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Nonparametric Bayes methods
using predictive updating

Michael A. Newton
Fernando A. Quintana
Yunlei Zhang

ABSTRACT Approximate nonparametric Bayes estimates calculated un-
der a Dirichlet process prior are readily obtained in a wide range of models
using a simple recursive algorithm. This chapter develops the recursion
using elementary facts about nonparametric predictive distributions, and
applies it to an interval censoring problem and to a Markov chain mixture
model. S-Plus code is provided.

1 Introduction

Sampling models that enforce relatively weak assumptions are naturally
favored in many applications, but it is well known that the corresponding
posterior computations can become very intensive when a Dirichlet pro-
cess encodes prior uncertainty in the weakly specified part of the model.
In all but the most simple models, posterior calculations involve a mixture
of Dirichlet processes. As evidenced by companion chapters, advances in
Markov chain Monte Carlo (MCMC) provide critical methodology for en-
abling these calculations, and have opened up a wide range of interesting
applications to Dirichlet-process-based nonparametric Bayesian analysis.

Although MCMC provides the most effective computational solution,
other algorithms can be advantageous in certain situations, and these de-
serve further consideration. In this chapter we discuss a simple recur-
sive algorithm derived by approximating posterior predictive distributions.
Specifically, we review the recent proposal of Newton and Zhang (1996).
It yields approximate Bayes estimates through a simple and efficient al-
gorithm, and may be particularly helpful when the standard MCMC al-
gorithm runs on a very high dimensional space, or if a fast approximate
solution is helpful prior to full MCMC implementation.

In the class of models under consideration, an unobserved random sam-
ple 61..... #, from an unknown distribution G determines the conditional

probability structure of observables Yi.....Y,. We think of §; as real or

vector-valued; and observations can come in various types. The unobserved
random sample may be missing data or it may represent parameters that
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fluctuate across experimental units. The interval censoring in Section 5 has
#; as a survival time and Y; an interval known to contain #;. The random
effect 8; encodes a person-specific transition matrix for a binary time series
Y; in the example in Section 6. Certainly the range of possibilities within
this framework 1s broad.

Bayesian calculations are induced by placing a Dirichlet process prior
on GG. As reviewed in Chapter **, this prior is indexed by a positive finite
measure defined on the range X’ of §;. Of course the prior measure, denoted
mg, contains the Bayesian’s information about G. and may be factored
into a probability measure G representing a prior guess, and a mass a =
mo(X). Among other things, the prior mass a measures the extent to which
new information will change the Bayesian’s opinion.

Conditional on data D = {V;}, and for a measurable subset B C X,
the Bayes estimate F {G(B)|D} coincides with the posterior predictive
distribution G, (B) = P(fn4+1 € B|D) and it is this distribution that we
are trying to calculate.

2 Onn=1

The most simple case motivates the general recursive approximation. The
object of interest is the posterior predictive distribution

Gl(B) = P(HQ S BlYl) (11)
= E{P(0: € Blth) "1}
yl}

e’ 1
= E{ 1—|—aG0(B) + 1+alB(91)
_ a 1
Critical in the above development is the representation of P(6; € B|61) as a
mixture of prior opinion G with information from 6;. A general argument
supporting this claim comes from Polya sequence theory as developed in
Blackwell and MacQueen (1973) and as discussed in Chapter **. A direct
argument for the special case of n = 1 is to recall that the Dirichlet-process
distributed G may be expressed G(B) = >, wrlp(vg) where vy, vs, ...
are independent and identically distributed from Gy and where the wy’s
arise from a simple stick-breaking exercise (Sethuraman, 1994). Specifically,
wy = b1, and for any k > 2, wr = by Hj;ll(l — b;) where by,bs, ... are
independent and identically distributed Beta(l, ) random variates. If Gy
i1s non-atomic, then conditional on G, the probability of a tie, that is that
01 = 05,18 Y, wi. Averaging over G, the tie probability is readily calculated
to be 1/(1 + ). On the other hand, if there is no tie, then #; must be
distributed as Gg, hence (1.1). This argument requires slight elaboration if
Gy has atoms, but (1.1) continues to hold.
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Whereas the measure mg = a(Gy represents uncertainty prior to observ-
ing data, the measure m; = (a + 1)G; encodes updated uncertainties.
We observe that Dirichlet-process based learning occurs by accumulating
measure:

Tt is interesting to note that Bayes rule enters the second term in (1.2).
The corresponding posterior calculations are driven by the prior Gy on 6
(hence the subscripting in Pg). If no information is lost going from #; to
Y1, then the added measure is simply a point mass at 61, and we have the
familiar Polya sequence rule; after sampling with replacement from an urn,
add another bit of mass at the observed value. More generally, the rule
then is to return an entire probability distribution to the urn. It is also
interesting that the so-often criticized discreteness property of G coincides
with the additive accumulation of measure.

3 A recursive algorithm

The idea that predictive uncertainty can be encoded in a single measure,
and that learning occurs by adding measure lead us to the following recur-
sion generalizing (1.2)

mZ(B) = mi_l(B) =+ Pi—l(gi S BD/Z) (13)
for 7 > 1. In terms of probability distributions
GZ(B) = (1 — U;Z)Gl_l(B) + wiPi—l(ei € B|YZ) (14)

where again Bayes rule enters the second term taking G;_1 as the updated
prior distribution for ;. The nominal weights are w; = 1/(a + i), though
we consider some alternatives later.

As constructed, G; is not the exact posterior predictive distribution for
;41 in general, even though it is so when ¢ = 1. It will be only in the case
of no information loss. that is when Y; = ;. Thus the value of (G; depends
on the order in which Y7, ....Y; are processed. What gives some credence
to the recursion is that the dependence on order can be relatively weak.
The suggested algorithm then is to arrange in some order Y7, ..., Y, and
to process them through (1.4) to produce an approximate Bayes estimate
G,. Calculations being O(n), we can easily re-evaluate G, over a random
sample of orderings and average the results.

That (1.4) is order-dependent and approximate for n > 1 may not be ob-
vious though the calculations in the next sections bear this out. In Section 7,
we dissect a particular example with n = 2 to study this phenomenon.
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The proposed recursion has the form of a stochastic approximation algo-
rithm (Kushner and Yin, 1997), one motivated by Dirichlet-process based
learning and one formally residing in a function space.

An important special case of the proposed recursion is the quasi-Bayes
sequential procedure discussed by Smith and Makov (1978) and elsewhere.
The canonical quasi-Bayes problem concerns finite mixture models. In our
notation, f; indicates a component population from which feature data Y;
are generated. The relevant sets B indicate the different component pop-
ulations, and G(B) is the mixing probability, i.e., the probability that an
observation is from population B. Then, with a Dirichlet distribution prior
for the mixing probabilities, a quasi-Bayes procedure arises by approximat-
ing the posterior distribution of these mixing probabilities in a certain way.
The recursive approximation proposed by Newton and Zhang and reviewed
here differs in several respects from the quasi-Bayes recursions, although
they do coincide in the finite mixture case. Aside from a difference in scope,
a general feature of the present recursive approximation is its emphasis on
posterior predictive distributions rather than on posterior distributions over
a parameter space. There are also some issues of implementation special to
the recursion discussed here, as we see in Sections 5 and 6.

4 Interval Censoring

The form of information loss that we have studied most extensively is inter-
val censoring. Rather than observing #; € X we observe an interval Y; C X
that is known to contain ;. Interval censoring arises frequently in statis-
tical practice, and methods exist for obtaining nonparametric maximum
likelihood estimates of G (e.g., Groeneboom and Wellner, 1992; Gentleman
and Geyer, 1994). Less seems to have been done concerning nonparamet-
ric Bayesian approaches to this problem, although the MCMC methods in
Doss (1994) certainly apply. As an illustrative example, we consider in the
next section a much studied data set on cosmetic deterioration after radio-
therapy of the breast. Each patient is monitored periodically, and a time
to deterioration #; is known to occur either in an interval between hospital
visits, or is right-censored and known to occur only beyond some maximum
observed time. A second example concerns the weight at one year of age
of calves on a large ranch in Brazil. At a time of round-up, calves ages are
known and weights are obtained, but the ages at round-up vary around one
year. Assuming that weight is nondecreasing during this period of growth,
the weight at one year 6; is known to exceed the measured weight if calf ¢
is younger than one year, and is known to be smaller than the measured
weight if calf ¢ is older than one year. Data on this example are currently
being compiled.

The recursive formula (1.4) is particularly simple for interval censored
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data:

Gi(B) = (1= w)Gi—s(B) + s S LB DT (15)

Newton and Zhang (1996) reported an interesting theoretical property
of (1.5) in the restricted case that X is a finite set. (In his thesis, Zhang
extended this result to the countable support case.) Suppose that Y1, Y5, ...
are independent and identically distributed random subsets of X (for ex-
ample, a sequence of observed intervals), and that the prior guess G has
support X'. Then, with probability one, the sequence of approximate pre-
dictive distributions GG1. Gy, . .. converges weakly to a distribution G*, say.
which satisfies, for any B C X,
" G*(BNY)

G*(B) _E{ G ) } (1.6)
Randomness on the right comes through the generic random subset ¥ which
1s distributed as the other V;.

Note that (1.6) holds for any distribution of the random subsets and so
further consideration of the problem is needed to connect this to samples
from G. In what some authors call case I and case II interval censoring,
random censoring times partition X' into some number of subsets, and the
observed Y; is that subset which contains a random 6; from G. To simplify
the discussion, suppose that this censoring process partitions X into two
random subsets X = A; U AY, independently from 6;. Then

}/Z:{AZ if 0; € A;

AS if6; € A (1.7)

and (1.6) becomes

= ofs o120

G*(Y)

G*(B N A) G*(BMAS) .,
E{TA)G(A) aeyomd )} .

Certainly one solution to this system is G* = G, owing to the independent
censoring. Multiple solutions may exist depending on the censoring process,
but if this is sufficiently rich, then G is the only solution, and hence the
recursive approximations are consistent.

We present a simple numerical example to illustrate these points. Fig-
ure 1 shows the results of applying recursion (1.5) to random subsets Y; of
X ={0.1,...,49} formed as follows. A random partition of X is formed
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by independent coin tossing on elements of X', with heads going into a set
A; and tails into A$. Then a random 6; is sampled from a distribution ¢
having masses g(f) o tan(cf), where ¢ = 7/100; the cumulative distribu-
tion function is indicated in dotted lines in Figure 1. Data Y7,....Y,, arise
as in (1.7). We applied the recursive approximation (1.5) to these sim-
ulated data, obtaining approximate predictive distributions G, shown in
solid lines in Figure 1. The recursion was evaluated for sets B = [0, f] with
f € X. The reader may be surprised that so many samples are required for
Gy, to approach G, but remember that there is extreme information loss in
this example. Also, cube-root rather than square-root asymptotics govern
standard estimators with such information loss (Groeneboom and Wellner,
1992).

For the calculations reported in Figure 1 we did not use nominal weights
w; = 1/(i 4+ a) suggested by (1.1). Inspection shows that these give rela-
tively high weight to the first observations and quite low weight to later
observations. It turns out that convergence holds as long as the positive
weights satisfy ZZ w; = oc and limj e w; = 0. We use w; = .5i~1/3 in
Figure 1.

5 Censoring Example

The theory outlined in the last section does not say how well the recur-
sive approximations match the actual posterior predictive distributions of
interest. We study in this section a small example concerning the effects
of radiotherapy on cosmetic deterioration of the breast. This example has
been considered by a number of authors. Our goal is not to provide fur-
ther insight into this application, but rather to illustrate how the recur-
sive approximations work in a typical problem. The data are reported in
Table 1 of Finkelstein and Wolfe (1985), in Table 1 of Gentleman and
Geyer (1994), and are available at the first author’s web site through
http://wuw.stat.wisc.edu/. There are n = 46 intervals in the data set.
Associated with each woman in the study is a time #; (days) indicating the
time after radiotherapy treatment that a defined amount of change occurs
in the treated tissue, and the ¢th interval is known to contain 6;.

Figure 2 shows the results of our recursive approximation (1.5) using the
nominal weighting scheme. We take Gy to be an exponential prior with
mean equal to one half a year, and we consider two values of a; 1 and 5
(corresponding to the left and right sides in Figure 2). Panels (a) and (b)
show Gye for 100 random orderings of the data. We use sets B = [0, 6] to
drive the recursion, for # in the grid {0,1,2,...,100,1000}. The outlying
grid point at 1000 days is included to account for mass beyond the range
of data. (On a related point, the nonparametric MLE is typically a sub-
distribution function, with positive mass at an arbitrary point beyond the
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FIGURE 1. Extreme censoring: The true distribution function G is the dotted
curve, and recursive approximations (G, are marked as solid curves after various
sample sizes. Vertical axis is cumulative probability and horizontal axis is X.
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FIGURE 2. Interval censoring, nominal weights: Vertical axis is cumulative prob-
ability and horizontal axis is X" in days in all panels. Panels (a) and (c) refer to
calculations with prior mass o = 1, and panels on the right correspond to a = 5.
Upper panels (a) and (b) show G, calculated for 100 different random orderings
of the n = 46 cases, with dashed line indicating the prior guess Gg. Solid lines
in lower panels are pointwise averages of G, and dotted lines are Gibbs sampler
output.
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FIGURE 3. Interval censoring, square root weights: Descriptions are as in Fig-
ure 2.
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largest censoring time.) The lower panels (¢) and (d) compare the pointwise
average over orderings to a Gibbs sampler approximation. Similar results
are shown in Figure 3, but here we use weights w; = 1/[(1 + a)v/i]. The
average-over-orderings (G, is a very accurate approximation to the correct
posterior predictive distribution in this example.

The Gibbs sampler calculation used for comparison here is an adaptation
of the algorithm given by Escobar (1994) (see Chapter **). It was run
for 500% complete scans, subsampled to produce 500 vectors (61, ..., 046)
drawn approximately from their posterior distribution. Time series output
analysis indicated that this represents an informative posterior sample. The
dotted curves in panels (c) and (d) of Figures 2 and 3 show the marginal
empirical distribution of the entire collection.

Appendix I provides some code to implement the recursion using built-in
functions in S-Plus (e.g., Venables and Ripley, 1994).

6 Mixing Example

In a related class of models. the observed Y; has some conditional density or
mass function p(y|f) given that 6; = #. The general recursion (1.4) may be
expressed in terms of predictive densities instead of distribution functions:

9i(0) = (1 — wi)gi—1(0) + wigi-1(0)p(Yi|0)/ci (1.8)

where ¢; ensures that the posterior distribution on the right integrates to
1, that is ¢; = [ gi—1(0)p(Y;|6) db.

To illustrate (1.8), we consider modeling a set of survey data concerning
employment status of youth in the United States. We confine attention to
a sample of n = 2390 individuals from the National Longitudinal Survey
of Youth, as in Quintana and Newton (1998). Briefly, annual employment
history of each individual is recorded over time for up to thirteen years. For
analysis here, data are summarized into binary indicators of employment
during each year, yielding a binary time series for each individual. We
account for positive correlation by supposing that each ¥; = (Y 1,..., Yik)

is a binary Markov chain. with some person-specific transition matrix

( Pi 1—Pi>.
T—q q;

determined by the parameter vector 6; = (pi,q;). Now we take as prior
assumptions that §; ~ GG, and that G is a Dirichlet process, so the recursive
equations can be invoked to approximate E(G(B)|D) = P(6,4+1 € B|D).
We work with densities, noting that the Markov assumption implies that

in (1.8),

p(Yi|0:) o pi° (1 — ps)torgit* (1 — gz)tre



1. Nonparametric Bayes methods using predictive updating

11

FIGURE 4. Markov chain mixtures: Shown are contours of recursive approx-
imations to the posterior predictive distribution of 6,41 = (pn+1,qn+1), the
non-transition probabilities. The four panels correspond to results from different
random orderings of the n = 2390 binary sequences. Contours define probability
content at the levels (.10, .25,.50,.75, .90, .95, .99).
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where t;  counts the transitions from j to k in the binary time series Y;.

The move from one to two dimensions on # creates no significant prob-
lems. A simple way to invoke the recursion (1.8) is to work on a grid in the
unit square, which we do in the following calculations. (A speedier solution
takes advantage of the smoothness, using Gauss-Legendre quadrature, as
in Tao et al., 1997.) Starting with a uniform prior guess Gy, so go(f) is
constant, we run (1.8) using the weight sequence w; = 5/\/i. We simply
sum over the 100 x 100 grid after each step to calculate ¢;. Figure 4 shows
contours of GG, from four different random orderings of the data. Evidently,
there is very little variation created by the processing order.

For comparison purposes, we also approximate the posterior predictive
distribution of 6,41 using MCMC. We adapted the Markov chain con-
structed in Bush and MacEachern (1996) (and discussed in Chapter **),
running it for 10,000 complete scans after a short burn in period. This
chain moves through the 2n dimensional space of all § values, nearly 5,000
dimensions in this example. Independent runs were performed for differ-
ent values of the prior mass a, and we were encouraged to see reasonably
rapid mixing as measured by simple time-series diagnostics on a few one-
dimensional summaries. The posterior predictive distribution of interest is
obtained from the Monte Carlo sample by collapsing all dimensions and
recording the marginal empirical distribution of the é’s. Little information
is lost if we simply accumulate counts in bins defined by the same 100 x 100
grid used in the recursive approximation. We smoothed by a very small bit
of local averaging this empirical distribution before plotting contours, as
shown in Figure 5.

Generally, there is a close agreement between the MCMC approxima-
tion and the recursive approximation. There certainly are differences. For
small values of a, the recursive approximation oversmooths slightly, missing
what may be distinct modes in the true posterior predictive distribution.
For larger values of a the two approximations agree quite well. We have re-
ported in Figure 5 just an intermediate case, @ = 5. Of course an advantage
of the recursive approximation is its computational simplicity.

A well-studied and somewhat simpler example has observations Y; bino-
mially distributed with success probability ;. Liu (1996) among others has
studied the nonparametric Bayesian analysis of this problem, illustrating
calculations on an interesting set of data on rolling tacks. In Appendix II
we provide S-Plus code to implement the recursive approximation for this
example.

7 Onn=2

It 1s difficult to make a direct comparison of the recursive approximation
with the exact Bayes estimate unless we consider particular numerical ex-
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amples or asymptotic properties. When n = 2, however, a comparison is
quite feasible. To avoid technicalities, we work with densities as in Sec-
tion 6. We can compute P(f3 € B|Y7,Y3) exactly by noting that it equals
the conditional expectation of the prior probability P(f3 € B|f;,f3) given
Y1 and Y3, and then by noting the mixture structure of the Polya sequence
prior. Calculations reveal that this distribution i1s a mixture, with density

aofo(6) + a1 f1(0) + az f2(0) + ar2fr2(0). (1.9)

Here, fo(f) = go(0). the prior guess, f1(f) is the posterior of 6 if we were to
observe Y7 only, f2(f) is the same given Ys, and f12(0) is the posterior of
if Y7 and Y5 are independent and identically distributed from the common
p(y|f). Furthermore, the mixing proportions are

[ a ] p(Y1)p(Y2)
@+ D@+2)] p01.7%)
and a19 = 1 — ag — a1 — as. These are prior predictive probabilities in the
mixing weights. Consistent with our understanding of the role played by
the prior mass a, we see that the fy component dominates for large a and
the f12 component dominates for a near 0. Also, symmetry in Y7 and Y5 is
evident in (1.9).

Now we turn to the recursive approximation (1.8). Obviously,

g1(8) = (1 —w1)go(0) + wigo(8)p(Y1]0)/ca
92(0) = (1 —wa)g1(0) + wa2g1(0)p(Y210)/c2

and so by direct substitution, solving for g5, we get

g2(8) = bofo(0) + b1f1(0) + baf2(0) + bi2f12(0). (1.10)

The recursive approximation produces a mixture of the same type as the
correct answer (1.9), but with different mixing proportions. Using the nom-
inal weights, by = ag, but

a
a+ 2’

ag = a) = das =

a+1 .
b1 = m and b2 = blcQ/CQ,
where we recall that ¢ is the normalizing constant above. Interestingly, ¢
is a slightly different normalizing constant, being [ p(V1|0)p(Y216)go(6) df.
i.e., the normalizer in f12. Also the asymmetry in (1.10) with respect to Y;
and Y5 is clear.

8 Concluding Remarks

Recursive approximations are readily obtained for the posterior predictive
distributions in Dirichlet-process-based nonparametric Bayesian analysis.
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A major advantage of this approach is that computations are extremely
simple and thus can be deployed rapidly in a wide range of applications.
They do not require keeping track of cluster structure among unobserved
# values, and thus have very low coding, storage, and CPU requirements.
As a practical matter, the recursions might be useful as advance tools prior
to full-blown implementation of MCMC. The accuracy of the recursive ap-
proximations is high in the examples studied here and in Newton and Zhang
(1996), although in general this accuracy will depend on the particular data
and prior, and further investigation is certainly warranted. The censoring
examples we have studied exhibit quite high accuracy. In the mixing ex-
amples considered so far accuracy is also high but there is some indication
of oversmoothing by the recursive approximation when the prior mass is
small.
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FIGURE 5. Comparing Methods: The left panel shows an average of distributions
as in Figure 4 from 10 random orderings of the data. The right panel shows an
MCMC approximation when a = 5. Contours are defined as in Figure 4.
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Appendix I: Splus code for censoring example

# Have left endpoints of intervals in a vector
# ‘‘lefts’’ and right endpoints in ‘‘rights’’and
# set ‘‘N’’ equal to the common length.

# Partition support (0,infty) into sets B
grid <- c( seq(0,100,by=1), 1000 )

ngrid <- length(grid)

grt <- grid[2:ngrid]; glt <- grid[1:(ngrid-1)]

# Exponential prior guess and prior sample size
gg <- exp( -glt/(365/2) ) - exp( -grt/(365/2) )
alpha <- 1

# Identify partition elements that may contain
# each survival time

less <- function(x,y){ return( x<y ) }

ma <- t( outer(grt,rights,FUN="1less") )

mb <- outer(lefts,glt,FUN="less")

dmat <- ma&mb

# Recursion yields approximate Bayes estimate gg
weight <- 1/(alpha+1:N) # Nominal weight sequence

ord <- sample( 1:N ) # Process in random order
for( i in 1:N )
{
ok <- dmat[ord[i],] # A1
numer <- rep(0,ngrid-1)
numer [ok] <- gglok] # G(B and A_i)
denom <- sum( numer ) # G(A_1)

gg <- gg*( 1-weight[i] ) + weight[i]*numer/denom
}

# Repeat loop to see variation over orderings.

# Approximate Bayes estimate of distribution function.
plot(grid, cumsum( c(0,gg) ), type="s", x1lim=c(0,100),
xlab="time (days)", ylab="cumulative probability")

17



18 Michael A. Newton, Fernando A. Quintana , Yunlei Zhang

Appendix II: Splus code for binomial mixture
example

# Beckett Diaconis Tack Data

nsuccess <- c( rep(1,3), rep(2,13), rep(3,18), rep(4,48),
rep(5,47), rep(6,67), rep(7,54), rep(8,51), rep(9,19) )

ntrials <- 9; N <- length( nsuccess )

# Support of mixing distribution
grid <- seq(0.01,.99,1length=100); delta <- grid[2]-grid[1]

# Beta prior guess and prior sample size
gg <- dbeta(grid,shapel=.5,shape2=.5) ; alpha <- 1/3

# Binomial likelihood
db2 <- function(y,prob,n){return(dbinom(y,n,prob))?}
lik <- outer(nsuccess,grid,FUN="db2" ,n=ntrials)

# Recursion yields approximate Bayes estimate gg
weight <- 1/sqrt((alpha+l)*(alpha+1:N)) # A weight sequence

ord <- sample( 1:N ) # Process tacks in random order
for( i in 1:N )
{

post <- lik[ord[il,]*gg
post <- ( post/sum(post) )/delta
gg <- gg*x( 1-weight[i] ) + weight[i]#*post

# Repeat loop to see variation over orderings.

# Estimated predictive density for success probability

# of a future tack. Compare to Fig. 2, Liu (1996).

plot( grid, gg, type="1", xlab="tack success probability",
ylab="posterior predictive density" )



