A formula for the correlation between random-set enrichment scores

Michael A. Newton ${ }^{1}$

January 2007
UW Madison Statistics Department Technical Report \#1134

[^0]
Abstract

Given constants $s_{1}, s_{2}, \ldots, s_{G}$, we consider variables $X=\sum s_{g} 1[g \in A]$ and $Y=\sum s_{g} 1[g \in B]$ as random variables with a joint distribution determined by taking (A, B) as uniformly random among set pairs in which A has fixed cardinality m, B has fixed cardinality n, and the intersection $A \cap B$ has fixed size q. Arguments about without-replacement sampling give the marginal mean and variance of X and Y separately. Here we extend those calculations and compute the correlation between X and Y. The joint distribution so determined is helpful in gene set enrichment analysis.

KEYWORDS: gene set enrichment .

1 Problem

The penultimate section in Newton et al. (2006) presents without proof a formula for the correlation between two Z scores, these being the standardized enrichment scores for two possibly overlapping gene sets. Here we show how to derive the correlation formula.

Start with gene-level scores $s_{1}, s_{2}, \ldots, s_{G}$ for G genes. These may be measures of differential expression, or some related quantity, but the important thing is that they are treated as fixed [i.e. we condition on them]. WLOG suppose they are normalized so $\sum_{g} s_{g} / G=0$ and $\sum_{g} s_{g}^{2} / G=1$.

Unstandardized enrichment scores X and Y are defined

$$
X=\sum_{g \in A} s_{g} \quad Y=\sum_{g \in B} s_{g}
$$

where A and B are random subsets of $\{1,2, \ldots, G\}$ that are constrained so that $\# A=m, \# B=n$, and $\#(A \cap B)=q$. These set sizes m, n, and q are considered
fixed, and we consider the pair (A, B) to arise uniformly at random from the collection \mathcal{S} of all possible networks of set pairs satisfying the size constraints. Note that $q \leq m, q \leq n$ and $m+n-q \leq G$ else we do not have legitimate sets. The problem is to compute the correlation between X and Y owing to randomness in the set pair, noting that gene-level scores are fixed.

Claim:

$$
\begin{aligned}
\operatorname{corr}(X, Y) & =\frac{G q-m n}{\sqrt{m(G-m) n(G-n)}} \\
& =\frac{q}{\sqrt{m n}}+O\left(\frac{1}{G}\right)
\end{aligned}
$$

2 Solution

Observe first that the cardinality of \mathcal{S} is

$$
\begin{equation*}
\# \mathcal{S}=\frac{G!}{q!(m-q)!(n-q)!(G-m-n+q)!} \tag{1}
\end{equation*}
$$

This follows by making a correspondence between the four components of our two overlapping sets: i.e. $A \cap B, A \cap B^{c}, B \cap A^{c}$ and $(A \cup B)^{c}$ and fixed sized subsets of $\{1,2, \ldots G\}$, as in multinomial sampling. Thus the probability to realize a particular (A, B) is $1 / \# \mathcal{S}$.

The marginal means and variances X and Y are known from without-replacement sampling (Newton et al. 2006). With the s_{g} 's centered, $E(X)=E(Y)=0$, and the variances are

$$
\begin{equation*}
\operatorname{var}(X)=\frac{m(G-m)}{G-1} \quad \operatorname{var}(Y)=\frac{n(G-n)}{G-1} . \tag{2}
\end{equation*}
$$

It remains, therefore, to compute $E(X Y)$ in order to obtain the correlation. From the definition,

$$
\begin{align*}
E(X Y) & =\sum_{(A, B) \in \mathcal{S}} \frac{1}{\# \mathcal{S}} \sum_{g \in A} \sum_{h \in B} s_{g} s_{h} \tag{3}\\
& =\frac{1}{\# \mathcal{S}} \sum_{g=1}^{G} \sum_{h=1}^{G} s_{g} s_{h} k_{g, h}
\end{align*}
$$

where

$$
\begin{equation*}
k_{g, h}=\sum_{(A, B) \in \mathcal{S}} 1[g \in A] 1[h \in B] \tag{4}
\end{equation*}
$$

The simpler situation to consider has $g=h$. Then $k_{g, g}=\sum_{(A, B) \in \mathcal{S}} 1[g \in A \cap B]$. We are counting set pairs (A, B) that have a fixed gene g in their intersection, which, as defined, is of a fixed size q. Of course if $q=0$ then $k_{g, g}=0$. Otherwise it is useful again to make the correspondence between a set pair (A, B) and an allocation of the G genes into four groups of fixed sizes. Presently we are fixing gene g to be in $A \cap B$, so we count ways to allocate the other $G-1$ genes to groups of sizes $q-1$ (the rest of $A \cap B$), $m-q$ (stuff in $A \cap B^{c}$), $n-q$ (stuff in $A^{c} \cap B$) and $G-m-n+q$ (remainder). Thus,

$$
\begin{equation*}
k_{g, g}=\frac{(G-1)!}{(q-1)!(m-q)!(n-q)!(G-m-n+q)!} \tag{5}
\end{equation*}
$$

Taken against the probability of a set pair,

$$
\begin{equation*}
\frac{k_{g, g}}{\# \mathcal{S}}=\frac{q}{G} \tag{6}
\end{equation*}
$$

When $g \neq h$ in (4), it is useful to consider four subsets of \mathcal{S} (relative to the fixed
g and h), depending on where the two genes land:

$$
\begin{aligned}
& \mathcal{S}_{1}=\{(A, B): g, h \in A \cap B\} \\
& \mathcal{S}_{2}=\left\{(A, B): g \in A \cap B^{c}, h \in A \cap B\right\} \\
& \mathcal{S}_{3}=\left\{(A, B): g \in A \cap B, h \in A^{c} \cap B\right\} \\
& \mathcal{S}_{4}=\left\{(A, B): g \in A \cap B^{c}, h \in A^{c} \cap B\right\}
\end{aligned}
$$

These compenents may be empty depending on values m, n, and q; for example \mathcal{S}_{1} is non-empty only if $q \geq 2$. But importantly $k_{g, h}=\# \mathcal{S}_{1}+\# \mathcal{S}_{2}+\# \mathcal{S}_{3}+\# \mathcal{S}_{4}$. By the same counting approach to derive (5), we get

$$
\begin{aligned}
\# \mathcal{S}_{1} & =\frac{(G-2)!}{(q-2)!(m-q)!(n-q)!(G-m-n+q)!} \\
\# \mathcal{S}_{2} & =\frac{(G-2)!}{(q-1)!(m-q-1)!(n-q)!(G-m-n+q)!} \\
\# \mathcal{S}_{3} & =\frac{(G-2)!}{(q-1)!(m-q)!(n-q-1)!(G-m-n+q)!}
\end{aligned}
$$

and

$$
\# \mathcal{S}_{3}=\frac{(G-2)!}{q!(m-q-1)!(n-q-1)!(G-m-n+q)!}
$$

Simplifying in relation to the probability of a set pair, we obtain, for $g \neq h$,

$$
\begin{equation*}
\frac{k_{g, h}}{\# \mathcal{S}}=\frac{m n-q}{G(G-1)} . \tag{7}
\end{equation*}
$$

Reconsidering the expectation $E(X Y)$ from (3), we take advantage of the fact that $k_{g, h}$ has one value when $g=h$ (6) and one other value when $g \neq h$ (7). We
combine, using the centering assumption $\sum_{g} s_{g}=0$ and the scaling assumption $\sum_{g} s_{g}^{2}=G$, to get

$$
E(X Y)=\frac{G q-m n}{G-1}
$$

which leads to the claimed correlation, noting (2).

References

Newton, M. A., Quintana, F. A., den Boon, J. A., Sengupta, S., and Ahlquist, P. (2006), "Randomset methods identify distinct aspects of the enrichment signal in gene-set analysis," UW Statistics Department Technical Report, 1130.

[^0]: ${ }^{1}$ Departments of Statistics and of Biostatistics and Medical Informatics (Dept of Statistics; 1300 University Avenue; Madison, WI 53706; newton@stat.wisc.edu), University of WiscsonsinMadison, Madison, Wisconsin.

