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1 On data analyses

1.1 T2D example

Data were obtained as file DIAGRAM.metabochip.txt from
http://http://diagram-consortium.org/downloads.html

on September 5, 2013. These refer to the stage 2 metabochip summary statistics, and provide
summary data on 127903 SNPs. Point estimates {Xi} were computed as logarithms of the
reported odds ratios; standard errors {σi} were computed as 1/4 of the length of the associated
95% confidence intervals. Recognizing that a large number of the SNPs may be null (true log
odds of zero), we filtered the data by first fitting a mixture model:

Xi ∼
{

Normal(0, σ2
i ) w.p. π0

Normal(µ, τ 2 + σ2
i ) w.p. 1− π0

By EM algorithm we estimated π̂0 = 0.801, µ̂ = 0.007, τ̂ 2 = 0.0014. The 80/20 mixing of
null/non-null SNPs is comparable to the mixing rate estimated by other means in Morris et
al. (2012). The EM algorithm generated SNP-specific posterior probabilities of non-null effect.
We experimented with several selection schemes for producing a reduced set of SNPs that were
probably non-null. Data illustrated in Figures S1 and 1 (main paper) correspond to a single
instance of sampling from these posterior non-null probabilities to obtain a set of 25,558 SNPs
that are probably non-null, and thus associated with T2D.

1.2 RNAi example

We started with the 984 genes (unique Entrez gene ID’s) identified in the Hao et al. (2013)
meta-analysis as having been detected in at least one genome-wide RNAi screen for influenza-
virus association, as these data are available in the R package metaflu (version 1.0) associated
with Hao et al. (2013). We utilized version 2.8.0 of Bioconductor package org.Hs.eg.db to
associate the 984 influenza-associated genes with gene ontology (GO) gene sets (GO terms).
Fully 17959 human genes were annotated to at least one GO terms, and fully 16572 GO terms
were available, though we restricted attention to 5719 terms, all those annotating between 10
and 1000 human genes. The median set size in this class is 32 genes; the mean rate of influenza-
association is 0.07. Maximum likelihood was used to estimate the shape parameters of the Beta
distribution presumed to govern the fluctuation over sets in their underlying enrichment levels.

1.3 Pyeon example (Fig S8)

We started with a 54675× 84 array of gene expression values {Yij} corresponding to measure-
ments on 33 case subjects and 51 control subjects, as reported in Pyeon et al. (2007). The
effect size estimates {Xi} were computed by using the differences between the sample means in
the case group (HPV+) and the sample means in the control group (HPV-) (i.e., Xi = Ȳi1− Ȳi2
for each i). The associated standard errors {si} were computed by

s2i =
1

82

( 1

33
+

1

51

)( ∑
j∈case

(Yij − Ȳ1.)2 +
∑

j∈control

(Yij − Ȳ2.)2
)
. (1)
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Figure S1: Type-2 diabetes example: From the full complement of 127,903 SNPs used in the
second stage meta-analysis from Morris et al. 2012, we filtered to a reduced set of 25,558
SNPs that are probably associated with T2D, and plot 3371 of those having highest observed
association (log odds exceeding 0.05). These estimates are based on genotype data from 22,669
T2D cases and 58,119 control subjects.
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Figure S2: RNAi example: From a recent version of Gene Ontology, 5719 terms (gene sets)
annotate between 10 and 1000 human genes. Shown is a summary of the integration of these
terms with the list of 984 genes detected by RNAi as being involved in influenza virus replication
(from Hao et al. 2013). The x-axis shows set size and the y-axis shows the proportion of the
set that was detected by RNAi. The plot is restricted to 3626 sets for which the observed
proportion exceeds 5%.
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The parameters of interest (θ1, . . . , θn) were modeled as a mixture of two t-distributions
with 3.5 degrees of freedom (i.e., given a mixture label Zi = z, θi ∼ t3.5(µz, σ

2
z) with z ∈ {1, 2}

and P (Zi = z) = πz). The notation tdf (µ, σ
2) is used to denote the distribution of a random

variable W such that W = µ + σT where T follows a standard t-distribution with 3.5 degrees
of freedom. Using an EM algorithm, we estimated the hyperparameters as

(µ̂1, µ̂2) = (0.337,−0.128), (σ̂1, σ̂2) = (0.189, 0.098), (π̂1, π̂2) = (0.24, 0.76). (2)

To generate samples from the posterior distributions θi|Di, we used a Gibbs sampling approach
employing the following full-conditionals

θi|Xi, u
2
i , Zi = z ∼ N

( Xi

1 + u2i s
2
i

+
µzu

2
i s

2
i

1 + u2i s
2
i

,
s2i

1 + u2i s
2
i

)
u2i |Xi, θi, Zi = z ∼ Gamma

(df + 1

2
,
(θi − µz)2 + dfσ2

z

2

)
Zi|Xi, θi, u

2
i ∼ p(θi|u2i , Zi = z)p(u2i |Zi = z)πz, (3)

where df = 3.5 and Gamma(α, β) denotes a random variable with density f(x) = βαxα−1e−βx/Γ(α).
Using the above Gibbs procedure (with a burn-in of 100 iterations), computation of r-values
was then based on MCMC output which, for each unit, contained 2000 draws from the targeted
posterior.

Results are summarized in Figure S9.

1.4 NBA example, mid-season analysis

Table S1 reports the leading free-throw shooters part way into the 2013-2014 regular season (at
the end of December, 2013). Columns as in Table 2, main paper, which shows leaders after the
entire season. Figure S3 used the mid-season rankings as well as true {θi} vectors simulated
from the end-of-season posterior to validate the r-value ranking.

2 On threshold functions and Table 1 (main)

2.1 Posterior expected rank

In the notation of the main paper, the (relative) rank of unit i’s parameter θi (from the top) is

ρi =
1

n

n∑
j=1

1[θi ≤ θj].

Various authors have recommended to use posterior expected rank ρ̂i = E(ρi|data) as the basis
of a ranking method:

ρ̂i =
1

n

n∑
j=1

P (θi ≤ θj|Di, Dj)

where Di and Dj are the data available on units i and j, respectively. For any fixed Di, and in
the limit of a large system n −→∞,

ρ̂i −→a.s. P (θi ≤ θ|Di) (4)
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Figure S3: Validation experiment, NBA example, shows that r-values computed mid-season
produce a ranking that is in better agreement with the true ranking of top players, on the
average conditional upon end-of-season data, than rankings produced by maximum likelihood
(MLE), posterior mean (PM) or posterior expected rank (PER).
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Table S1: Leading free-throw shooters, by end of December 2013, in 2013-2014 regular NBA
season.

player i yi ni FTP PM RV MLE.R PM.R RV.R
Ryan Anderson, PF 54 56 0.964 0.904 0.002 23 1 1
Brian Roberts, PG 18 18 1 0.862 0.003 11.5 12 2
Mike Harris, SF 26 27 0.963 0.867 0.006 24 11 3
Dirk Nowitzki, PF 124 135 0.919 0.895 0.008 30 2 4
Manu Ginobili, SG 63 68 0.926 0.883 0.009 29 4 5
Kevin Martin, SG 144 158 0.911 0.892 0.013 35 3 6
J.J. Redick, SG 51 55 0.927 0.877 0.015 28 5 7
Zaza Pachulia, C 42 45 0.933 0.873 0.017 26 7 8
Trey Burke, PG 41 44 0.932 0.871 0.019 27 8 9
O.J. Mayo, SG 61 67 0.91 0.871 0.023 36 9 10
Damian Lillard, PG 155 174 0.891 0.875 0.028 44 6 11
Reggie Jackson, PG 54 60 0.9 0.859 0.028 39 13 12
Jeremy Lamb, SG 18 19 0.947 0.84 0.029 25 25 13
Greivis Vasquez, PG 44 49 0.898 0.852 0.033 41 15 14
Ray Allen, SG 42 47 0.894 0.847 0.038 43 19 15
Travis Outlaw, SF 22 24 0.917 0.836 0.039 31.5 27 16
Kevin Durant, SF 255 290 0.879 0.87 0.04 52 10 17
Marc Gasol, C 54 61 0.885 0.849 0.043 49 17 18
Jimmer Fredette, PG 9 9 1 0.82 0.045 11.5 44 19
Khris Middleton, PF 47 53 0.887 0.846 0.045 48 21 20
Shaun Livingston, PG 60 68 0.882 0.849 0.046 51 16 21
D.J. Augustin, PG 21 23 0.913 0.832 0.048 33.5 32.5 22.5
Derek Fisher, PG 21 23 0.913 0.832 0.048 33.5 32.5 22.5
Jordan Crawford, SG 76 87 0.874 0.848 0.055 54 18 24
E’Twaun Moore, PG 19 21 0.905 0.824 0.06 37 39 25

where θ is a random draw from F . To see why, consider the object Uj = P (θi ≤ θj|Di, Dj) as a
random variable induced by Dj, and considering Di as fixed. Then ρ̂i is nothing but an average
of these Uj’s, and so by the strong law of large numbers we get convergence of ρ̂i to E(Uj|Di),
which, upon reflection, is seen to equal the right hand side of (4).

A substantive point of interest is the notion that while ranking is essentially a comparative
exercise (comparing each θi with all other θj), in large systems the comparison amounts to
checking θi against a distribution estimated from the data.

In the canonical normal/normal model of Section 2.1, we get:

P (θi ≤ θ|Xi, σ
2
i ) = P

(
Zi ≤

θ −Xi/(σ
2
i + 1)√

σ2
i /(σ

2
i + 1)

∣∣∣∣∣Xi, σ
2
i

)

where Zi is standard normal. By differencing, this becomes a probability for a single normal,
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and thus:

P (θi ≤ θ|Xi, σ
2
i ) = Φ

(
−Xi√

(σ2
i + 1)(2σ2

i + 1)

)
. (5)

The left hand side of (5) is the ranking variable for the posterior-expected-rank method; to
obtain the corresponding threshold function, we fix the left side at some constant (depend-
ing on α) and replace Xi on the right side with tα(σ2

i ), from which we obtain tα(σ2) =
uα
√

(2σ2 + 1)(σ2 + 1). We reiterate that this threshold is quite similar to uα(σ2 + 1) cor-
responding to ranking by posterior mean Xi/(σ

2
i + 1).

2.2 Bayes factor

The BF threshold reported in Table 1 is admittedly an approximation to the most suitable
one for this model (the ideal one is not analytically tractable). We imagine ranking units by
evidence against a null as measured in the Bayes factor:

BF =
P (data|θi 6= 0)

P (data|θi = 0)
.

Since we are focusing on large θi, a more appropriate alternative would be θi > 0, however
for units with Xi > 0 and large BF the ideal and approximate values will be similar. The
denominator above is evaluated using the fact that Xi ∼ Normal(0, σ2

i ) on the null. On the
unordered alternative, Xi ∼ Normal(0, σ2

i + 1), marginal to θi. Thus the BF is

BF =

√
σ2
i

σ2
i + 1

φ
(
Xi/

√
σ2
i + 1

)
φ(Xi/σi)

,

where φ is the standard normal density function. The threshold function is computed by setting
the left side (ranking variable) to a constant (depending on α) and replacing Xi on the right
side by the function tα(σ2

i ), from which we obtain:

[tα(σ2)]2 = σ2(σ2 + 1)uα + log
σ2 + 1

σ2
.

We include the indicator Xi > 0 in Table 1 to emphasize our focus on the large positive
parameter values, recognizing that this prohibits ranking when Xi < 0.
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3 On r-value computation

3.1 Pseudo-code

1. Input:

• Data on n inference units: D[1], D[2], ... , D[n]

• J grid points: 0 < A[1] < A[2], ... , < A[J] < 1; Avec = (A[j]).

• Function K(D, t) = P (θ ≥ t|D)

• Function Q(a) such that P{θ ≥ Q(a)} = a

2. Construct θ quantiles:

• Set T[j] = Q( A[j] ) for all j

3. Construct conditional tail probabilities:

• Set V[i,j] = K( D[i], T[j] ) for all i and j

4. Construct marginal quantile function for conditional tail probability:

• Find empirical quantile for each j:
Lambda0[j] = quantile( ecdf( V[,j] ), prob=(1-A[j]) )

• Smooth: Lambda[j] =
∑J

k=1 wk,jLambda0[k] for smoothing weights wk,j.

LambdaVec = (Lambda[j])

• Construct an interpolating function:

LambdaFun(a) = approxfun( Avec, LambdaVec )

5. Compute r-values:

• Construct the function: DeltaFun(a,D) = LambdaFun(a) - K(D,Q(a))

• For all i, solve DeltaFun( a, D[i] ) = 0 for a = R[i]; take smallest root if

multiple roots

6. Output: R=( R[i] )

There is the matter of how to define the smallest r-value. In many cases there will be a
smallest α value below which none of the n curves Vα(Di) will cross one another as they converge
towards zero. For example, in the normal/normal model one can show that curves either don’t
cross [equal variance] or they cross exactly once. Thus the quantile function will identify the
same unit for all small α; the infimum of α values where Vα(Di) is greater than or equal to the
quantile λ̂α,n then is zero. Recognizing that λα is poorly estimated as α tends to zero, we could
instead put the smallest value at some preset positive number equal to the minimum α on the
grid. In our experiments we have used the lower bound 1/n for this purpose.
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3.2 R package

The R package rvalues enables computation of r-values in a range of model structures. Some
elements from version 0.2 are included here. See http://cran.r-project.org/web/packages/
rvalues/index.html for the current version.

> ?rvalues

R-values

Description

Given data on a collection of units, this function computes r-values which are percentiles constructed

to maximize the agreement between the reported percentiles and the percentiles of the effect of interest.

Additional details about r-values are provided below and can also be found in the listed references.

Usage

rvalues(data, family = gaussian, hypers = "estimate", prior = "conjugate",

alpha.grid = NULL, ngrid = NULL, smooth = 0, control = list())

Arguments

data

A data frame or a matrix with the number of rows equal to the number of sampling units. The first column

should contain the main estimates, and the second column should contain the nuisance terms.

family

An argument which determines the sampling distribution; this could be either family = gaussian,

family = tdist, family = binomial, family = poisson

hypers

values of the hyperparameters; only meaningful when the conjugate prior is used; if set to "estimate",

the hyperparameters are found through maximum likelihood; if not set to "estimate" the user should

supply a vector of length two.

prior

the form of the prior; either prior="conjugate" or prior="nonparametric".

alpha.grid

a numeric vector of points in (0,1); this grid is used in the discrete approximation of r-values

ngrid

number of grid points for alpha.grid; only relevant when alpha.grid=NULL

smooth

either smooth="none" or smooth takes a value between 0 and 10; this determines the level of smoothing

applied to the estimate of lambda(alpha) (see below for the definition of lambda(alpha)); if smooth

is given a number, the number is used as the bass argument in supsmu.

control

a list of control parameters for estimation of the prior; only used when the prior is nonparametric

Details

The r-value computation assumes the following two-level sampling model

\eqn{ X_i|\theta_i} ~ \eqn{p(x|\theta_i,\eta_i)}

and \eqn{\theta_i} ~ \eqn{F}, for \eqn{i = 1,...,n},

with parameters of interest \eqn{\theta_i}, effect size estimates \eqn{X_i},

and nuisance terms \eqn{\eta_i}. The form of \eqn{p(x|\theta_i,\eta_i)} is determined

by the \code{family} argument. When \code{family = gaussian}, it is assumed that

\eqn{X_i|\theta_i,\eta_i} ~ N(\eqn{\theta_i,\eta_i^{2})}.

When \code{family = binomial}, the \eqn{(X_i,\eta_i)} represent the number of successes

and number of trials respectively, and it is assumed that \eqn{X_i|\theta_i,\eta_i} ~

Binomial\eqn{(\theta_i,\eta_i)}. When \code{family = poisson}, the \eqn{{X_i}} should be

counts, and it is assumed that \eqn{X_i|\theta_i,\eta_i} ~ Poisson(\eqn{\theta_i * \eta_i)}.

The distribution of the effect sizes \eqn{F} may be a parametric distribution

that is conjugate to the corresponding \code{family} argument,

http://cran.r-project.org/web/packages/rvalues/index.html
http://cran.r-project.org/web/packages/rvalues/index.html
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or it may be estimated nonparametrically. When it is desired that \eqn{F} be

parametric (i.e., \code{prior = "conjugate"}), the default is to estimate the

hyperparameters (i.e., \code{hypers = "estimate"}), but these may be supplied by the

user as a vector of length two. To estimate \eqn{F} nonparametrically, one

should use \code{prior = "nonparametric"} (see \code{\link{npmle}} for

further details about nonparametric estimation of \eqn{F}).

The \emph{r-value}, \eqn{r_i}, assigned to the ith case of interest is determined by

\eqn{ r_i = } inf[ \eqn{0 < \alpha < 1: V_\alpha(X_i,\eta_i) \ge \lambda(\alpha) } ]

where \eqn{V_\alpha(X_i,\eta_i) = P( \theta_i \ge \theta_\alpha|X_i,\eta_i) }

is the posterior probability that \eqn{\theta_i} exceeds the threshold \eqn{\theta_\alpha},

and \eqn{\lambda(\alpha)} is the upper-\eqn{\alpha}th quantile associated

with the marginal distribution of \eqn{V_\alpha(X_i,\eta_i)} (i.e.,

\eqn{ P(V_\alpha(X_i,\eta_i) \ge \lambda(\alpha)) = \alpha). } Similarly,

the threshold \eqn{\theta_\alpha} is the upper-\eqn{\alpha}th quantile of

\eqn{F} (i.e., \eqn{P(\theta_i \ge \theta_\alpha) = \alpha} ).

Value

An object of class "rvals" which is a list containing at least the following components:

main

a data frame containing the r-values, the r-value rankings along with the rankings from

several other common procedures

aux

a list containing other extraneous information

rvalues

a vector of r-values

Author(s)

Nicholas Henderson and Michael Newton

References

Henderson, N.C. and Newton, M.A. (2014) Making the Cut: Improved Ranking and Selection for

Large-Scale Inference. http://arxiv.org/abs/1312.5776

See Also

rvaluesMCMC, PostSummaries, Valpha

Examples

### Binomial example with Beta prior:

data(fluEnrich)

flu.rvals <- rvalues(fluEnrich, family = binomial)

hist(flu.rvals$rvalues)

### look at the r-values for indices 10 and 2484

fig_indices <- c(10,2484)

fluEnrich[fig_indices,]

flu.rvals$rvalues[fig_indices]

### Gaussian sampling distribution with nonparametric prior

### Use a maximum of 5 iterations for the nonparam. estimate

data(hiv)

hiv.rvals <- rvalues(hiv, prior = "nonparametric", control = list(maxiter=5))

For example, the top gene sets by r-value are:

> head( flu.rvals$main )

RValue RV.rank MLE.rank PM.rank xx nn PostMean

GO:0022627 0.0001220703 1.0 1.0 1.0 23 35 0.2786319
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GO:0022626 0.0001851183 2.0 23.0 2.0 33 90 0.2441963

GO:0006413 0.0003715832 3.0 45.0 3.0 47 152 0.2389331

GO:0045047 0.0005835630 4.5 27.5 4.5 36 106 0.2388799

GO:0072599 0.0005835630 4.5 27.5 4.5 36 106 0.2388799

GO:0006415 0.0009772328 6.0 25.0 6.0 32 91 0.2362017
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Here’s the internal R function that deploys the grid-based algorithm for a general case, where
preprocessing has computed a matrix V of tail probabilities as well as a function for further
evaluation:

> rvalues:::rvalueGuts

rvalueGuts <- function(dat,alpha.grid,V,vfun,hypers,smooth)

{

########################################################

# dat nunits x 2 [specific to family]

# alpha.grid ngrid

# V nunits x ngrid

# vfun function tail prob

# hypers length 2; hyper-parameters [specific to familiy in vfun]

########################################################

nunits <- nrow(dat)

ngrid <- length(alpha.grid)

cc <- numeric(ngrid)

for( j in 1:ngrid )

{

cc[j] <- quantile(V[,j], prob= 1 - alpha.grid[j], names = FALSE, type = 1)

}

## smooth and functionalize

if(smooth=="none") {

ccfun <- approxfun( alpha.grid, cc, yleft = 1, yright = 0 )

}

else {

cc2 <- supsmu( alpha.grid, cc, bass=smooth )

ccfun <- approxfun( c(0,cc2$x,1), c(1,cc2$y,0))

}

### Think of ccfun as the lambda_{\alpha} function

dfun <- function( alpha, unitdata, hypers )

{

dd <- ccfun( alpha ) - vfun( alpha, unitdata, hypers )

dd

}

## march through units finding rvalue by uniroot

rvals <- numeric(nunits)

for( i in 1:nunits ) {

rvals[i] <- uniroot(dfun,interval=c(0,1),unitdata=dat[i,],hypers=hypers)$root

}

ans <- list()

ans$rvals <- rvals

ans$lamfun <- cc

ans$smoothlamfun <- ccfun

return(ans)

}

<environment: namespace:rvalues>
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4 Theory, supporting proof of Theorem 4 (main)

4.1 Properties of Hα(v) and H−1α (p)

The following calculations support Lemma 5 of the main paper. Recall thatHα(v) = P [Vα(Xi, σ
2
i ) ≤

v]. Let B = (0, 1)× (0, 1) denote the open unit square, and H−1α (p) = inf{v : Hα(v) ≥ p}.

Lemma S1. Under assumptions A1-A3, the cdf Hα(v) is continuous and strictly increasing on
the range of Vα(Di). Further, H−1α (p) is continuous for (α, p) ∈ B and is nondecreasing in each
argument.

Proof. Firstly, continuity of D 7→ Vα(D) (Lemma 4, main) together with A1 on the positive
density for D, and together with strict monotonicity of Vα in x, imply that the cdf Hα(v) is
strictly increasing and continuous in v for each α.

On the nondecreasing monotonicity of H−1α (p) in both arguments: note that for fixed α the
monotonicity follows from the function being a quantile function. For fixed p, the monotonicity
follows since the random element Vα is increasing in α.

On the continuity of H−1α (p) in both arguments: Consider any α ∈ (0, 1) and p ∈ (0, 1) and
let (αn, pn) be a sequence converging to (α, p). To show that H−1αn (pn) converges to H−1α (p), we
proceed in three steps.

(i) H−1α (pn) −→ H−1α (p).
This follows from the continuity of p 7→ H−1α (p), using continuity and monotonicity of Hα(v)

in v.
(ii) H−1αn (p) −→ H−1α (p).
Note that Vαn(Di) = Vα(Di) + uαn(Di), where

uαn(Di) =

{
P{θi ∈ [θαn , θα)|Di}, if αn ≥ α

−P{θi ∈ [θα, θαn)|Di}, if αn < α.

Because E(|uαn(Di)|) = |α − αn|, uαn(Di) −→P 0, and therefore, Vαn(Di) −→d Vα(Di). Thus,
due to the continuity of Hα(v), Hαn(v) −→ Hα(v). From this, Lemma 21.2 of Van der Vaart im-
plies that H−1αn (u) converges to H−1αn (u) at all continuity points u of H−1α (·), which in particular,
implies that H−1αn (p) −→ H−1α (p).

(iii) H−1αn (pn)−H−1α (pn) −→ 0.
Because p 7→ H−1α (p) is nondecreasing, we have that

H−1αn (pn)−H−1α (pn) =
(
H−1αn (pn)−H−1α (pn)

)
1{|pn − p| ≤ ε}+

(
H−1αn (pn)−H−1α (pn)

)
1{|pn − p| > ε}

≤
(
H−1αn (pn)−H−1α (pn)

)
1{|pn − p| ≤ ε}+ 1{|pn − p| > ε}

≤ H−1αn (p+ ε)−H−1α (p− ε).+ 1{|pn − p| > ε}. (6)

Because H−1αn (p) −→ H−1α (p) [from (ii)] and pn −→ p, we have

lim sup
n−→∞

H−1αn (pn)−H−1α (pn) ≤ H−1α (p+ ε)−H−1α (p− ε). (7)

Likewise
lim inf
n−→∞

H−1αn (pn)−H−1α (pn) ≥ H−1α (p− ε)−H−1α (p+ ε). (8)
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Due to the continuity of H−1α , H−1α (p− ε)−H−1α (p + ε) −→ 0 as ε −→ 0, which from (7) and
(8) means that H−1αn (pn)−H−1α (pn) −→ 0.

To conclude the proof, we just need to observe that

H−1αn (pn)−H−1α (p) = H−1α (pn)−H−1α (p) +H−1αn (pn)−H−1α (pn), (9)

and note that (i) and (iii) imply that H−1αn (pn) −→ H−1α (p).

4.2 Convergence of Sample Quantiles

Lemma S2. Let Fn be a sequence of distribution functions such that for each t, we have

Fn(t)
P−→ F (t), where F is a continuous strictly increasing distribution function. Then, for

any p ∈ (0, 1), F̂−1n (p)
P−→ F−1(p), where F̂−1n (p) = inf{x : Fn(x) ≥ p}.

Proof. By noting the relation F−1n (p) ≤ x if and only if Fn(x) ≥ p, we have P
{
F−1n (p) ≤ x

}
=

P
{
Fn(x) ≥ p

}
. Hence, for any p ∈ (0, 1)

lim
n−→∞

P
{
F−1n (p) ≤ x

}
= lim

n−→∞
P
{
Fn(x) ≥ p

}
=

{
0 if F (x) < p

1 if F (x) > p.
(10)

Because F has a proper inverse F−1, (10) is equivalent to

lim
n−→∞

P
{
F−1n (p) ≤ x

}
=

{
0 if F−1(p) > x

1 if F−1(p) < x.
(11)

The above means F−1n (p) converges in distribution to F−1(p) which, since F−1(p) is a constant,

implies that F̂−1n (p)
P−→ F−1(p).

4.3 A two-dimensional Polya theorem

Lemma S3. Consider G : (0, 1) × (0, 1) −→ [0, 1] and the sequence of functions Ĝn : (0, 1) ×
(0, 1) −→ [0, 1]. Suppose that Ĝn(t, s) converges to G(t, s) pointwise in probability on the
rectangle Aδ = [δ, 1− δ]× [δ, 1− δ] where δ ∈ (0, 1/2). Further suppose that G and each Ĝn is

coordinate-wise monotone on Aδ in the sense that for each fixed s, t 7→ G(t, s) (and t 7→ Ĝn(t, s))

is nondecreasing and for each fixed t, s 7→ G(t, s) (and s 7→ Ĝn(t, s)) is nondecreasing. Then,

if G(t, s) is continuous on Aδ, Ĝn converges uniformly over Aδ to G in probability in the sense
that

sup
(t,s)∈Aδ

|Ĝn(t, s)−G(t, s)| −→P 0. (12)

Proof. Let ε > 0. Because Aδ is compact, G is uniformly continuous on Aδ. So, there
is a δε such that d

(
(x1, y1), (x2, y2)

)
< δε =⇒ G(x1, x2) < ε, where d

(
(x1, y1), (x2, y2)

)
=√

(x1 − x2)2 + (y1 − y2)2.
Choose grid points δ = t1 < t2 < . . . < tJ = 1− δ and δ = s1 < s2 < . . . < sK = 1− δ such

that for any 1 ≤ j ≤ J − 1 and 1 ≤ k ≤ K − 1 we have d
(
(tj, sk), (tj+1, sk+1)

)
< δε. Consider
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any (t, s) ∈ Aδ and choose tj, sk such that tj ≤ t ≤ tj+1 and sk ≤ s ≤ sk+1. Then,

Ĝn(t, s)−G(t, s) ≤ Ĝn(tj+1, s)−G(tj, s)

≤ Ĝn(tj+1, sk+1)−G(tj, sk)

= Ĝn(tj+1, sk+1)−G(tj+1, sk+1) +G(tj+1, sk+1)−G(tj, sk)

≤ Ĝn(tj+1, sk+1)−G(tj+1, sk+1) + ε.

Likewise,

Ĝn(t, s)−G(t, s) ≥ Ĝn(tj, s)−G(tj+1, s)

≥ Ĝn(tj, sk)−G(tj+1, sk+1)

= Ĝn(tj, sk)−G(tj, sk) +G(tj, sk)−G(tj+1, sk+1)

≥ Ĝn(tj, sk)−G(tj, sk)− ε. (13)

Hence,
sup

(t,s)∈Aδ
|Ĝn(t, s)−G(t, s)| ≤ max

1≤j≤J,1≤k≤K
|Ĝn(tj, sk)−G(tj, sk)|+ ε. (14)

Define E2ε
n as the event

E2ε
n =

{
sup

(t,s)∈Aδ

∣∣∣Ĝn(t, s)−G(t, s)
∣∣∣ > 2ε

}
. (15)

If for each 1 ≤ j ≤ J, 1 ≤ k ≤ K, we define Bε
jk,n =

{
|Ĝn(tj, sk) − G(tj, sk)| > ε

}
, then

E2ε
n ⊆ ∪Jj=1 ∪Kk=1 B

ε
jk,n. Hence,

P (E2ε
n ) ≤ P

( J⋃
j=1

K⋃
k=1

Bε
jk,n

)
≤

J∑
j=1

K∑
k=1

P (Bε
jk,n). (16)

Because Ĝn converges pointwise to G in probability, limn−→∞ P (Bε
jk,n) = 0, for each (j, k).

Moreover, because the number of terms in the summation in (16) is finite and does not depend
on n, we have that limn−→∞ P (E2ε

n ) = 0 which concludes the proof.

4.4 Truncated r-values

Lemma 7 of the main paper is concerned with r-values truncated away from endpoints 0 and
1. The essential elements are in the proof in the main document, but here we work through all
cases in detail.

Lemma S4. Suppose that α 7→ gα(Di) is continuous with a unique root r(Di) in [0, 1]. For any
fixed δ ∈ (0, 1/2), if we define the truncated r-values rδ(Di) and estimated truncated r-values
r̂δn(Di) as

rδ(Di) = min
{

inf{α ∈ [δ, 1] : gα(Di) ≥ 0}, 1− δ
}

r̂δn(Di) = min
{

inf{α ∈ [δ, 1] : ĝα,n(Di) ≥ 0}, 1− δ
}
,

then r̂δn(Di) −→P r
δ(Di).
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Proof. Consider any 0 < ε < 1−2δ
2

. By the extreme value theorem, |gα(Di)| attains a mini-
mum value δε(Di) on the set [0, 1] \ (r(Di) − ε, r(Di) + ε). From the assumption that gα(Di)
has a unique root δε(Di) > 0, and from the assumed continuity of α 7→ gα(Di), we have
sup0≤α≤r(Di)−ε gα(Di) ≤ −δε(Di) (when r(Di) ≥ ε), and infr(Di)+ε≤α≤1 gα(Di) ≥ δε(Di) (when
r(Di) + ε ≤ 1).

Now, define Eε
n as the event

Eε
n =

{
||ĝn(Di)− g(Di)||∞ ≤

δε(Di)

2

}
, (17)

and define
||ĝn(Di)− g(Di)||δ,∞ = sup

δ≤α≤1−δ
|ĝα,n(Di)− gα(Di)|. (18)

We consider three cases separately: (i) r(Di) < δ + ε (ii) r(Di) > 1 − δ − ε and (iii) δ + ε ≤
r(Di) ≤ 1− δ − ε.

(i) r(Di) < δ + ε

When r(Di) < δ + ε, gδ+2ε(Di) ≥ δε(Di). This along with ||ĝn(Di) − g(Di)||δ,∞ ≤ δε(Di)
2

implies that ĝδ+2ε,n(Di) ≥ δε(Di)
2

, and thus r̂n(Di) ≤ δ + 2ε. Hence,

P
(
Eε
n ∩ {r(Di) < δ + ε}

)
≤ P

(
δ ≤ r̂δn(Di) ≤ δ + 2ε, r(Di) < δ + ε

)
≤ P

(
rδ(Di)− 2ε ≤ r̂δn(Di) ≤ rδ(Di) + 2ε, r(Di) < δ + ε

)
.(19)

(ii) r(Di) > 1− δ − ε.
In this case, sup0≤α≤1−δ−2ε gα(Di) ≤ −δε(Di). This, along with ||ĝn(Di)−g(Di)||δ,∞ ≤ δε(Di)

2

implies supδ≤α≤1−δ−2ε ĝα,n(Di) ≤ − δε(Di)
2

, and thus r̂δn(Di) ≥ 1− δ − 2ε. Hence,

P
(
Eε
n ∩ {r(Di) > 1− δ − ε}

)
≤ P

(
1− δ − 2ε ≤ r̂δn(Di) ≤ 1− δ, r(Di) > 1− δ − ε

)
≤ P

(
rδ(Di)− 2ε ≤ r̂δn(Di) ≤ rδ(Di) + 2ε, r(Di) > 1− δ − ε

)
.(20)

(iii) r(Di) ∈ [δ + ε, 1− δ − ε]
In this case, sup0≤α≤r(Di)−ε gα(Di) ≤ −δε(Di) and infr(Di)+ε≤α≤1 gα(Di) ≥ δε(Di). These,

along with ||ĝn(Di)− g(Di)||δ,∞ ≤ δε(Di)
2

imply that supδ≤α≤r(Di)−ε ĝα,n(Di) ≤ − δε(Di)
2

and

infr(Di)+ε≤α≤1−δ ĝα,n(Di) ≥ δε(Di)
2

, and thus r̂δn(Di) ∈ [r(Di)− ε, r(Di) + ε]. Hence,

P
(
Eε
n ∩ {δ + ε ≤ r(Di) ≤ 1− δ − ε}

)
≤ P

(
r(Di)− ε ≤ r̂δn(Di) ≤ r(Di) + ε, δ + ε ≤ r(Di) ≤ 1− δ − ε

)
= P

(
rδ(Di)− ε ≤ r̂δn(Di) ≤ rδ(Di) + ε, δ + ε ≤ r(Di) ≤ 1− δ − ε

)
. (21)

By combining (19), (20), and (21) we have that

P
(
rδ(Di)− 2ε ≤ r̂δn(Di) ≤ rδ(Di) + 2ε

)
≥ P

(
Eε
n

)
. (22)
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Thus, to complete the proof, we just need to show that limn−→∞ P (Eε
n) = 1. To this end, if we

choose Kε such that P{δε(Di) ≤ Kε} ≤ ε and look at the complement event (Eε
n)c, then

P{(Eε
n)c} = P

(
||ĝn(Di)− g(Di)||δ,∞ >

δε(Di)

2

)
≤ P

(
||ĝn(Di)− g(Di)||δ,∞ >

δε(Di)

2
, δε(Di) ≤ Kε

)
+ P

(
δε(Di) ≤ Kε

)
≤ P

(
||ĝn(Di)− g(Di)||δ,∞ >

Kε

2

)
+ ε. (23)

It then follows from the uniform convergence result, Lemma 6 (main), that limn−→∞ P{(Eε
n)c} =

0, and hence, limn−→∞ P (Eε
n) = 1.

5 Models and assumptions

5.1 Normal/Normal

As indicated in the main document the normal/normal model under the standard parameteri-
zation is:

p(x|θ, σ2) =
1

σ
φ

(
x− θ
σ

)
x ∈ R

f(θ) = φ(θ) θ ∈ R
g(σ2) = arbitrary density on R+ .

From this we derive that θi|xi, σ2
i is normal with mean xi/(σ

2
i + 1) and variance σ2

i /(σ
2
i + 1),

and further that xi|σ2
i is normal with mean 0 and variance 1 + σ2

i . The upper α quantile
θα = Φ−1(1− α), and the posterior tail probability is

Vα(x, σ2) = 1− Φ

[√
σ2 + 1

σ2

(
θα −

x

σ2 + 1

)]
.

The sampling component p(x|θ, σ2) satisfies A3 by inspection. Any permutation invariant
consistent estimator F̂n of the normal F with satisfy A2, and Theorem 3 assures no crossing
(A4). Further, Vα(x, σ2) is strictly increasing and continuous in x (for Theorem 2), and the
optimal thresholds do not cross (Theorem 3).

5.2 t/Normal

Adopt the model structure from Section 2.1 (main paper), but rather than having σ2
i =

var(Xi|θi, σ2
i ), suppose that σ2

i is an sample-based estimate of the true variance, say ξ2i , such
that νσ2

i /ξ
2
i has a chi-square distribution on ν degrees of freedom given ξi, as in a standard

normal sampling model with unknown variance. Assume further that ξ2i has an inverse-Gamma
marginal distribution, with shape a/2 and rate b/2, say. Marginally, it follows that the esti-
mated variance σ2

i has a compound Gamma distribution. But more to the point, the sampling
model:

p(xi|σ2
i , θi) =

∫ ∞
0

p(xi|ξi, θi) p(ξi|σ2
i ) dξi.
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Conjugacy gives ξ2i given σ2
i as another inverse Gamma, having shape (a + ν)/2 and rate

(b+ νσ2
i )/2. This allows integration above to a t conditional of xi given σ2

i and θ:

p(xi|σ2
i , θ) ∝

[
(xi − θi)2 + b+ νσ2

i

]−(a+ν+1)/2
.

Assumptions A1 and A2 follow from the basic model structure given a consistent estimate
of the normal mixing distribution F . The t sampling model satisfies A3(i) and A3(ii) by
inspection. Although the monotonicity condition A3(iii) does not hold for the t, Vα(x, σ2)
is continuous and strictly increasing in x. Monotonicity of V follows since the posterior mean
E(θ|x, σ2) is increasing in x, because the posterior variance does not involve x, and by inspecting
the posterior density (e.g. Nadarajah and Pogany, 2012). Note, A3(iii) is used only in Lemma 4
to establish monotonicity in x of the posterior tail probabilities. Finally, we conjecture that A4
is true owing to unimodality and symmetry of the posterior densities, however a proof remains
to be found.

5.3 Gamma/Inverse Gamma

Suppose that Xi|θi, γi ∼ Gamma(1, 1/θiγi) and θi ∼ Inv-Gamma(1, 1) so that

p(x|θ, γ) =
1

θγ
exp(−x/θγ) and p(θ) = θ−2e−1/θ.

Because p(x|θ, γ)p(θ) ∝ θ−3 exp{−θ−1(x/γ + 1)}, we have θi|Xi, γi ∼ Inv-Gamma(2, 1 +Xi/γi)
and hence θi

(1+Xi/γi)
|Xi, γi ∼ Inv-Gamma(2, 1). The tail probabilities Vα = P{θ ≥ θα|x, γ}, are

then given by

Vα(x, γ) = P
{ θ

1 + x/γ
≥ θα

1 + x/γ

∣∣∣x, γ} = 1− F2,1

( θα
1 + x/γ

)
,

where F2,1(t) is the cdf of an Inv-Gamma(2,1) random variable. By looking at the relation
Vα(tα(γ), γ) = λα, we have that

1− F2,1

( θα
1 + tα(γ)/γ

)
= λα,

which upon simplification gives

θα
1 + tα(γ)/γ

= F−12,1

(
1− λα

)
. (24)

By simplifying again, we have

tα(γ) = γ
( θα

F−12,1

(
1− λα

) − 1
)
. (25)

Now, to determine the form of λα, we need the marginal distribution of Xi given γi which is
given by

p(x|γ) =

∫ ∞
0

p(x|θ, γ)p(θ|γ)dθ =
1

γ

∫ ∞
0

θ−3e−θ
−1(1+x/γ)dθ =

1

γ(1 + x/γ)2
,
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and the marginal distribution function is

Fx|γ(t) =

∫ t

0

1

γ(1 + x/γ)2
dx =

−1

1 + x/γ

∣∣∣t
0

= 1− 1

1 + t/γ
. (26)

Using (26) and letting h(γ) denote the density of γ, the size constraint equation can be written
as ∫ ∞

0

P
{
X ≥ tα(γ)|γ

}
h(γ)dγ =

∫ ∞
0

1

1 + tα(γ)/γ
h(γ)dγ = α. (27)

Looking back at (24), we know that 1 + tα(γ)/γ = θα/F
−1
2,1

(
1− λα

)
and hence∫ ∞

0

1

1 + tα(γ)/γ
h(γ)dγ =

∫ ∞
0

F−12,1

(
1− λα

)
θα

h(γ)dγ =
F−12,1

(
1− λα

)
θα

= α. (28)

So, F−12,1

(
1 − λα

)
/θα = α, regardless of the choice of h. Looking back at (25), the threshold

function can now be written as

tα(γ) = γ
( θα

F−12,1

(
1− λα

) − 1
)

= γ
( 1

α
− 1
)
, (29)

from which it is clear that any two threshold functions tα1(γ) and tα2(γ) do not cross for any
γ > 0.

Because F−12,1

(
1− λα

)
/θα = α and θα = −1/ log(1− α), we have

λα = 1− F2,1

(
θαα
)

= 1− F2,1

(
− α/ log(1− α)

)
.

It is interesting to note that λα is an increasing function which may be seen by differentiating
λα with respect to α

dλα
dα

=
( log(1− α) + α

1−α

log2(1− α)

)
f2,1
(
− α/ log(1− α)

)
> 0.

It is also interesting to note that

lim
α−→0

λα = 1− F2,1

(
lim
α−→0

−α
log(1− α)

)
= 1− F2,1(1).

6 Connection to hypothesis testing

Consider testing the null hypothesis H0 : θi < θα against the alternative HA : θi ≥ θα, for
some α ∈ (0, 1) in the measurement model of Section 2.1 (main document). The conditional
probability P{θi ≥ θα|Xi ≥ t∗α(σ2

i )} is a false discovery rate (FDR) for this test, and so the
agreement in (equation 2, main paper) satisfies

agreement = (1− FDR) · α.
That t∗ maximizes agreement means that it minimizes FDR for this test. The procedure also
maximizes an average power, since

agreement = average power · α
if we flip the conditioning around and notice that P {Xi ≥ t∗α(σ2

i )|θi ≥ θα} is an average power,
averaging over HA. In both cases, the association is slightly contrived, since the significance
level of the test is not controlled. Nonetheless the observation may provide further context for
the approach.
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7 Simulation figures

Figures S4-S8 show results of a simulation study. In this study, r-values were computed through
a fitted normal/normal model, and using the empirical estimate of the quantile function λ̂α,n.
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Figure S4: Finite-sample performance of r-value, posterior mean (PM), posterior expected
rank (PER), and maximum likelihood estimate (MLE) in the normal/normal model for vary-
ing distributions of σ2

i . The simulation-based agreement compares the true top-α list with
the estimated top-α list for various methods and for 1/n ≤ α ≤ 0.1 (common horizon-
tal axis), when the marginal distribution of θi and the quantile λα are both estimated from
available data (no smoothing). The distribution of σ2

i in each of the four panels is as fol-
lows: (a) σ2

i ∼ Gamma(1/16, 1/16) (b) σ2
i ∼ Gamma(1/2, 1/2) (c) σ2

i ∼ Gamma(1, 1) (d)
σ2
i ∼ Gamma(10, 10). The common vertical axis is agreement/α; and results from 1000 simu-

lated data sets were averaged for each panel.
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Figure S5: Finite-sample performance of r-value in the normal/normal model for varying levels
of smoothness in the estimate λ̂α,n of λα. The simulation-based agreement compares the true
top-α list with the estimated top-α list for various methods and for 1/n ≤ α ≤ 0.1 (common hor-
izontal axis), when the marginal distribution of θi and the quantile λα are both estimated from
available data (no smoothing). Smoothing is performed using Friedman’s “Super-smoother” as
implemented by the R function supsmu where the level of smoothing is determined by the
bass argument (values up to 10 indicate increasing smoothness). The smoothing in each of the
four panels is as follows: (a) no smoothing (b) bass=0 (c) bass=5 (d) bass=10. The vertical
axis is agreement/α; σ2

i ∼ Gamma(1/2, 1/2), and results from 1000 simulated data sets were
averaged.
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Figure S6: Effects on agreement of model misspecification: true distribution of θi is a Normal
mixture with three components. The kth component of the mixture has parameters (µk, τ

2
k ),

and the mixture proportions are denoted with (π1, π2, π3). The three panels are as follows:
(a) (π1, π2, π3) = (0.2, 0.7, 0.1) and (µ1, µ2, µ3) = (−2, 0, 3) (b) (π1, π2, π3) = (0.2, 0.5, 0.3) and
(µ1, µ2, µ3) = (−2, 0,−1) (c) (π1, π2, π3) = (0.2, 0.6, 0.2) and (µ1, µ2, µ3) = (−2, 0, 4). In (a), (b),
and (c), (τ 21 , τ

2
2 , τ

2
3 ) = (1, 1, 1). The common vertical axis is agreement/α; σ2

i ∼ Gamma(1, 1),
and results from 1000 simulated data sets were averaged for each panel. R-values are computed
assuming the normal/normal model.
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Figure S7: Effects on agreement of model misspecification: true distribution of θi is a mixture
of a Normal distribution N(0, τ 2) (with probability 1 − π) and a point mass at zero (with
probability π). The four panels are as follows: (a) π = .75 and τ = 1/2 (b) π = .75 τ = 2
(c) π = .8 and τ = 1 (d) π = .5 and τ = 1. The common vertical axis is agreement/α;
σ2
i ∼ Gamma(1, 1), and results from 1000 simulated data sets were averaged for each panel.

R-values are computed assuming the normal/normal model.



26

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

(a)

α

ag
re

em
en

t/α

r−value
PM
PER
mle

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

(b)

α

ag
re

em
en

t/α

r−value
PM
PER
mle

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

(c)

α

ag
re

em
en

t/α

r−value
PM
PER
mle

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

(d)

α

ag
re

em
en

t/α

r−value
PM
PER
mle

Figure S8: Effects on agreement of model misspecification: θi and σ2
i are correlated. The four

panels are as follows: (a) Corr(θi, σ
2
i ) =

√
1/29 (b) Corr(θi, σ

2
i ) =

√
1/17 (c) Corr(θi, σ

2
i ) =√

4/13 (d) Corr(θi, σ
2
i ) =

√
1/2. The common vertical axis is agreement/α; σ2

i ∼ Gamma(1, 1),
and results from 1000 simulated data sets were averaged for each panel. R-values are computed
assuming the normal/normal model.
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Figure S9: Ranking via various methods compared to r-value ranking, Pyeon example. Coloring
format as in Fig. 3 (main paper). From 54675 transcripts assayed on a microarray, shown are
data from 458 having the highest mean difference between the two groups (log2 fold change
exceeding 1).
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