what a reasonable choice of a unit of information
for a unit information prior would be. Analogies with the results of Pauler (1998)
suggest a corresponding approach for random effects or hierarchical models. In our
examples, these approaches have worked fairly well.

It would be desirable, however, to have a fully automated solution where this
parameter could be estimated from the posterior simulation output. We have inves-
tigated various possible solutions to this, mostly Bayesian estimates of the gamma
distribution parameters that exploit the prior information that the scale parameter
is less than 1, but not much less than 1. The results so far have not satisfied us
fully, however, and so we did not present them here.

The general idea explored here, of estimating the posterior harmonic mean of
the likelihood by modeling the loglikelihoods, may yield progress by using models
other than the shifted gamma distribution. For example, it may be possible to
make progress by recognizing that in regular models the posterior distribution of the
loglikelihood can be approximated asymptotically by a shifted and scaled noncentral
chi-squared distribution with a small noncentrality parameter, perhaps better than
by the (central) shifted and scaled gamma distribution we have been using so far.
The estimation of the scale and noncentrality parameters is delicate, however.

Another approach might take advantage of the work that has been done on
approximating the posterior distribution of the loglikelihood using Edgeworth ex-
pansions. Bickel and Ghosh (1990) proposed such an expansion where the leading
term is of the form (10). This expansion would not in itself be useful for the present
purpose because the leading term still yields an infinite log integrated likelihood,
but the basic idea may be fruitful in a modified form. Other expansions that have
been proposed might also be useful; many of these are reviewed by Reid (2003).

A range of other methods for computing integrated likelihoods from posterior
simulation have been proposed. Most of these methods are not generic algorithms
that use only the output of the posterior simulation; in most cases they require
additional simulations or model-specific calculations. Other methods have been
proposed for estimating Bayes factors or posterior model probabilities, but not the
underlying integrated likelihoods themselves. Subsets of the different methods have
been reviewed and compared by DiCiccio, Kass, Raftery, and Wasserman (1997),
Han and Carlin (2001), Bos (2002), Clyde and George (2004), Sinharay and Stern
(2005), and Rossi, Allenby and McCulloch (2005, chapter 6).

Newton and Raftery (1994) proposed modifications of the harmonic mean esti-
mator using real or imaginary draws from the prior, and these have been applied,
for example by Zijlstra, van Duijn, and Snijders (2005), with some success, but they
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are still somewhat unstable. As we discussed in Section 2, Gelfand and Dey (1994)
proposed a method that can be viewed as a generalization of the harmonic mean
estimator. It requires the careful choice of a function of the entire parameter vector,
tailored for each application, and so is not as generic as the methods we have been
discussing, although with a good choice of function it can perform well. As we have
shown in Section 3.2, it can be combined with our first approach to achieve further
improvements.

The method of Chib (1995) was developed for the specific case where posterior
simulation is done by Gibbs sampling. It is based on the conditional probability for-
mula for the normalizing constant, and requires running specially designed auxiliary
conditional MCMC samplers. Chib and Jeliazkov (2001) extended this to the case
of the Metropolis-Hastings algorithm, in which case it requires a different auxiliary
simulation algorithm additional to the main MCMC algorithm. These methods have
been successfully applied to specific models, for example by Albert and Chib (2001),
Chib, Nardard, and Shephard (2002), and Basu and Chib (2003). However, Neal
(1999) showed that Chib (1995)’s application of the idea to mixture models was
incorrect, and Rossi et al (2005, Section 6.9) showed the instability of the method
due to large outliers in the posterior simulation.

The method of Chib (1995) was developed for the specific case where posterior
simulation is done by Gibbs sampling. It is based on the conditional probability for-
mula for the normalizing constant, and requires running specially designed auxiliary
conditional MCMC samplers. Chib and Jeliazkov (2001) extended this to the case
of the Metropolis-Hastings algorithm, in which case it requires a different auxiliary
simulation algorithm additional to the main MCMC algorithm.

Oh (1999) proposed a method based on an identity that requires knowledge
of full conditional posterior densities. Lockwood and Schervish (2005) proposed
two methods, one a brute force method, and the other a sequential approach that is
related to the method of Oh (1999). Chen (2005), building on Chen (1994), proposed
a method that uses another identity. It involves the use of latent variables and the
proposed optimal version of the method requires knowledge of the full conditional
posterior distribution of the parameters given the latent variables, including all
normalizing constants.

A version of the Laplace method in which the required posterior modes and
Hessian matrices are estimated from posterior simulation output, called the Laplace-
Metropolis method, was proposed by Raftery (1996) and Lewis and Raftery (1997).
This is a generic method but can depend on the model’s parameterization, and
may not work well for very high-dimensional models. Importance sampling based
methods have also been proposed (Nandram and Kim 2002; Steele, Raftery, and
Emond 2006), but these can also require model-specific computations.

Several methods have been proposed for estimating Bayes factors, or ratios of
integrated likelihoods, but not the integrated likelihoods themselves. These include
the Savage-Dickey ratio and a generalization of it (Verdinelli and Wasserman 1995),
and bridge sampling (Meng and Wong 1996; Mira and Nicholls 2004). Johnson
(1999) has proposed a method for estimating the integrated likelihood that involves
simulating from a second density as well as the posterior; it seems that for its
performance to be good the second density needs to be carefully chosen taking
account of the situation at hand.

A general approach to estimating posterior model probabilities is to use trans-
dimensional MCMC, pioneered by Green (1995) with his introduction of reversible
jump MCMC; a review of this area is given by Sisson (2005). These methods can be
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used to estimate Bayes factors, but not the underlying integrated likelihoods. Bayes
factors can be read off the output of transdimensional MCMC directly, and more
efficient approaches to estimating Bayes factors from transdimensional MCMC have
been discussed by Bartolucci, Scaccia, and Mira (2006). Godsill (2001) has pointed
out that integrating out parameters analytically can improve the efficiency of trans-
dimensional MCMC; this is analogous to our proposal here to stablize the harmonic
mean estimator by parameter reduction.
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APPENDIX I: STUDENT’S ¢
Student t

Copying Bernardo and Smith (1994, page 122),

2} —(at1)/2 P((a+1)/2) (/\> v .
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Multivariate Student t
Using the notation of Bernardo and Smith (1994, page 139),

1 . —(a+n)/2
St"(m|“7>‘7a):C 1+E(x_u) )\(.’E—/.L) )

where
I'((a+mn)/2)

~ D(/2) (am)™? det(X)"/?.

z and p are of dimension n. A is a symmetric, positive-definite n X n matrix, and
a > 0.

APPENDIX II: PROOF OF EQUATION (4)
Define

f(p) = %(M - ,uo)2 and g(u) = é(y - N)2 .

Set
g(u)
14 f(p)

It can be easily shown that the maximum of the continuous function a(u) occurs at
u* = po — a/[no(y — o)), and the maximum value of the function is

a(p) =1+

. 1
a(p ):14‘7704'9(#0)-

Further a(u) — 141/no, as p — +o0o. The expected value of interest can be written
as

S ER AP o
E{wmu)}z'y} / a2 1+ f(w)] ™ 2dp

where [1 4 f(u)]~/? is proportional to a t-density of the form
St(ulpto, no(er — 1)/a,a — 1) .

Since 1 < a(u) < a(p”), the integral on the right hand side is finite by dominated
convergence theorem when « > 1 and ng > 0.

APPENDIX III: PROOF OF THEOREM 1
Define o = h(0), write 6 = («, 3), and set

. y} and b:E{m

:E{m

)
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Since both 1/7(y|a) and 1/7(y|f) have common expectation 1/7(y), it suffices to
show that a < b. Expanding b, we have

1
" //W”(a»my)dﬁda
1
//Wﬁ(maﬂm(aly)dﬂda
[ bterntaly)da

where

By contrast,

where
1
[m(yle)]?”

Therefore, it is sufficient to prove that a(a) < b(a) for all «. Simplifying b(«), we
have

ala) =

E ——
o) = | pa e nds

_ / ! m(yla, B) m(Bla) m(@)
[ (yle, B)]? m(yla) m(a)

_ L) g,

m(yla) J w(yla, B)
Cancelling one factor 1/m(y|a), we have a(a) < b(a) if
1 ~(Ble)
o <] T

This follows by Jensen’s inequality using the distribution 7(3|a). In the event that
one or another of the integrals diverges, a(a) < b(a)) must continue to hold.

B

DISCUSSION
NICHOLAS G. POLSON (University of Chicago, USA)

The authors are to be congratulated on their extension of the popular harmonic
mean (HM) estimator for marginal likelihoods. They propose a stabilised harmonic
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mean (SHM) estimator for stabilising the possible infinite variance of the original
harmonic mean estimator. A number of examples illustrating their approach are
given. They also discuss an application to model comparison and provide a pos-
terior simulation-based alternative to BIC which they term BICM. This measure
requires an estimate of the maximum achievable log integrated likelihood lmax and
they show how to use the MCMC draws to achieve this. A common theme through-
out the paper is that there is extra information, particularly in the tails, from the
MCMC output for harmonic means. This information can be thoughtfully used to
provide better estimates than the usual ergodic averaging approach. In this discus-
sion I will focus on three issues: 1) The Monte Carlo convergence rate for harmonic
mean estimators based on a method described in Wolpert (2002), 2) Alternative
approaches to marginal likelihoods based on extensions of the Savage density ratio,
see Verdinelli and Wasserman (1995) and Jacquier and Polson (2002) and 3) an
MCMC approach for computing the maximum achievable log-integrated likelihood,
see Jacquier, Johannes and Polson (2006).

First, the basic problem that the harmonic mean estimator tackles is the estima-
tion of the marginal likelihood defined by w(y) = [ w(y|0)p(6)df. This is a central
problem in Bayesian inference and forms the basis for model selection and compar-
ison. The harmonic mean estimator has become popular due to its simplicity. It
simply takes the MCMC draws {#V}Z.| and computes

A 1
Tam(y) = T—<B 1
B Zt:l w(y|o®)

as an estimator. A caveat noted by the authors is that this estimator can have infi-
nite variance. The proposal described here is a stabilised harmonic mean estimator
of the form

R 1
fsum(y) =

Tl B 1
B Lt=1 71

where u = h(0) is a dimensionality reduction. The intuition is that this marginali-
sation will lead to a heavier-tailed distribution m(y|u) which in turn will lead to an
estimator with finite variance.

Another caveat with these types of estimators is that they can have slow conver-
gence properties in B. From a practical perspective this implies that a few large out-
liers can dominate the estimator which leads to large Monte Carlo errors. Wolpert
(2002) discusses this issue and proposes a method to accelerate the convergence.
Specifically, the issue is as follows: standard ergodic averaging yields

SB 1

— —

B #(y)

where S = % Zle m. However, this occurs at a very slow rate given by

SB 1 1_q
— X < +ZB«
B #(y)

where o &= 1. The asymptotic distribution Z can be characterised as a fully-skewed
stable distribution So(d5,vE). Unfortunately, the convergence rate can be poor. In
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a simple normal location problem for example, the convergence rate in B is
1 2\ 7!
1= (1+ﬂ) ~ 0.
o

Hence, the Monte Carlo error can be large. One solution is to use the information
in the whole distribution of Sp/B rather than simple ergodic averaging. Specifi-
cally, we can use quantile information to estimate (o, dp,7vys) and hence estimate
1/7(y) = E(Sp/B) using the moment identity

E(S—B> :(gfﬁtaunB

Again the intuition is that there is extra information in the whole distribution of
the MCMC draws.

It should also be noted that slow convergence can occur in other approaches for
estimating marginal likelihoods. For example, the marginal likelihood approach in
Chib (1995) where the estimator

o (yl)m(")
W) =158 e100,y)

is used for any 6*. From a purely Monte Carlo perspective it is always wise to avoid
estimators than are ratios of averages

One class of problems where we can avoid the use of ratios of MC averages is the
class of models where extensions of the Savage-density ratio approach to calculating
Bayes factors (BF) applies. There is a long history discussing the relationship
between marginal likelihoods, Bayes factors and their use in model selection. A
common approach for nested models is to estimate

B

Z 90 99’ )

With the use of data augmentation many of the restrictive conditions for the original
approach can be relaxed. For example, Verdinelli and Wasserman (1995) generalises
this estimator to

. . 5 (t)
5F = PO e = Ly 2162 (t)>
p(01) B =1 P(01,05")

Jacquier and Polson (2002) provides an extension that relaxes the assumption the
p(62]69) = p(62|M1). Here we obtain as estimator of the form

t t t t
k=1 yw“,e;))p(e;)w%))
When these approaches apply, the key is that they avoid Monte Carlo estimates

that are reciprocals. Standard central limit theorem type convergence results in B
also hold for these procedures.



Estimating the Integrated Likelihood 33

Finally, there is a useful MCMC alternative for estimating the maximum achiev-
able log integrated likelihood for model comparison, see Jacquier, Johannes and Pol-
son (2006). Specifically, suppose that you are interested in an integrated likelihood
of the form £(6,) = f62 f(y|61,02)p(02]61)db> for a given model specification.

Now one can consider a MCMC posterior analysis where we copy the variable
0> to be integrated over, J independent times. This leads to a joint posterior of the
form

J
ps (03,011y) o [T £ (wl6r, 03)p(03, 61)

j=1

This joint density has the property that on marginalising out the 62 parameter leads
to a marginal 7;(0:|y) o« exp (J1In £(#1)). This marginal collapses on §; as J — oo
and so lmax = In £(01) is easily estimated.

Using MCMC to simulate from py (9‘2], 01 \y) is straightforward as we can itera-
tively simulate the conditionals

03101,y ~  p(03]01,y)
61165,y ~ TT]_, p(6116],)

In many situation this approach gives reasonable answers for small values of J.

In summary, this paper provides main insights and suggestions into tackling the
hard problem of computing marginal likelihoods. One area where the literature
is currently silent is in describing why Markov Chain MC sampling has been so
successful for computing marginalisation constants as compared to more standard
importance sampling techniques which have similar Monte carlo averaging proper-
ties. Maybe it is due to the authors’ intuition that there’s a lot of extra information
in the whole distribution, particularly the tails, of harmonic mean estimators?

BRADLEY P. CARLIN (University of Minnesota, USA) and
DAVID J. SPIEGELHALTER (MRC Biostatistics Unit Cambridge, UK)

Congratulations to the authors for a fine extension and updating of their earlier
ideas in Bayesian model choice using the harmonic mean estimator, AIC, and BIC.
The first author is a long-time supporter and developer of BIC-related tools for
Bayesian data analysis, and this paper makes a significant and welcome addition to
this literature.

We wish to discuss the authors’ estimate of the effective number of model
parameters, d = 2s2, or twice the sample variance of the log-likelihood samples
fi. The authors obtain this as the result of a simple moment estimate of « in
their shifted gamma model (Section 4.1). In fact this same estimate appeared in
an early version of the original DIC paper by Spiegelhalter et al. (2002); see for
example equation (18) in the August 2001 version of the paper, available online
at ftp://muskie.biostat.umn.edu/pub/2001/rr2001-013.pdf.gz. In that paper,
the reasoning underlying the estimate was based on the approximation

D(6) =~ D(6) + x>, (33)

where D(0) = —2¢(6), the deviance, which when prior information is weak is es-
sentially identical to the shifted gamma model in (10). Approximation (33) holds
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provided the posterior distribution p(f|y) can be reasonably well approximated
by a multivariate normal distribution. Taking posterior expectations of both sides
produces

E[DO)|y] ~ D) +p,

motivating the basic formula for our measure of effective model size, pp = ﬁ—D(QA)7
where D is the sample mean of the MCMC deviance samples, D; = —2/;. If we
however take the posterior variance of both sides of (33), we obtain

Var[D(0)|y] = 2p .

This suggests the alternative empirical estimate of model size py = s%/2, where s,
is the sample variance of the deviance samples. Clearly the relationship between D
and £ means that py = d. Incidentally, the use of half the variance of the deviance
as the effective number of parameters is also recommended in Gelman et al. (2004,
pp.181-182), and is the method used to compute DIC in the R2WinBUGS package for
R; see http://cran.r-project.org/src/contrib/Descriptions/R2WinBUGS.html.

However, the main point here is not to claim credit for this variance-based
estimate of effective model size, but instead to clarify why we deleted it from the
final version of the DIC paper! We tried for a long time to convince ourselves that
this attractive and parameterisation-invariant quantity was an appropriate measure,
but failed. The crucial test for us was whether, in the normal hierarchical model, the
effective number of parameters was given as tr(H ), where H is the “hat” matrix that
projects the observations onto their fitted values. As described in Spiegelhalter et al.
(2002), this measure has been derived from numerous perspectives, in particular in
a recent extension of AIC to normal mixed models (Vaida and Blanchard, 2005).
(To be honest, our proposal for pp was motivated primarily by working backwards
from this desired result.)

Consider the simulation exercise carried out by the authors in Section 4.2 for
the general case with prior variance 0. Denote ng = 1/0?, the effective sample size
in the prior, and let p = n/(n + no) so that u;|y; ~ N(py,, pno). Hence p can be
interpreted as the “shrinkage,” or the proportion of the posterior precision arising
from the likelihood: in this situation pp = tr(H) = dp.

The posterior distribution of the deviance can be derived in closed form in this
situation, and is a sum of shifted non-central chi-square distributions (Spiegelhalter
et al., 2002) with exact variance

d
V=2p"ld+2(1—p)no y_ 7] -

j=1
Since y; ~ N(0, (pno)™"), V has a sampling expectation

E[V] =2p°[d+2(1 — p)d/p] = 2dp(2 — p) -

Hence py = V/2 =~ dp(2 — p), compared to pp = dp. When p is near 1 the two
methods will closely agree: we note that p is 0.99 in Figure 5 and generally very
close to 1 in other situations explored by the authors. However in any interesting
application of hierarchical models there will be non-negligible shrinkage and val-
ues of p closer to 0.5 may be more typical. In such cases we might expect py to
substantially overestimate the effective number of parameters.
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This is born out in the following analysis of the well-known Scottish lip cancer
data, introduced by Clayton and Kaldor (1987) and most famously analyzed by Be-

sag et al. (1991). Table 3 presents a side-by-side comparison of pp and d for a variety
of models, all using a non-Gaussian (Poisson) likelihood. The models we consider are
easily fit in WinBUGS 1.4 (http://www.mrc-bsu.cam.ac.uk/bugs/welcome.shtml)
or OpenBUGS (http://mathstat.helsinki.fi/openbugs/) since this dataset is an
example in the GeoBUGS User Manual: click on Map and pull down to Manual, then
click on Examples. The full model for the log-relative risk of lip cancer in county @
is given by

log(RR); = o + Brxi + ¢ + 0; (34)

where [ is an intercept, (; is the effect of a single covariate (AFF, the percentage
of county ¢’s population engaged in agriculture, fishing, or forestry; essentially a sur-
rogate for sunlight exposure), the ¢; are spatial clustering random effects assigned a
conditionally autoregressive (CAR) prior, and the 6; are pure heterogeneity random
effects assigned an i.i.d. normal prior. Several authors have investigated whether
these data support inclusion of either or both of the two sets of random effects, with
the general consensus being that the clustering random effects are helpful, but the
heterogeneity terms add little of additional value. The saturated model simply fits
independent effects for each area and hence has no covariate structure.

Table 3:  Comparison of pp and d for the Scottish lip cancer data.

model PD ADIC d AAICM
full 33.1 — 42.9 —
clustering only 29.2 -0.5 45.0 5.5

heterogeneity only  40.0 11.6 59.4 21.3
fixed effects only 1.97 151.9 1.92 142.2
saturated model 52.8 18.1 57.8 13.4

Table 3 compares the effective model sizes pp and ci, as well as the corresponding
overall model choice statistics, DIC and AICM. Both of these latter two quantities
are expressed in terms of change relative to the full model (34), with smaller values
indicating preferred models. All of our computations were done in WinBUGS, using
a single chain of 10,000 samples retained following a 1000-iteration burn-in period.
We see that the performance of DIC and AICM are comparable, both obtaining
rough equivalence between the full and clustering only models, which are slightly
preferred over the heterogeneity only model and strongly preferred over the fixed
effects only model. The two effective model size statistics also behave similarly in
the simple fixed effects case, both obtaining an answer very close to the correct
value of 2.0. However, the d values do emerge as significantly larger than pp for
all of the random effects models. The d value for the heterogeneity only model
seems especially doubtful, since the upper bound here (obtained by simply counting
parameters) is only 59: there are 56 county-level random effects, 2 fixed regres-
sion effects, and a single variance parameter (one could also argue that this upper

bound should be 56, the number of data points). Also, d for the heterogeneity only

model exceeds the value of d for the saturated model; it seems anomalous that a
heterogeneity-only model can somehow be more complex than the saturated model.
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Much larger MCMC sample sizes did not eliminate these problems with d. More
broadly, while the model choice issue here is fairly clear-cut, in other hierarchical
modeling examples AICM may tend to select somewhat simpler models than DIC,
due to its significantly higher effective model size penalty.

Regarding the use of d in BIC: in our reply to the discussion of Spiegelhalter
et al. (2002) we said we could find no strong reason to use pp in BIC, attractive
though it would be. The authors define BICM “by analogy”; we wonder if there is
any stronger theoretical justification for this assumption?

Naturally, far more extensive investigations of DIC, AICM, BICM, and related
methods are warranted. Perhaps pp’s most embarrassing feature is that it can
sometimes be negative, and clearly d does avoid this problem. Other recent work in
this area includes that of Lu et al. (2004), who extended the approach of Hodges and
Sargent (2001) to generalized linear mixed model settings, obtaining effective model
size estimates that respect both the lower (0) and upper (raw parameter count)
boundaries. Also noteworthy is the forthcoming Bayesian Analysis discussion paper
by Celeux et al. (2006), who offered a variety of “repaired” versions of pp for missing
data (especially mixture model) settings.

DAVID DRAPER (University of California at Santa Cruz, USA)

I would like to add to the discussion of this interesting and stimulating paper
by posing two questions.

As noted, for example, by Draper (1995), two Laplace approximations for com-
puting log Bayes factors—when comparing parametric models M; indexed by pa-
rameter vectors 0; of dimension kj;, on the basis of a data set y consisting of n
conditionally exchangeable observations—are

1 1. . . . B
Inp(y[M;) = Sk; In(2m) — 5 In |1;] + Inp(yl6;, M;) + Inp(6;|M;) + O(n ), (35)

where éj is either the mode of the posterior distribution p(6;|y, M;) or the MLE
and I; is the observed information matrix evaluated at 6;, and

1 .
Inp(y|M;) = —5kjInn +Inp(yl6;, M;) +O(), (36)

the latter a large-n approximation to the former that is recognizable as the basis of
BIC (cf. Equation (15) in the paper under discussion here). Raftery (1995) noted
that “it is possible to improve on [Equation (35) in this discussion contribution] in
its MLE form by taking a single Newton step toward the posterior mode, starting at
the MLE.” Equations (35) and (36) above (and the refinement suggested by Raftery
1995) have the advantage of relative computational simplicity and perhaps speed
(if reliable maximization software is handy) when compared with some of the ideas
explored in the paper under discussion here. Do the authors have any experiences
they can share that would shed light on the speed-versus-accuracy tradeoffs inherent
in a comparison of their methods with Laplace-based approaches, when both are
appropriate to consider?
As is well known, Bayes factors involve comparing quantities of the form

/ [H p(yil0;, Mj)] p(0;M;) do,

i=1

Eo;1n;) L0; |y, M;), (37)

p(y|M;)
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i.e., Bayes factors are based on comparisons of expectations of likelihoods with
respect to the priors in the models under comparison, and this is why they behave
so unstably as model selection criteria with diffuse priors, as a function of how
the diffuseness is specified. Many ad hoc methods for attempting to cope with
this instability have by now been suggested, including {partial, intrinsic, fractional}
Bayes factors, well calibrated priors, conventional priors, intrinsic priors, expected
posterior priors, and so on (e.g., Pericchi 2005); the list seems as endless as its
ad-hockery is disheartening. It is arguable (e.g., Draper and Krnjaji¢ 2006) that
this is a good reason for shifting attention in Bayesian model specification away
from Bayes factors and toward model selection criteria, such as the predictive log
score, that do not suffer from such instabilities when diffuse prior information is all
that is available; but (a) the dependence of the mixing weights in Bayesian model
averaging (BMA) on ratios of Bayes factors and (b) the central role that BMA plays
in appropriately propagating model uncertainty combine to leave the impression
that evaluating Bayes factors with diffuse prior information cannot, regrettably, be
entirely avoided. Do the authors see any possibility that any of the ideas they
have explored for stabilizing MCMC-based estimates of Bayes factors might be
used to help stabilize the Bayes factors themselves in the presence of diffuse prior
information?

CHRIS SHERLOCK and PAUL FEARNHEAD (Lancaster University, UK)

We would like to congratulate the author on a stimulating paper. The goal
of a simple and automatic procedure for estimating the integrated likelihood is an
important one, and we are pleased to see some further work extending the harmonic
mean estimator.

We decided to test out the BICM and AICM procedures described within the
paper for the problem of model selection for Markov-modulated Poisson Processes.
These are models for the occurence of events through time, and assume an underlying
continuous-time Markov process X (t) which has state space {1,..., K}. The data
consists of the times of events from a Poisson process of time-varying intensity A(t)
which depends on the underyling X (¢) process. So conditional on X (t) = k we have
A(t) = Ax. The parameters of the model are the different intensities {A1,..., Ak},
and the entries in the rate matrix of X (¢).

We applied this model to analyse the occurence of Chi-sites along the lagging
strand of the genome of Ecoli (see Fearnhead and Sherlock 2006 for details of this
application). For K > 1, this is a non-trivial example, for example the likelihood is
symmetric across re-labelling of the states of the X (¢) process whereas we have used
a non-symetric informative prior so that we have a complex multi-modal posterior.
However, Fearnhead and Sherlock 2006 describe how to implement a Gibbs sampler
for this model, and it is thus possible to use the idea of Chib (1995) to get accurate
estimates of the integrated likelihood for K = 2 and 3 (the K = 1 case can be
calculated analytically). Thus we have a “correct” answer to compare the results of
BICM and AICM to.

As the paper suggests, calculating BICM or AICM values from MCMC output
is simple and quick. The results we obtained, together with twice the integrated
likelihood as calculated from the method of Chib (1995) are shown in Table 4.
(We give twice the integrated likelihood values as it is this that BICM and AICM
estimate.) As suggested by the theory, the plots of the log-likelihood values output
from the MCMC run show that these do closely follow a shifted gamma distribution
(results not shown).
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For the K = 1 case BICM appears to give a better estimate of twice the inte-
grated likelihood than AICM, but it gives substantial underestimates for the K = 2
and K = 3 case. As a result BICM incorrectly shows strong evidence for K = 1.
By comparison AICM performs well: while it over-estimates twice the integrated
likelihood for all three models, the relative estimates are very close to the truth.
Based on AICM you would correctly choose K = 2, and have appropriate estimates
of the strength of evidence for this model over K = 1 and K = 3 respectively.

For comparison we also tried the harmonic mean estimator, and this estimator
also performed very well. Twice the harmonic mean estimates are -935.5, -927.2 and
-929.9 for K =1, 2 and 3 respectively. While these again are over-estimates of the
true iterated likelihoods, the relative estimates are close to being correct.

Table 4: BICM, AICM and (twice) integrated likelihood values (2x IL)
for the Chi-site data.

K=1 K=2 K=3
2x IL | -937.9 -927.7 -931.0

BICM | -937.6 -940.0 -946.3

AICM | -934.9 -925.3 -928.8

Finally we wonder if you could say something about the conditions required for
the posterior distribution of the likelihood values (10) to hold - do these require
the standard regularity conditions for the likelihood ratio statistic to asymptotically
have a x? distribution? Also is it possible to get a higher-order result for this
limiting distribution, which could then be integrated to give a (finite) estimate of the
integrated likelihood? Such a result may give theoretical justification for choosing
one of AICM or BICM over the other in different scenarios.

I. CLAIRE GORMLEY and T. BRENDAN MURPHY
(Trinity College Dublin, Ireland)

We would like to congratulate the authors on their excellent paper on comput-
ing integrated likelihoods which is a topic of great importance in Bayesian model
comparison.

We would like to discuss our experiences in applying AICM, BICM and alterna-
tives when selecting the dimensionality for a latent space model for rank data.

Background

Irish elections employ a voting system called proportional representation by means
of a single transferable vote (PR-STV). In the PR-STV system, voters rank some
or all of the candidates in order of preference. Votes are counted and subsequently
transferred between candidates, using the voter preferences, in a series of counts to
determine who gets elected. More details on the electoral system and the counting
of votes is given in Gormley and Murphy (2005).

Hence, Irish elections generate rank data recording the preferences of the voters
for candidates. We have recently developed mixture models for modeling rank data
in the context of analyzing Irish election data (Gormley and Murphy, 2005) and
Irish college application data (Gormley and Murphy, 2006a).
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Gormley and Murphy (2006b) develops a latent space model for rank data where
voters and candidates are located in a latent space Z C RP. Each voter is located at
position z; (i = 1,2,..., M) and each candidate at location ¢; (j = 1,2,...,N). Let
d(z, ;) be the squared Euclidean distance from voter i to candidate j. We would
expect that voter 7 will give high preferences to the candidates that are closest and
low preferences to those that are distant.

Let
exp{—d(zi, ()}
Sy exp{—d(zi, ()}
be the probability of voter i selecting candidate j in first position. These probabili-

ties can be used to give the probability of a vote (i.e. candidate ordering) using the
Placket-Luce model (Plackett, 1975)

pij =

P{xi\p} _ H DPic(i,t)

N b
=1 D2set Pic(is)

where ¢(i, 1), ¢(4,2), ..., c(i,n;) is the ordered list of the candidates selected by voter
¢ and c(i,n; + 1), c(i,n; + 2),...,¢(i, N) is an arbitrary ordering of the candidates
not selected by voter i.

These models are fitted in a Bayesian framework and samples from the posterior
distribution are generated using a random walk Metropolis-Hastings algorithm.

Choice of dimensionality

An important issue when fitting these models is the choice of D, the dimensionality
of the latent space.

In this discussion, we will concentrate on data from an exit poll taken at the
1997 Irish Presidential Election. We fitted latent space models for D=1, 2 and 3 and
computed the AICM, BICM (using equation (23) from the paper), DIC (Spiegelhal-
ter et al, 2002) and the Pritchard et al (2000) criterion for each model; the values
obtained are given in Table 5.

Table 5:  The values of AICM, BICM, DIC and Pritchard et al’s criterion
computed for the 1997 Presidential Election exit poll data for dimensionality
D equal to 1, 2 and 3. The model selected is highlighted in bold.

AICM BICM DIC  Pritchard

D=1 -20171 -19244 18270 17855
D=2 -23217 -21221 17966 18246
D=3 -26621 -23671 17923 19270

There is good consistency across the results for the AICM, BICM and the
Pritchard et al criterion with each selecting D = 1 whereas DIC selects D = 3. A
simple principal components analysis of the estimated candidate locations suggests
that most of the variation in candidate locations is explained by a single dimension
which captures the race between McAleese (winner of the election) and the other
candidates (Scallon, Banotti, Roche and Nally).
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Hence, AICM and BICM select a dimensionality that is consistent with the
estimated candidate configurations. This contrasts with DIC which doesn’t appear
to have a strong enough penalty on dimensionality.

CHRISTIAN P. ROBERT (Université Paris Dauphine, France) and
NICOLAS CHOPIN (University of Bristol, UK)

Comparison

The issue of approximating marginal densities obviously remains an up-to-date con-
cern for Bayesian Statistics, since two invited talks at this conference are centred
around it, namely the present paper and the alternative proposal of Skilling (this
volume). While we are not completely convinced of the advantages of nested sam-
pling (see our discussion in this volume), we would welcome the authors’ opinion
of the respective worths of both approaches. In particular, Skilling’s (this volume)
perspective is completely in line with the second approach of the present paper,
that is, based on a (prior or posterior) distribution of the likelihood function, since
Skilling’s marginal is expressed as 7(y) = E,[L], while Raftery et al.’s marginal is
m(y) = E[L™"[y].

Potential dangers

Let us first state that we find the representation of Newton and Raftery (1994) quite
interesting in that it allows for an approximation of the marginal density based on
the output of the MCMC simulation of the posterior 7(f|y) (rather than from the
prior as in nested sampling). Its major drawback is however the disastrous feature of
a potential infinite variance, against which the Rao-Blackwellised solution proposed
in this version does not always work. We can take for instance the case of the normal
variance, ylo ~ N(0,0?) and 7(o?|y) ~ ZG(3/2,1 + y*/2) where nested sampling
provides an approximation of m(y) in agreement with a decrease of the error in
V/n (see Fig. 7 (left), while the harmonic mean approximation has no variance and
obviously varies much more for the same computational effort. A further difficulty
is that, in complex settings, the infinite variance of the harmonic estimator may
remain undetected. For instance, a run up to 5,000,000 iterations produces an
apparent decrease of the error in y/n in Fig. 7 (right).

Bayes factors

A feature also common to both Skilling’s and Raftery et al. ’s approaches is that
they do not easily adapt to multiple models environments, as those encountered in
model choice and the computation of Bayes factors, for which generic approximations
methods like path sampling (Gelman and Meng, 1998) are readily available, being
based on simulations from the (alternative) posterior distributions.

Asymptotic approximations

To go back to the Gamma approximation, we are a bit concerned with the log(1—«)
in the expression of log7(y) in Eqn. (14). Would the Gamma approximation in
Eqn. (10) be ezact (by chance, or because the model has some specific structure,
e.g., Gaussian), then log 7(y) would be infinite. This does not seem intuitive, and
it also casts some doubt on the practicality of this approach. Beyond this specific
point, one must always be wary of approximations methods that do not provide a
way of evaluating, even roughly, the approximation error (like BIC). In that respect,
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Figure 7: Comparison of the error evolution for nested sampling and
harmonic approzimation: (left) Ewvolution of the error in Skilling’s nested
sampling approzimation of the marginal density when y = 5 in a ylo ~
N(0,02) and w(o?|y) ~ ZG(3/2,1+y?/2) model, using N initial simulations
from the exponential prior and j = N/2 replications. (right) Evolution of the
error of the harmonic approximation for the same problem, using 1000 times
more stmulations from the posterior than in nested sampling.

a sequence of increasingly accurate (and possibly increasingly expensive to compute)
approximations, would be preferable, as the authors suggest briefly in the conclusion.

Remark

A final bibliographical remark is about the study of DIC in missing data models:
Celeux et al. (2006) give a detailed analysis of the multiple possible interpolations
of pp and of DIC in such setups, agreeing with the authors about its instability.

REPLY TO THE DISCUSSION

Basic idea

We are very grateful to all the discussants for their stimulating discussions.

The basic idea of our paper is that the integrated likelihood can be estimated
from the posterior distribution of the loglikelihood, using the harmonic mean iden-
tity. This reduces the problem of estimating the integrated likelihood to a one-
dimensional one. The simplest way to do is via the harmonic mean estimator of
Newton and Raftery (1994), but while this is simulation-consistent, it often has
infinite variance.

We suggested two ways of getting integrated likelihood estimators with better
properties. The first is to reduce the parameter space. The second, on which most
of the discussants focused, is to model the posterior distribution of the log-likelihood
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parametrically, estimate the parameters of the resulting model from MCMC or other
posterior simulation output, and then apply the harmonic mean identity to the
resulting estimated model. We proposed a shifted scaled gamma distribution as a
possible approximating model, and showed that it gave reasonable results in some
examples.

However, this is not the only approximating model that could be used. One
could instead use a shifted scaled noncentral x? distribution; this is exact for Gaus-
sian fixed effects models. One could also use a sum of shifted scaled noncentral x?2
distributions; this is exact for an ANOVA-type Gaussian random effects model, as
shown by Spiegelhalter et al. (2002). Our experience so far, including with random
effects models, is that the shifted gamma distribution does provide a good approx-
imation in a wide range of situations; this conforms to the experience reported by
Sherlock and Fearnhead, for example.

Sherlock and Fearnhead asked whether one could obtain a higher-order expan-
sion for the asymptotic gamma approximation, and then integrate this. Bickel and
Ghosh (1990) proposed an expansion of this type. Their expansion couldn’t be used
directly for this purpose, because the terms in it lead to infinite estimates of the
integrated likelihood. However, it does seem possible that an expansion of this kind
could be obtained that would be useful in the present context.

A related possibility, not mentioned in our paper or by any of the discussants,
would be to approximate the posterior distribution of the loglikelihood by a mixture
of normals. Roeder and Wasserman (1997) showed that this can approximate a
wide range of distributions, including gamma-like distributions, and proposed ways
of estimating this model. This might have the advantage of leading to more stable
estimates, as the tail declines quickly. The estimator of the integrated likelihood
proposed by Pritchard et al. (2000) could be viewed as a special case of such a
normal mixture model, with just one term.

Polson discussed some very interesting unpublished work of Wolpert (2002),
who indicated that the posterior distribution of the harmonic mean estimator is
asymptotically a stable law, with a stable index that is typically just large enough to
ensure that the mean exists. This suggests the possibility of using an approximating
stable distribution of the reciprocal likelihood (rather than the loglikelihod) as the
basis for a stabilized harmonic mean estimator. Wolpert’s paper doesn’t report
numerical experience, but it is worth investigating further. Nevertheless, it seems
likely that it would be as hard to estimate the stable index of the stable distribution
as it is to estimate the scale parameter of the gamma distribution that we suggest;
this may only shift the difficulty to another arena.

The effective number of parameters

Carlin and Spiegelhalter suggest that d may be an overestimate of the effective
number of parameters, referring to the normal random effects example. However,
we introduce d primarily as an estimate of (twice) the scale parameter in the ap-
proximating gamma distribution rather than of the actual number of parameters;
in regular fixed effects models these coincide asymptotically. However, even in fixed
effects models they don’t always coincide: for example in the exponential distribu-
tion example discussed by Fan et al. (2000), the number of degrees of freedom in
the x? distribution that approximates the posterior distribution of the loglikelihoods
is twice the number of parameters.

In order to investigate this further, we simulated some data and posterior distri-
butions from the normal random effects model discussed by Carlin and Spiegelhalter,
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as described by Spiegelhalter et al. (2002). For this model, pp does not depend on

the data, whereas d does. Carlin and Spiegelhalter suggested that d will tend to
overestimate the effective number of parameters relative to pp, but we found that
d was often actually slightly smaller than pp.

In this model, the true max is known, and this makes it easier to estimate both
«a and A in the approximating gamma distribution, using a moment estimator, for
example. We found that in this situation, moment estimators of the gamma dis-
tribution parameters were very similar to maximum likelihood or other estimators.
This provides an alternative to both pp and d.

We found that (i) the shifted gamma distribution continued to fit well for a wide
variety of situations including ones with large shrinkage; (ii) our moment estimates

of a tended to be larger than either pp/2 or d/2; and (iii) the gamma distribution
tended to fit the observed distribution better with the moment estimates that with
either d or pp. When n;, the sample size in the i-th group, was the same for all
groups, we found that —log(1 — \) was well approximated by log(n; 4 1), lending
some support to the random effects BICM approximation (22).

Theory

Carlin and Spiegelhalter asked what the theoretical rationale for BICM is, and, in
a related question, Sherlock and Fearnhead asked what regularity conditions are
needed for the asymptotic posterior distribution of the loglikelihood (10) to hold.
The regularity conditions are given by Fan et al. (2000); these are weaker than the
conditions required for the asymptotic x? distribution of the likelihood ratio test
statistic to hold. In particular, the contours of the loglikelihood do not need to be
asymptotically elliptical.

The theoretical rationale for BICM is outlined in Section 4.1 of our paper. In
brief, Raftery (1995, Section 4.1), drawing heavily on Kass and Wasserman (1995),
showed that with a unit information prior, the integrated likelihood for a fixed effects
model can be approximated using BIC, with error of order O(n~'/?). BIC involves
the maximized loglikelihood, #max, and the number of parameters, d. We assume
that neither of these is available explicitly, and that they must be estimated from
posterior simulation. Under the weak regularity conditions we have mentioned,
the maximized loglikelihood (suitably normalized) can be estimated consistently
from posterior simulation output by émax, and the number of parameters can be
consistently estimated by d. Thus BICM provides a consistent estimator of BIC,
and hence of twice the integrated likelihood.

This theoretical rationale applies to fixed effects models. However, Pauler (1998)
has provided a theoretical derivation of an extension of BIC to random effects mod-
els, and it seems that this could be the basis for a theoretical rationale for BICM
also for random effects models. More work on this is required, however.

Chopin and Robert asked what happens if the gamma approximation is exact.
However, this will be the case only with an improper prior, and in that case the
integrated likelihood is undefined in any event. Chopin and Robert also asked about
standard errors for BICM and AICM. These are now in the paper (they were not
in the version of the paper presented at the Valencia meeting).

The harmonic mean estimator

Our work was motivated by the observation that the harmonic mean estimator of
the (reciprocal) integrated likelihood has infinite variance, a fact pointed out in the
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paper that introduced it (Newton and Raftery 1994). In spite of this apparently
undesirable behavior, the original harmonic mean estimator has been widely used,
and several researchers have reported satisfactory results with it, including Sherlock
and Fearnhead in their discussion here.

The results of Wolpert (2002), reported by Polson, shed some light on this.
Wolpert showed that the harmonic mean estimator does have a distribution. In
spite of having infinite variance, most of the mass of this distribution may be fairly
concentrated. If one is comparing two models, and the distributions of the harmonic
mean estimators of their integrated likelihoods have little overlap, then the model
comparison is clear. This is often the case. A simple way of assessing these dis-
tributions is by estimating the harmonic mean estimator from replicated posterior
simulation runs, as done for example by Zijlstra et al. (2005).

The Wolpert results suggest that the distribution of the harmonic mean estima-
tor from a subset of a posterior simulation run will be similar to that from the run
as whole. Thus a reasonable approach could be to divide a posterior simulation run
(suitably thinned) into, say, 9 or 19 batches, and use the resulting distribution as a
rough sampling distribution of the harmonic mean estimator itself. This should be
good enough at least for assessing whether the result of a comparison between two
models is decisive. Thus this provides some theoretical support for continued use of
the harmonic mean estimator in practice, at least in some situations.

Ezxperience with BICM and AICM

Gormley and Murphy reported positive experience with BICM and AICM, and we
were glad to see their results.

Sherlock and Fearnhead gave results for a modulated Poisson process in which
accurate values of the integrated likelihood were available. AICM and the harmonic
mean estimator worked well, but BICM did not. In particular, BICM supported a
one-state model over a two-state model, unlike the true integrated likelihood. In the
version of the paper on which they commented and that was presented at Valencia,
only the fixed effects version (18) of BICM was given explicitly. If instead we use
the version (22), with ny = n/K, which seems more appropriate, then the second
line of their table (for BICM) becomes —937.6, —936.6, —939.6. BICM is now more
accurate than before and in particular supports the two-state model. It is still not
fully satisfactory for this example, however.

Comparisons with other methods

Several discussants asked about comparisons with other methods. In our paper
we gave a fairly extensive literature review of relevant methods. However, our
goal here is specific: a generic method for estimating the integrated likelihood of
a model from posterior simulation output that uses only the loglikelihoods of the
simulated parameter values, and in particular does not involve model-specific algebra
or computation. Several of the methods mentioned do not fall into this category,
and so we have not viewed them as directly comparable for the present purposes.

Draper asked about a comparison with the Laplace method. The Laplace
method can be efficient and highly accurate, but it is not generic, and indeed ap-
plying it to a specific model can require a great deal of work. Polson mentioned
his very interesting work on estimation of the maximized likelihood and extensions
of the Savage density ratio method. These methods are generally for computing
ratios of integrated likelihoods rather than individual ones, and Polson’s work is for
specific models, and so has a somewhat different goal from ours.
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Chopin and Robert asked about a comparison between our approach and that of
Skilling in the present volume. Skilling’s approach is also generic, and so comparable
to ours. We agree with Chopin and Robert’s comments. Skilling’s method involves
integrating over the prior, and in the low-dimensional examples he gives, this works
well. However, in the much higher-dimensional models commonly tackled using
MCMC, this may well not work so well. We would be interested to see further
experience with this proposal.

Finally, Chopin and Robert suggested that our approach was not well suited to
situations with multiple models. However, it yields an estimate of the integrated
likelihood for each model estimated, and so provides a ready way to compare all the
models estimated in a round of data analysis. Thus it does seem well adapted to
situations where multiple models are being fitted.
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