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Multiple hypothesis testing and clustering have been the subject of extensive research in high-dimensional inference, yet these problems
usually have been treated separately. By defining true clusters in terms of shared parameter values, we could improve the sensitivity of
individual tests, because more data bearing on the same parameter values are available. We develop and evaluate a hybrid methodology that
uses clustering information to increase testing sensitivity and accommodates uncertainty in the true clustering. To investigate the potential
efficacy of the hybrid approach, we first study a stylized example in which each object is evaluated with a standard z score but different
objects are connected by shared parameter values. We show that there is increased testing power when the clustering is estimated sufficiently
well. We next develop a model-based analysis using a conjugate Dirichlet process mixture model. The method is general, but for specificity
we focus attention on microarray gene expression data, to which both clustering and multiple testing methods are actively applied. Clusters
provide the means for sharing information among genes, and the hybrid methodology averages over uncertainty in these clusters through
Markov chain sampling. Simulations show that the hybrid method performs substantially better than other methods when clustering is
heavy or moderate and performs well even under weak clustering. The proposed method is illustrated on microarray data from a study of
the effects of aging on gene expression in heart tissue.

KEY WORDS: Bayesian nonparametrics; Conjugate Dirichlet process mixture model; Correlated hypothesis test; DNA microarray; Gene
expression; Model-based clustering.

1. INTRODUCTION

Research in high-dimensional statistical inference has been
motivated in part by problems in genomics, particularly in
the analysis of gene expression measured by microarrays. In
this domain, two statistical problems are usually treated sep-
arately: multiple hypothesis testing and clustering (e.g., Se-
bastiani, Gussoni, Kohane, and Ramoni 2003). Testing usually
aims to detect shifts in the marginal distribution of data on each
gene—shifts that emerge when data are obtained under different
treatment conditions. Any statistical dependence among data
from different genes constitutes a set of nuisance parameters
that need to be accommodated for valid testing but are not of
primary interest. On the other hand, a main goal of clustering is
to group together genes that present highly correlated data; this
correlation may reflect underlying biological factors of interest,
such as regulation by a common transcription factor. Resolu-
tion of these two rather distinct inference problems also must
accommodate the high dimensionality of the parameter space
and the limited amount of data obtained in each dimension. We
propose and study a hybrid method that aims to improve multi-
ple hypothesis testing by explicitly accounting for clusters that
share parameter values.

Both multiple hypothesis testing and clustering have been the
subject of extensive research in high-dimensional statistical in-
ference. The typical multiple testing scenario involves a method
of controlling some type I error rate based on gene-specific test
statistics (e.g., Dudoit, Shaffer, and Boldrick 2003). Random-
ization accommodates among-gene dependence, although the
aim of randomization is not to improve the test statistic, but
rather to properly control an error rate. The false discovery rate
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(FDR) is robust to weak among-gene dependencies (van der
Laan, Dudoit, and Pollard 2004; Storey, Taylor, and Siegmund
2004), and useful methods are available that from a list of p val-
ues produce an error rate–controlled short list of rejected null
hypotheses (Storey 2003; Benjamini and Yekutieli 2001; Ben-
jamini and Hochberg 1995). Many methods have been proposed
to test for differential gene expression; two that we use for com-
parison are EBarrays (Kendziorski, Newton, Lan, and Gould
2003) and LIMMA (Smyth 2004). Both of these methods rest
on specific hierarchical models of microarray data; neither ex-
plicitly accommodates among-gene dependencies. With regard
to clustering, model-based methods (Fraley and Raftery 2002;
Yeung, Fraley, Murua, Raftery, and Ruzzo 2001; Medvedovic
and Sivaganesan 2002) offer certain advantages, although they
have had less impact in genomics than more heuristic schemes
(Eisen, Spellman, Brown, and Botstein 1998).

A bit of notation takes us to the essence of our proposal. Con-
sider data dg for each gene g in a genome of G genes. A vector-
valued parameter θg, together perhaps with some nuisance pa-
rameters, indexes a probability distribution for dg. For example,
with expression data in T treatment conditions, θg might hold
the expected values of expression across the different condi-
tions. The question of whether or not gene g is differentially
expressed among conditions can be phrased as the test of a null
hypothesis H0g concerning possible values of θg. The null hy-
pothesis H0g might enforce equality of the components in the
case of two treatments, for example. Let us define true clusters
by the rule that two genes, g and g′, are in the same cluster if
and only if θg = θg′ . A test of H0g using data dg′ and dg has in-
creased power over a test that uses dg alone, because more data
are in play on a common null, but this benefit presumes knowl-
edge that g′ should to be clustered with g. A delicate issue is
how to achieve power gains when the clusters are estimated.

Section 2 considers a simplified setting, comparing the power
of the standard z test to that of a test using some cluster infor-
mation. Calculations show that the modified procedure is more
powerful when the true cluster is estimated sufficiently well.
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Extending this to practical methodology for microarray data
analysis, we report an approach based on a conjugate Dirich-
let process mixture (DPM) model in Section 3. The model con-
tains structures for both marginal mean shifts related to test-
ing as well as dependencies related to clustering. Our proposed
model, called BEMMA (Bayesian effects model for microar-
rays), accommodates uncertainties in true clusters in providing
gene-specific hypothesis test results, and the conjugate model
formulation leads to reduced complexity of the Markov chain
posterior computations (Sec. 3.3). Section 4 presents a simu-
lation study showing that BEMMA can perform substantially
better than other methods under various degrees of clustering.
Section 5 demonstrates how BEMMA works using microarray
data from a study of stress response in mice, and Section 6 con-
cludes with a discussion.

2. DEMONSTRATION OF THE CONCEPT

Power calculations are available in a general, but simplified
setting. Consider objects labeled 1, . . . ,n with corresponding
parameters θ1, . . . , θn; null hypotheses H0i : θi = 0; and alterna-
tive hypotheses Hai : θi > 0. For testing, suppose that we have
statistics Z1, . . . ,Zn, which are independent and normally dis-
tributed with means {θi} and unit variance. Three testing meth-
ods use varying degrees of cluster information.

Method 1 applies the standard one-sided level α test to each
object i. Thus H0i is rejected when Zi > zα . Its power at i is
1 − �(zα − θi), where �(·) is the standard normal distribution
function and �(zα) = 1 − α.

In contrast, suppose that it is known with certainty which
objects cluster with object i and that this knowledge is coded
with indicators cij = I{θi = θj}. With

Si = Zi +
∑

j �=i

cijZj, (1)

the test statistic Wi = Si/
√

n(i) is normally distributed with
mean

√
n(i)θi and unit variance. Here n(i) = ∑n

j=1 cij is the size
of the cluster containing object i. The level-α test rejects if Wi >

zα . Thus the power of method 2 is 1 − �(zα − √
n(i)θi), which

exceeds that of method 1 unless n(i) = 1, in which case both
methods are equivalent. Depending on the magnitude of n(i),
method 2 can be substantially more powerful than method 1
(especially when θi is small).

Methods 1 and 2 represent extreme states of information
about clustering. In practice, there is uncertainty about cij that
makes method 2 impossible to implement. But, if clustering un-
certainty is low, then some benefits of an approximation, say
method 3, over the basic method 1 would be expected. Suppose
that we have estimates ĉij such that

ĉij =
{

cij with probability 1 − γ

1 − cij with probability γ ,

with the clarification that ĉii = cii = 1. The level of uncer-
tainty is controlled by the error rate γ . Method 3 parallels
method 2, but with cij replaced by ĉij; that is, (1) becomes
Ŝi = Zi + ∑

j �=i ĉijZj, which has mean and variance depending
on the error rate γ , the true clustering, and θ1, . . . , θn. It seems
difficult to develop a general and workable test without impos-
ing some additional structure on the problem. We do so explic-
itly in Section 3, but for a demonstration of concept, here we

provide a very stylized model that allows direct power compar-
isons.

Focus on testing one null H0i : θi = 0. Suppose that when
cij = I{θi = θj} = 0, θj is a random effect drawn independently
from a normal distribution with mean 0 and variance τ 2. Also
suppose that the induced clustering error ĉij is independent of
statistics Z1, . . . ,Zn. By the rules of iterated expectation,

E(Ŝi|θi) = θi
[
n(i)(1 − γ ) + γ

]

and

var(Ŝi|θi) = n(i) − γ
(
n(i) − 1

) + γ
(
n − n(i))

+ γ (1 − γ )
[(

n(i) − 1
)
θ2

i + (
n − n(i))τ 2]

+ γ 2(n − n(i))τ 2.

The test statistic Ŵi = Ŝi/

√
var(Ŝi|θi) is normally distributed

with mean kθi and unit variance, where k = (n(i)(1 − γ ) +
γ )/

√
var(Ŝi|θi), and so the level α test of H0i has power 1 −

�(zα − kθi), which exceeds the power of method 1 when k > 1.
In this stylized example, the clustering error rate γ and nuisance
parameters collaborate through the value k > 0 to affect power.

Figure 1 illustrates trade-offs in using cluster estimation to
improve power. Method 3 is preferred over method 1 only when
the cluster error rate is sufficiently low. However, the cluster
size n(i) and variance τ 2 affect the comparison; larger clusters
can tolerate a higher error rate, and a small τ favors method 3.

We emphasize that these calculations rest on simplifying as-
sumptions to reveal the explicit benefits and weaknesses of hy-
brid methodology. For instance, we assume that ĉi1, . . . , ĉin and
Z1, . . . ,Zn are mutually independent, that a common error rate

Figure 1. Demonstration of Increased Power When Clustering Is Es-
timated Well ( , n(i) = 30, τ = 1; , n(i) = 30, τ = 2; , n(i) = 10,
τ = 1; , n(i) = 10, τ = 2). This figure shows the ratio of the power
of method 3 (which uses an estimated clustering) and method 1 (z test)
versus γ , the error probability that two items are clustered. The four
curves correspond to different values for n(i) (the size of the true clus-
ter of object i) and τ [the standard error of the random effects (θi )]. For
example, when n(i) = 30 and τ = 2, method 3 is more powerful than
method 1 as long as the error rate is clustering is <.22. The other pa-
rameters were set at θ i = .5 and n = 500. Although choosing different
values of the parameters affects the curves, the general pattern is pre-
served.
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γ governs both types of errors, and that a simple random-effects
formulation accommodates the parameters not under test. Lim-
ited as they are, the calculations reveal that testing improve-
ments may be possible if structural assumptions about cluster-
ing are incorporated into data analysis. We pursue an instance
of this approach in the next section.

3. A MODEL FOR MICROARRAY DATA

3.1 Sampling Distribution

Consider the following sampling distribution:

ygtr|μg, τgt, λg ∼ N(ygtr|μg + τgt, λg), (2)

where ygtr is a suitably transformed expression measurement
in replicate r (r = 1, . . . ,Rt) on gene g (g = 1, . . . ,G) in treat-
ment condition t (t = 1, . . . ,T) and N(z|a,b) denotes the uni-
variate normal distribution with mean a and precision b (i.e.,
variance 1/b) for the random variable z. The parameter μg is
a gene-specific mean, the gene-specific treatment effects are
τg1, . . . , τgT , and λg is a gene-specific sampling precision. The
model entails conditional independence of all measurements
given the host of gene-level parameters.

Hypotheses about differential expression of gene g involve
treatment effects τg1, . . . , τgT . Simultaneously, the possibility
of clustering is accommodated by allowing different genes to
have exactly the same treatment effects and precision parame-
ters. Symbolically, genes g and g′ are in the same cluster if and
only if (τg1, . . . , τgT , λg) = (τg′1, . . . , τg′T , λg′). A test for dif-
ferential expression using all genes clustered with gene g may
be more sensitive than a test using only data from gene g, as
suggested in Section 2. The proposed methodology develops
marginal inference on the treatment effects by integrating un-
certainty in the cluster structure.

Another set of nuisance parameters are the gene-specific
means μ1, . . . ,μG. These are not related to differential expres-
sion across treatments [i.e., are not indexed by conditions in
(2)], and we do not use them in defining clusters. These nui-
sance parameters can be integrated away with respect to some
prior, but the resulting model is not conjugate and is computa-
tionally prohibitive. We adopt a more pragmatic data-reduction
approach. Select a reference treatment, say the first one for
convenience. Let dg be a vector with elements ygtr − yg1 for
t ≥ 2, where yg1 is the mean of the reference treatment. Fur-
thermore, let τg = (τg2, . . . , τgT) be a treatment effect vector
and N = ∑T

t=2 Rt be the dimension of dg. Then the distribution
of dg does not involve the nuisance parameters μ1, . . . ,μG,

dg|τg, λg ∼ NN(dg|Xτg, λgM), (3)

where Nc(z|a,b) is an c-dimensional multivariate normal dis-
tribution with mean vector a and covariance matrix b−1 for the
random vector z. In addition, M is an N × N matrix equal to
(I + 1

R1
J )−1, where I is the identify matrix and J is a matrix

of 1’s. Finally, X is an N × (T − 1) design matrix whose rows
contain all 0’s except where the number 1 is needed to pick off
the appropriate element of τg.

3.2 Clustering Through the Prior

We have defined clustering in terms of ties among (τ1, λ1),

. . . , (τG, λG). This is achieved by assuming that (τ1, λ1), . . . ,

(τG, λG) are iid according to an almost-sure discrete, ran-
dom distribution F(τ, λ), which has a Dirichlet process prior
DP(η0F0(τ, λ)). Such a model is known as a DPM model (see
Müller and Quintana 2004 for a review). The mass parameter η0
controls the degree of clustering; values close to 0 induce many
ties, and larger values induce fewer ties. We assume a conjugate
centering distribution F0(τ, λ) to the likelihood in (3),

τ |λ ∼ NT−1(τ |0, λ	0), λ ∼ Ga(λ|α0, β0), (4)

where Ga(z|a,b) is the gamma distribution with mean a/b for
the random variable z and α0, β0, and 	0 are hyperparameters
whose values must be specified. The Appendix provides an em-
pirical Bayes approach for setting the hyperparameters.

Clustering in terms of ties among (τ1, λ1), . . . , (τG, λG) is
more explicit in an alternative parameterization that uses a
set partition π = {S1, . . . ,Sq} of S0 = {1, . . . ,G} and a vec-
tor of model parameters φ = (φS1 , . . . , φSq), where φS is as-
sociated with cluster S. (The partition π satisfies

⋃
S∈π S = S0,

S ∩ S∗ = ∅ for all S �= S∗ and S �= ∅ for all S ∈ π .) If genes g
and g′ are clustered [i.e., (τg, λg) = (τg′ , λg′)], then the integers
g and g′ are in the same cluster S and φS = (τS, λS) = (τg, λg) =
(τg′ , λg′).

3.3 Sampling From the Posterior

Inference is based on the posterior distribution p((τ1, λ1),

. . . , (τG, λG)|d1, . . . ,dG). Much research in Bayesian nonpara-
metrics is devoted to computational techniques for the posterior
distribution of DPM models. Quintana and Newton (2000) and
Neal (2000) have given reviews and comparisons of methods
for fitting DPM models.

Using the set partition representation, the posterior distribu-
tion can be factored as p(φ|π ,d1, . . . ,dG)p(π |d1, . . . ,dG). The
distribution p(φ|π ,d1, . . . ,dG) is the product over clusters,

p(φ|π ,d1, . . . ,dG) =
∏

S∈π

p(τS|λS,dS)p(λS|dS),

with dS = {dg ∈ S} and

τS|λS,dS ∼ NT−1
(
τS|	−1

|S| D1, λS	|S|
)

and
(5)

λS|dS ∼ Ga
(
λS|α|S|, β1

)
,

where |S| is the number of integers in S and

	k = 	0 + kX′MX, αk = α0 + kN

2
, (6)

β1 = β0 + 1

2
D2 − 1

2
D′

1	
−1
k D1, (7)

D1 =
∑

g∈S

X′Mdg, and D2 =
∑

g∈S

d′
gMdg. (8)

Integrating out the model parameters φ = (φS1 , . . . , φSq) re-
duces the problem to one of running a Markov chain over
the posterior clustering distribution p(π |d1, . . . ,dG). This tech-
nique was shown by MacEachern (1994) and MacEachern,
Clyde, and Liu (1999) to greatly improve the efficiency of
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Gibbs sampling and sequential importance sampling. Given the
partition π , the model parameters can be sampled from (5).

Sampling from the posterior clustering distribution p(π |d1,

. . . ,dg) is computationally challenging but feasible for even
large microarray datasets. We recommend using the conjugate
Gibbs sampler (MacEachern 1994; Neal 1992) in conjunction
with a merge-split sampler of Jain and Neal (2004) or Dahl
(2003). (For algorithmic details, we refer the reader to those
references as well as to Neal 2000.) It suffices to say that in the
context of this model, all of these algorithms rely on

p(g ∈ S) = cn exp
(
α|S| logβ1 − α|S|+1 logβ2

)
, (9)

where

β2 = β0 + 1

2
D2 + 1

2
d′

gMdg

− 1

2
(X′Mdg + D1)

′	−1
|S|+1(X

′Mdg + D1)

and

cn = �(α|S|+1)

�(α|S|)

√
|	|S|||M|

|	|S|+1|(2π)N

(see Dahl 2004 for details on the derivation).

3.4 Inference

The posterior distribution p((τ1, λ1), . . . , (τG, λG)|d1, . . . ,

dG) determines all inferences about expression changes and
clustering of the genes. To illustrate inference on differential
expression, consider an experiment with T = 2 treatments and a
differential expression parameter qg = (τg1 − τg2)

2. The Bayes
estimate of qg under squared error loss is the posterior mean,
which is computable from the Markov chain output. Other pa-
rameters are suitable for different experimental designs. For ex-
ample, one-way layouts might use qg = ∑

i �=j(τgi − τgj)
2, and

time course data with T/2 periods and two conditions might
suggest

qg =
∑

i∈{1,3,...,T−1}

(
τgi − τg(i+1)

)2
, (10)

where odd values of i correspond to the first treatment and in-
dices i and i + 1 indicate the same time period. Section 5 gives
another score in a different setting. As implemented, BEMMA
does not permit the computation of p values or posterior prob-
abilities of point null hypotheses. Instead, inference for altered
expression is derived from the posterior distribution of qg and
involves ranking genes according to their evidence of differen-
tial expression.

Several methods for clustering inference in DPM models
have been proposed. For each π among π (1), . . . ,π (B) sampled
by the Markov chain, an association matrix δ(π) of dimension
G×G can be formed whose (i, j) element is δi,j(π), an indicator
of whether (τi, λi) = (τj, λj). Elementwise averaging yields a
matrix of estimates p̂i,j of the pairwise probabilities that objects
are clustered. These pairwise probabilities can be used to, for
example, identify genes exhibiting similar fluctuations or to find
a point estimate of the clustering. Medvedovic and Sivaganesan
(2002) used it as a distance matrix in hierarchal agglomerative
clustering. Dahl (2006) introduced the least squares clustering
estimator, which selects the observed clustering that minimizes

the sum of squared deviations of its association matrix δ(π)

from the pairwise probability matrix

πLS = arg min
π∈{π (1),...,π (B)}

G∑

i=1

G∑

j=1

(δi,j(π) − p̂i,j)
2. (11)

This method minimizes of a posterior expected loss of Binder
(1978) with equal costs of clustering mistakes. Section 5 gives
examples of clustering inference.

4. SIMULATION STUDY

This section describes a simulation study comparing
BEMMA with two other methods for differential gene expres-
sion. We find that when the clustering signal is weak or nonex-
istent, BEMMA still performs well, despite the added burden
of searching for cluster structure. In the presence of moderate
to heavy clustering, BEMMA is able to take advantage of this
structure and deliver improved inference compared with com-
peting methods.

4.1 Synthetic Data

Section 2 suggested that the size of clusters influences the
relative power of methods exploiting clustering versus those not
using clustering information. Thus the amount of clustering in
the simulated datasets will play a key role in how well BEMMA
performs. We generated datasets of 1,200 genes under 4 de-
grees of clustering: heavy clustering (12 clusters of 100 genes
per cluster), moderate clustering (60 clusters of 20 genes per
cluster), weak clustering (240 clusters of 5 genes per cluster),
and no clustering. For each degree of clustering, we generated
30 independent datasets.

The study design is a time course experiment comparing
two treatment conditions over three time points. Interest lies in
finding genes that are differentially expressed between the two
treatment conditions at one or more time points.

The genes in a given cluster share the same model parameters
and thus are either all differentially expressed or all equivalently
expressed. Clusters of equivalently expressed genes have equal
treatment effects for the two treatments within a time point.
Clusters of differentially expressed genes have independently
sampled treatment effects at one or more of the time points. In
all cases, the precision λ for a cluster is drawn from a gamma
distribution with mean 1 and variance 1/10, the treatments ef-
fects τ1, . . . , τ6 for a cluster are drawn independently from a
normal distribution with mean 0 and variance 1/(9λ), and the
gene-specific shift μ is drawn from a normal distribution with
mean 7 and variance 1.

Regardless of the degree of clustering, each dataset contains
300 genes that are differentially expressed. A third of the dif-
ferentially expressed clusters have unequal treatment effects at
only one time point, a third have unequal treatment effects at
two time points, and the remaining third have unequal treat-
ment effects at all three time points. Finally, the observed data
are drawn as specified in (2), with the first time point having
five replicates per treatment and the other time points having
three replicates.
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4.2 Differential Gene Expression Results

We applied BEMMA to the simulated datasets, where the hy-
perparameters were set as recommended in the Appendix. For
each dataset, we ran two Markov chains, one with all genes ini-
tially together in one cluster and the other with each gene ini-
tially in its own cluster. (Sec. 5 discusses the model’s sensitiv-
ity to changes in the hyperparameters and describes diagnosing
convergence of the Markov chain.) After a burn-in period, we
ran a Markov chain for 2,000 iterations consisting of a Gibbs
scan and a merge-split update of Dahl (2003). Because the auto-
correlation time (Ripley 1987; Kass, Carlin, Gelman, and Neal
1998) of the number of clusters was about 7, we effectively
had about 300 independent samples per chain. Each gene was
ranked by evidence of differential expression using the score in
(10).

For comparison purposes, we applied two other methods for
detecting differential gene expression to the simulated data:
EBarrays (Kendziorski et al. 2003) and LIMMA (Smyth 2004).
The EBarrays procedure computes the probability of differen-
tial expression for each gene using a mixture model formu-
lation. These probabilities were used to rank the genes. The
LIMMA procedure is set in the context of a general linear
model and provides, for each gene, an F statistic to test for dif-
ferential expression at one or more time points. These F statis-
tics were used to rank the genes.

We used the proportion of false discoveries to compare the
three methods. For each of the 30 independent datasets, the
methods provided a rankings of the genes in terms of their per-
ception of evidence for differential expression. These lists were
truncated at 1,2, . . . ,200 genes. At each truncation, we com-
puted the proportions of false discoveries and averaged them
over the 30 datasets. We also computed the standard errors of
means, and formed 95% confidence intervals based on the t-
distribution. The results are shown in Figure 2.

Under heavy clustering, BEMMA did substantially better
than the other methods. This demonstrates that BEMMA is able
to exploit the clustering structure to obtain a more sensitive pro-
cedure than methods that do not address clustering. Under mod-
erate clustering, BEMMA also outperformed its peers, albeit to
a lesser extent because there is less information to exploit with
more moderate clustering. Under weak clustering, BEMMA did
as well as its peers. Finally, when no clustering was present in
the data, the principle motivation of BEMMA was gone, yet
BEMMA did not perform much worse than its peers (especially
after 100 discoveries).

Whereas these simulation results show the potential for large
gains when exploiting clustering, it should be noted that this
is just one simulation study. Different parameters values and
alternative study designs will yield different relative gains from
using BEMMA. In our experience, the most important factor is
the size of the true clusters in the data-generating mechanism.
BEMMA works best when there is appreciable clustering. In
simulation designs where clustering is less prevalent or more
difficult to detect (e.g., large within-cluster variances relative
to the between-cluster variance), the relative gains of BEMMA
will be reduced.

5. EXAMPLE

We demonstrate the proposed method using data from a repli-
cated, multiple-treatment microarray experiment. This example
provides a rich context in which to show the flexibility and fea-
sibility of BEMMA. We discuss computational issues, such as
burn-in and sampling length, as well as a check on the fitted
model and its sensitivity to the hyperparameters.

5.1 Data

In the study under consideration, the researchers were inter-
ested in the transcriptional response to oxidative stress in mouse
heart muscle and how that response changes with age. Young
(5 months) and old (25 months) mice were treated with an in-
jection of paraquat (50 mg/kg). Mice were sacrificed at 1, 3,
5, and 7 hours after paraquat treatment or were sacrificed hav-
ing not received paraquat (constituting a baseline); thus T = 10
experimental conditions were studied. Details of the experi-
ment have been provided by Edwards et al. (2003). All treat-
ments were replicated three times. Gene expression was mea-
sured on G = 10,043 probe sets using high-density oligonu-
cleotide microarrays manufactured by Affymetrix (MG–U74A
arrays). The data was background-corrected and normalized us-
ing the robust multichip averaging (RMA) method of Irizarry
et al. (2003) as implemented in the affy package of BioCon-
ductor (Gentleman et al. 2004). Because RMA produces ex-
pression values on a log scale, the treatment effects τg1, . . . , τgT

also should be interpreted on the log scale.

5.2 Nuisance Parameters

The nature of microarray expression data is such that gene-
specific means μ1, . . . ,μG are nuisance parameters. It is help-
ful to remove then from the analysis (Sec. 3.1). Figure 3, for
example, plots expression values from two different probe sets.
They exhibit similar contrasts over time, but clearly have dif-
ferent means. Our method would consider them to probably be-
long to the same cluster (i.e., to have the same treatment ef-
fects and precision), despite the constant shift between them. In
fact, these two probe sets correspond to the same gene. Constant
differences may be due to aspects of the biology (e.g., mRNA
degradation) or hybridization efficiency, rather than to real dif-
ferences in transcript abundance.

5.3 Sampling From the Posterior

The BEMMA software (http://www.stat.tamu.edu/∼dahl/
bemma) was used to sample from the posterior distribution. The
hyperparameters α0, β0, 	0, and η0 were set according to the
Appendix, resulting in the prior and posterior expected number
of clusters being 98 (i.e., mass parameter η0 = 15).

One iteration of the Markov chain consisted of a Gibbs scan
(accounting for more than 97% of the CPU time) and five se-
quentially allocated merge-split proposals of Dahl (2003). Eight
Markov chains were run from one of two extreme starting clus-
terings: each gene belonging to its own cluster (i.e., 10,043
clusters) or all genes belonging to a single cluster. Using clus-
tering at these polar extremes improves the chances of detect-
ing nonconvergence. Diagnostic plots (not displayed) appeared
to indicate that the eight chains converged quickly. More for-
mally, using all eight chains, we applied the Gelman and Rubin
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(a) (b)

(c) (d)

Figure 2. False Discovery Rates for BEMMA and Two Other Methods Under the Four Degrees of Clustering; (a) Heavy, (b) Moderate, (c) Weak,
and (d) None ( BEMMA; LIMMA; EBarrays). The shaded regions give 95% pointwise confidence bands.

(1992) convergence diagnostic for the number of clusters. Fig-
ure 4 shows the evolution of this convergence diagnostic with
an increasing number of iterations. The diagnostic was close to
1.0 at around 10,000 iterations; thus the first 10,000 iterations
from each chain were discarded as burn-in. Applying this burn-
in to all 8 chains and then thinning by a factor of 10 yielded
a total of 23,994 samples. Figure 5 shows that autocorrelation

Figure 3. Gene-Specific Shift in Genes Likely to Be Clustered. This
figure shows background-corrected and normalized expression of two
probe sets exhibiting similar contrasts over time, but clearly having dif-
ferent means. Our method would probably consider them to belong to
the same cluster.

function of the number of clusters from the thinned samples
decayed quickly.

5.4 Differential Expression

Genes with biologically interesting patterns can be identified
using the posterior samples. Edwards et al. (2003) observed that
immediate early-response genes showed increased expression
after paraquat injection. One of the genes that they studied was
zfp36, the estimated treatment effects and 95% credible inter-
vals of which are shown in Figure 6. Indeed, the expression of
zfp36 significantly increased in response to the paraquat. Fur-
ther, there was an interaction between age (old vs. young) and

Figure 4. Evolution of the Gelman and Rubin (1992) Convergence
Diagnostic for the Number of Clusters ( median; 97.5%). The
diagnostics is close to 1.0 around 10,000 iterations.
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Figure 5. Autocorrelation Function of the Number of Clusters Based
on the 1-in-10 Thinned Samples. The dashed lines represent 95% con-
fidence intervals.

time (baseline vs. 1 hour). We found that other immediate early-
response genes exhibited similar behavior to that found by Ed-
wards et al. (2003).

Other genes that exhibit a significant age-associated response
to the paraquat treatment should have a large posterior mean for
the score

q = |(τ4 − τ3) − (τ2 − τ1)|, (12)

where τ1 is the treatment effect for young mice at baseline, τ2

is old at baseline, τ3 is young at 1 hour, and τ4 is old at 1 hour.
Sorting the posterior mean scores, genes showing a large differ-
ence between ages at 1 hour compared with the baseline time
point can be identified.

5.5 Clustering

The posterior samples also can be used to assess the cluster-
ing of genes. The posterior distribution of the number of clus-
ters was nearly normal with mean 98 and standard deviation 4.5.
The least squares clustering (Sec. 3.4) had 104 clusters (rang-
ing in size from 1 to 743 genes), with a median cluster size of
57. Among the 500 genes with the largest mean scores in (12),
84% fell into 1 of the 9 clusters from the least squares cluster-
ing. The average expression profile for all genes in these nine
clusters are displayed in Figure 7.

Figure 6. Estimated Treatment Effects for a Probe Set With a Large
Interaction Between Age (old vs. young) and Time (baseline vs. 1 hour).
The plot also displays 95% credible intervals.

As an example of the analysis of clustering results, we con-
sidered cluster I in Figure 7, to which 152 probe sets are as-
sociated. The plot shows a persistent, paraquat-independent
reduction in old tissue compared with young tissue. Enrich-
ment analysis (e.g., Newton, Quintana, den Boon, Sengupta,
and Ahlquist 2007) showed that Gene Ontology categories
GO:0042773 and GO:0005746, which are related to mitochon-
drial electron transport, were enriched for genes in this cluster.
This is consistent with related findings in rats (Sandhu and Kaur
2003).

Also consider cluster H, whose genes showed increased ex-
pression as a response to the paraquat stress. Note the similar-
ity of Figure 6 for gene zfp36 (contained in cluster H) and the
panel for this cluster in Figure 7. Also contained in cluster H
was GADD45β , which was identified by Takekawa and Saito
(1998) as encoding for proteins that bind to MAP3K4, a protein
known to mediate activation of both p38 and JNK pathways in
response to external stimuli. A more detailed discussion of clus-
ter analysis for this example has been given by Dahl (2006).

5.6 Model Checks

As a check of the model fit, we used a multivariate exten-
sion of the chi-squared discrepancy measure of Gelman, Carlin,
Stern, and Rubin (1995, p. 172),

T =
G∑

g=1

(dg − Xτg)
′λgM(dg − Xτg).

The associated posterior predictive p value for this model di-
agnostic was .65, which is far from 0 or 1, suggesting that the
fitted model is consistent with the data.

Although the Appendix provides a default procedure for set-
ting the hyperparameters, it is important to understand how de-
viations from these recommendations affect posterior inference.
To explore robustness, we performed a sensitivity analysis fo-
cusing on the prior sample size n0 and the prior expected num-
ber of clusters. (Both of these parameters are described in the
App.) For the purposes of this sensitivity analysis, a 1-in-10
subset of the paraquat dataset was obtained, and data from hours
5 and 7 were dropped. Three values for the prior sample size n0

were considered (.5, 1, and 3), and three values for the prior
expected number of clusters were considered (25, 40, and 65).
The default values for this dataset are a prior sample size n0 of
1 and a prior expected number of clusters of 40. For every com-
bination of the these hyperparameters, a Markov chain was run
for 50,000 iterations (of which the first 10,000 were discarded).
From each chain, the 50 genes with the highest posterior mean
for the score in (12) were recorded.

The degree to which the same 50 genes were identified was
used as an indication of robustness to the prior. Table 1 shows
the percentage of genes identified by both the default model and
models under the alternative settings. In all cases, the lists of
the top 50 genes had at least 80% of the genes in common. The
expected number of clusters (controlled by the mass parameter
η0) seemed to be more robust than the prior sample size n0,
suggesting that this parameter be given extra attention when
setting its value.
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Figure 7. Average Expression Profiles for All Genes in Nine Clusters of Interest. These clusters contain 84% of the 500 genes with the largest
mean scores in (12).

6. DISCUSSION

Clustering information can be exploited to improve the sensi-
tivity of correlated hypothesis tests, as we have demonstrated in
principle with a toy example (Sec. 2) and empirically in a sim-
ulation study of new methodology for microarray expression
data. The model behind the BEMMA methodology contains pa-
rameters for shifts in marginal expression, as well as parameters
for clustering that indicate the genes whose data should to be
combined. BEMMA represents an empirical Bayesian method-
ology. It goes beyond related methods for microarray data by
explicitly accommodating among-gene dependence through la-
tent clusters. Genes in the same cluster share values of parame-
ters affecting their expression. We use state-of-the-art Markov
chain Monte Carlo schemes to efficiently integrate the unknown
clustering. Simulation results show that BEMMA can take ad-

Table 1. Sensitivity of the Ranking of Genes to the Hyperparameters

Prior expected number of clusters

Prior sample size 25 40 60

.5 88% 88% 88%
1.0 100% 100% 98%
3.0 78% 78% 80%

NOTE: Under the default settings (a prior sample size of 1.0 and a prior expected number of
clusters 40), the 50 genes with the largest posterior mean score in (12) were identified. For
other values of the hyperparameters, the top 50 genes were identified. This table shows the per-
centage of genes that were identified by both the default model and model under the alternative
settings.

vantage of among-gene dependence to improve the identifica-
tion of differentially expressed genes.

Our focus has been on taking advantage of clustering to im-
prove testing and gene-specific inferences, but naturally the
same machinery can be used to infer the latent cluster struc-
ture itself. Using the synthetic data in Section 4, Dahl (2006)
compared BEMMA with several clustering methods by way of
the adjust Rand index (Rand 1971; Hubert and Arabie 1985).
BEMMA was able to estimate the true clustering about as well
as MCLUST (Fraley and Raftery 1999, 2002) and much bet-
ter than hierarchical clustering (Hartigan 1975). Further, the
model-based nature of BEMMA allows one to assess the vari-
ability in the estimated clustering and provides quantities such
as the pairwise probabilities that two genes are clustered.

A common definition in genomics is that clustered genes
simply have correlated expression profiles over treatments. But
we have defined clustering in terms of equality among latent pa-
rameters in a specific nonparametric Bayesian model. We take
the point of view that parameters come from an infinite mix-
ture of point distributions and that within a cluster, expression
values differ from one another due only to sampling variabil-
ity. Measurements are (marginally) exchangeable within clus-
ters and independent between clusters. It should be recognized
that if two genes are correlated but have different expression pa-
rameters, then BEMMA may not put them in the same cluster.

The proposed model is a particular DPM model that is con-
jugate and thus more computationally efficient than a similar
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nonconjugate DPM model. Improved performance in terms of
the FDR might be expected if the model were more flexible (by,
say, putting prior distributions on the hyperparameters) or did
not rely on the specification of a reference treatment. As com-
puting power rapidly expands, such extensions are likely to be
practical in the near future.

APPENDIX: SETTING THE HYPERPARAMETERS

Here we give the recommend method for setting the hyperparame-
ters η0, α0, β0, and 	0 of the proposed model. Note that (6) implies
that 	n+1 = 	n + X′MX and αn+1 = αn + N

2 ; that is, for each addi-

tional observation, 	n and αn are incremented by X′MX and N
2 . Thus

is natural to set the hyperparameter 	0 to n0X′MX and the hyperpara-
meter α0 to n0

N
2 , for n0 > 0 representing the number of observations

that prior experience is worth. By default, we recommend n0 = 1.
As shown in (2) and (4), the hyperparameters α0 and β0 are the

shape and rate parameters of the gamma prior distribution for the pre-
cision of an observation in a given cluster. We recommend setting α0
and β0 such that the mean of this distribution, α0/β0, matches a data-
driven estimate of the expected precision for a cluster. Equivalently,
in terms of the standard deviation, choose α0 and β0 so that

√
β0/α0

matches the estimated standard deviation for a cluster. The software
implementation of BEMMA uses the median standard deviation across
all probe sets if no value is specified by the user. Because α0 = n0

N
2

(from the previous paragraph), specifying the expected standard devi-
ation implies a value for β0.

The final hyperparameter to consider is the mass parameter η0,
which affects the distribution on the number of clusters. The mass pa-
rameter in DPM models has been well studied (Liu 1996).

From Antoniak (1974), the prior expected number of clusters is
K(G) = ∑G

g=1 η0/(η0 + g − 1). In some DPM model applications,
the mass parameter is set to 1.0. This seems overly optimistic for mi-
croarray experiments because, for example, it implies a prior belief
that there are fewer than 12 clusters in a dataset with 50,000 genes.
We use an empirical Bayes approach that sets η0 such that the poste-
rior expected number of clusters equals the prior expected number of
clusters. The software implementation of BEMMA provides this op-
tion.

[Received March 2005. Revised January 2007.]
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