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Revisiting Storage for Smartphones
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Conventional wisdom holds that storage is not a big contributor to application performance on mobile de-
vices. Flash storage (the type most commonly used today) draws little power, and its performance is thought
to exceed that of the network subsystem. In this article, we present evidence that storage performance does
indeed affect the performance of several common applications such as Web browsing, maps, application
install, email, and Facebook. For several Android smartphones, we find that just by varying the underlying
flash storage, performance over WiFi can typically vary between 100% and 300% across applications; in one
extreme scenario, the variation jumped to over 2000%. With a faster network (set up over USB), the perfor-
mance variation rose even further. We identify the reasons for the strong correlation between storage and
application performance to be a combination of poor flash device performance, random I/O from application
databases, and heavy-handed use of synchronous writes. Based on our findings, we implement and evaluate
a set of pilot solutions to address the storage performance deficiencies in smartphones.
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1. INTRODUCTION

Mobile phones, tablets, and ultra-portable laptops are no longer viewed as the wimpy
siblings of the personal computer. For many users, they have become the dominant
computing device for a wide variety of applications. According to a recent Gartner
[2011] report, within the next 3 years, mobile devices will surpass the PC as the most
common Web access device worldwide. By 2013, more than 40% of the enhanced phone
installed base will be equipped with advanced browsers [Pentin 2010].

Research pertaining to mobile devices can be broadly split into applications and
services, device architecture, and operating systems. From a systems perspective,
research has tackled many important aspects: understanding and improving energy
management [Flinn and Satyanarayanan 1999; Roy et al. 2011; Carroll and Heiser
2010], network middleware [Meroni et al. 2010], application execution models [Cuervo
et al. 2010; Chun et al. 2011], security and privacy [Bickford et al. 2011; Dietz
et al. 2011; Enck et al. 2010; Geambasu et al. 2011], and usability [Castellucci and
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Fig. 1. Peak throughput of wireless networks. Trends for local and wide area wireless networks over past 3
decades; y-axis is log base 2.

MacKenzie 2011]. Prior research has also addressed several important issues centered
around mobile functionality [Noble et al. 1997; Tolia et al. 2004], data management
[Veeraraghavan et al. 2010], and disconnected access [Kistler and Satyanarayanan
1992; Flinn et al. 2003]. However, one important component is conspicuously missing
from the mobile research landscape—storage performance.

Storage has traditionally not been viewed as a critical component of phones, tablets,
and PDAs—at least in terms of the expected performance. Despite the impetus to pro-
vide faster mobile access to content locally [Gundotra and Barra 2011] and through
cloud services [Satyanarayanan 2010], performance of the underlying storage subsys-
tem on mobile devices is not well understood. Our work started with a simple moti-
vating question: Does storage affect the performance of popular mobile applications?
Conventional wisdom suggests the answer to be no, as long as storage performance
exceeds that of the network subsystem. We find evidence to the contrary—even inter-
active applications like Web browsing slow down with slower storage.

Storage performance on mobile devices is important for end-user experience today,
and its impact is expected to grow due to several reasons. First, emerging wireless
technologies such as 802.11n (600Mbps peak throughput) [IEEE WG802.11 2009] and
802.11ad (or “60GHz,” 7Gbps peak throughput) offer the potential for significantly
higher network throughput to mobile devices [Halperin et al. 2011]. Figure 1 presents
the trends for network performance over the last several decades; local area networks
are not necessarily the de facto bottleneck on modern mobile devices. Second, while
network throughput is increasing phenomenally, latency is not [Satyanarayanan et al.
2009]. As a result, access to several cloud services benefits from a split of functionality
between the cloud and the device [Chun et al. 2011], placing a greater burden on local
resources including storage [Koukoumidis et al. 2011]. Third, mobile devices are in-
creasingly being used as the primary computing device, running more performance in-
tensive tasks than previously imagined. Smartphone usage is on the rise; smartphones
and tablet computers are becoming a popular replacement for laptops [Motorola 2011].
In developing economies, a mobile/enhanced phone is often the only computing device
available to a user for a variety of needs.

In this article, we present a detailed analysis of the I/O behavior of mobile applica-
tions on Android-based smartphones and flash storage drives. We particularly focus on
popular applications used by the majority of mobile users, such as Web browsing, app
install, Google Maps, Facebook, and email. Not only are these activities available on
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almost all smartphones, but they are also done frequently enough that performance
problems with them negatively impacts user experience. Furthermore, we provide pilot
solutions to overcome existing limitations.

To perform our analysis, we build a measurement infrastructure for Android con-
sisting of generic firmware changes and a custom Linux kernel modified to provide
resource usage information. We also develop novel techniques to enable detailed, auto-
mated, and repeatable measurements on the internal and external smartphone flash
storage, and with different network configurations that are otherwise not possible
with the stock set-up. For automated testing with GUI-based applications, we develop
a benchmark harness using MonkeyRunner [2012].

In our initial efforts, we propose and develop a set of pilot solutions that improve the
performance of the storage subsystem and consequently mobile applications. Within
the context of our Android environment, we investigate the benefits of employing a
small amount of phase-change memory to store performance critical data, a RAID
driver encompassing the internal flash and external SD card, using a log-structured
file system for storing the SQLite databases, and changes to the SQLite fsync code
path. We find that changes to the storage subsystem can significantly improve user
experience; our pilot solutions demonstrate possible benefits and serve as references
for deployable solutions in the future.

As the popularity of Android-based devices surges, the set-up we have examined
reflects an increasingly relevant software and hardware stack used by hundreds of
millions of users worldwide; understanding and improving the experience of mobile
users is thus a relevant research thrust for the storage community. Through our anal-
ysis and design, we make several observations:

Storage affects application performance. Often in unanticipated ways, storage af-
fects performance of applications that are traditionally thought of as CPU or network
bound. For example, we found Web browsing to be severely affected by the choice of the
underlying storage; just by varying the underlying flash storage, performance of Web
browsing over WiFi varied by 187% and over a faster network (set up over USB) by
220%. In the case of a particularly poor flash device, the variation exceeded 2000% for
WiFi and 2450% for USB.

Speed class considered irrelevant. Our benchmarking reveals that the “speed class”
marking on SD cards is not necessarily indicative of application performance. Although
the class rating is meant for sequential performance, we find several cases in which
higher-grade SD cards performed worse than lower-grade ones overall.

Slower storage consumes more CPU. We observe higher total CPU consumption for
the same application when using slower cards; the reason can be attributed to de-
ficiencies in either the network subsystem, the storage subsystem, or both. Unless
resolved, lower-performing storage not only makes the application run slower, but it
also increases the energy consumption of the device.

Application knowledge ensues efficient solutions. Leveraging a small amount of do-
main or application knowledge provides efficiency, such as in the case of our pilot solu-
tions. Hardware and software solutions can both benefit from a better understanding
of how applications are using the underlying storage.

The contributions of this article are threefold. First, we describe our measurement
infrastructure that enables custom set-up of the firmware and software stack on
Android-devices to perform in-depth I/O analysis; along with the systems software, we
contribute a set of benchmarks that automate several popular GUI-based applications.
Second, we present a detailed analysis of storage performance on real Android smart-
phones and flash devices. To the best of our knowledge, no such study currently exists in
the research literature. We find a strong correlation between storage and performance
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Fig. 2. Android architecture. Overview of the Android stack.

of common applications and contribute all our research findings. Third, we propose
and evaluate pilot solutions to address the performance issues on mobile devices.

Based on our experimental findings and observations, we believe improvements in
the mobile storage stack can be made along multiple dimensions to keep up with
the increasing demands placed on mobile devices. Storage device improvements alone
can account for significant improvements to application performance. Device manu-
facturers are actively looking to bring faster devices to the mobile market; Samsung
announced the launch of a PCM-based multichip package for mobile handsets [Sam-
sung Corp 2011]. Mobile I/O and memory bus technology needs to evolve as well to
sustain higher throughput to the devices. Limitations in the systems software stack
can, however, prevent applications from realizing the full potential of hardware im-
provements; we believe changes are also warranted in the mobile software stack to
complement the hardware.

2. MOBILE DEVICE OVERVIEW

2.1. Android Overview

We present a brief overview of Android as it pertains to our storage analysis and devel-
opment. Figure 2 shows a simplified Android stack consisting of flash storage, operating
system (OS) and Java middleware, and applications; the OS itself is based on Linux
and contains low-level drivers (e.g., flash memory, network, and power management),
Dalvik virtual machine (VM) for application isolation and memory management, sev-
eral libraries (e.g., SQLite, libc), and an application framework for development of new
applications using system services and hardware.

The Dalvik VM is a fast register-based VM providing a small memory footprint;
each application runs as its own process, with its own instance of the Dalvik VM. An-
droid also supports “true” multitasking and several applications run as background
processes; processes continue running in the background when user leaves an applica-
tion (e.g., a browser downloading Web pages). Android’s Web browser is based on the
open-source Webkit [2012] engine; details on Android architecture and development
can be found on the developer Web site [Android Developer 2011].
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Fig. 3. Overview of Android’s Storage Schema.

Table I. Data Storage Partitions for Android
Partitions on internal flash and external SD card for Nexus One phone.

Partition Function Size and Type
misc Miscellaneous system settings (e.g., Carrier ID, USB config, hardware

settings, IMEI number); persistent shared space for OS and
bootloader to communicate

896KB

recovery Alternative boot-into-recovery partition for advanced recovery and
maintenance ops

4MB, rootfs

boot Enables the phone to boot, includes the bootloader and kernel/initrd 3.5MB, rootfs
system Contains remaining OS, pre-installed system apps, and user interface;

typically read-only
145MB, yaffs2

cache Android can use it to stage and apply “over the air” updates; holds
system images

95MB, yaffs2

data Stores user data (e.g., contacts, messages, settings) and installed
applications; SQLite database containing app data also stored here.
Factory reset wipes this partition

196MB, yaffs2

sdcard External SD card partition to store media, documents, back-up files,
etc.

multi-GB, FAT32

sd-ext Additional partition on SD card that can act as data partition, set-up
is possible through a custom ROM and data2SD software; nonstandard
Android partition

Varies

2.2. Android Storage Subsystem

Most mobile devices are provisioned with an internal flash storage, an external SD card
slot, and a limited amount of RAM. In addition, some devices (e.g., LG G2X phone) also
have a nonremovable SD partition inside the phone; such storage is still treated as
external.

Figure 3 shows the internal raw NAND and external flash storage on the Google
Nexus One phone. The internal flash storage contains all the important system par-
titions, including partitions for the bootloader and kernel, recovery, system settings,
preinstalled system applications, and user-installed application data. The external stor-
age is primarily used for storing user content such as media files (i.e., songs, movies,
photographs), documents, and back-up images. Table I presents the functionality of the
partitions in detail; this storage set-up is fairly typical across Android devices.

Applications can store configuration and data on the device’s internal storage as
well as on the external SD card. Android uses SQLite [2012] database as the primary
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means for storage of structured data. SQLite is a transactional database engine that is
lightweight, occupying a small amount of disk storage and memory; it is thus popular
on embedded and mobile OSs. Applications are provided a well-defined interface to
create, query, and manage their databases; one or more SQLite databases are stored
per application on /data.

The YAFFS2 [Manning 2004] file system managing raw NAND flash was tradition-
ally the file system of choice for the various internal partitions including /system and
/data; it is lightweight and optimized for flash storage. Recently, Android transitioned
to Ext4 as the default file system for these partitions [Tso 2010]. Android provides a
file system–like interface to access the external storage as well, with FAT32 as the
commonly used file system on SD cards for compatibility reasons.

We believe the storage architecture described in this section is similar for other
mobile OSs as well; for example, Apple’s iOS also uses SQLite to store application data.
iOS Core Data is a data model framework built on top of SQLite; it provides applications
access to common functionality such as save, restore, undo, and redo. iOS 4 does not
have a central file storage architecture, rather every file is stored within the context of
an application. We focus on Android, since it allows systems-level development.

3. ANDROID MEASUREMENT SET-UP

Since setting up smartphones for systems analysis and development is nontrivial, we
describe our process here in detail; we believe this set-up can be useful for someone
conducting storage research on Android devices.

3.1. Mobile Device Set-up

In this article, we present results for experiments on the Google Nexus One
phone [Nexus One 2011]. We also performed the same or a subset of experiments
on the HTC Desire [HTC 2011a], LG G2X [LG 2011], and HTC EVO [HTC 2011b]; the
results were similar and are omitted to save space.

The Nexus One is a GSM phone with a 1GHz Qualcomm QSD8250 Snapdragon pro-
cessor, 512MB RAM, and 512MB internal flash storage; the phone is running Android
Gingerbread 2.3.4, the CyanogenMod 7.1.0 firmware [CyanogenMod 2012] or the An-
droid Open Source Project (AOSP) [2011] distribution (as needed), and a Linux kernel
2.6.35.7 modified to provide resource usage information. We present a brief descrip-
tion of the generic OS customizations, which are fairly typical, and then explain the
storage-specific customization later in this section.

In order to prepare the phones for our experiments, we set up the Android Debug
Bridge (ADB) [2011] on a Linux machine running Ubuntu 10.10. ADB is a command-
line tool provided as part of Android developer platform tools that lets a host computer
communicate with an Android device; the target device needs to be connected to
the host via USB (in the USB debugging mode) or via TCP/IP. We subsequently
root the device with unrevoked3 [Unrevoked 2012] to flash a custom recovery image
(ClockworkMod [Datta 2010]).

For our experiments, we needed to bypass some of the constraints of the stock
firmware; in particular, we needed support for reverse tethering the mobile device via
USB, the ability to custom partition the storage, and access to a wider range of system
tools and Linux utilities for development. For example, BusyBox [2008] is a software
application that provides many of the standard Linux tools within a single executable,
ideal for an embedded device. CyanogenMod [2012] is a custom firmware that provides
these capabilities and is supported on a variety of smartphones. The (AOSP) [2011]
distribution provides capabilities similar to CyanogenMod but is supported only on a
handful of Google smartphones, including the Google Nexus One.
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Table II. Network Performance
Transfer rates for WiFi and USB reverse
tether link with iperf (MB/s).

N/W Rx Tx

USB 8.04 7.14
WiFi 1.10 0.53

We used the CyanogenMod distribution for all experiments on non-Nexus phones,
and for experiments that require comparison between a non-Nexus and the Nexus One
phone (not shown in this article). All Google Nexus One results presented in this article
exclusively use AOSP; we equipped both CyanogenMod and AOSP distributions with
our measurement-centric customizations.

An important requirement, specific to our storage experiments, is to be able to com-
pare and contrast application performance on different storage devices. Some of these
applications heavily use the internal nonremovable storage. In order to observe and
measure all I/O activity, we change Android’s init process to mount the different in-
ternal partitions on the external storage. Our approach is similar to the one taken by
Data2SD [Starburst 2012]. in addition, we were able to also migrate to the SD card the
/system and /cache partitions.

In order to adhere to Android’s boot-time compatibility tests, we provided a 256MB
FAT32 partition at the beginning of the SD card, mounted as /sdcard. The /system,
/cache, and /data partitions were formatted as Ext3; at the time we conducted our
experiments, YAFFS2 and Ext3 were the preinstalled file systems on our test phones.
We performed a preliminary comparison between Ext3 and Ext4, since Android an-
nounced the switch to Ext4 [Tso 2010], but found the performance differences to be
minor; a detailed comparison across several file systems can provide more useful data
in the future.

Note that this set-up is not normally used by end-users, but it allows us to run what-
if scenarios with storage devices of different performance characteristics; the internal
flash represents only a single data point in this set.

As part of our experiments, we want to understand the impact of storage on ap-
plication performance under current WiFi networks, as well as under faster network
connectivity (likely to be available in the future). For WiFi, we set up a dedicated
wireless access point (IEEE 802.11 b/g) on a Dell laptop having 2GB RAM and an
Intel Core2 processor. Since we do not have a faster wireless network on the phone,
we emulate one by reverse tethering [Carbou 2010] it over the mini-USB cable connec-
tion with the same laptop (allowing the device to access the Internet connection of the
host); Table II shows the measured performance of our WiFi and USB RT link using
iperf [SourceForge 2012].

To minimize variability due to network connections and dynamic content, we set up
a local Web server running Apache on the laptop. The Web server downloads the Web
pages that are to be visited during an experiment and caches them in memory; where
available, we download the mobile-friendly version of a Web site.

We conducted all experiments on the internal nonremovable flash storage and eight
removable microSDHC cards, two each from the different SD speed classes [SD Associ-
ation 2012]. Table III lists the SD cards along with their specifications and a baseline
performance measurement done on a Transcend TS-RDP8K card reader1 using the
CrystalDiskMark benchmark V3.0.1 [Crystalmark 2012] (shown on the left side). The
total amount of data written is 100MB, random I/O size is 4KB, and we report average
performance over three runs. The observed standard deviation is low, and we omit it

1Note that internal flash could not be measured this way.
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Table III. Raw Device Performance and Cost
Measurements on desktop with card reader (left) and on actual phone (right). “Sq” is sequential and “Rn” is
random performance.

SD Card Speed Cost Performance on desktop (MB/s) Performance on phone (MB/s)
(16GB) Class US$ Sq W Sq R Rn W Rn R Sq W Sq R Rn W Rn R
Transcend 2 26 4.16 18.03 1.18 2.57 4.35 13.52 1.38 2.92
RiData 2 27 7.93 16.29 0.02 2.15 5.86 11.51 0.03 2.76
Sandisk 4 23 5.48 12.94 0.68 1.06 4.93 8.44 0.67 0.73
Kingston 4 25 4.92 16.93 0.01 1.68 4.56 9.84 0.01 1.94
Wintec 6 25 15.05 16.34 0.01 3.15 9.91 13.38 0.01 3.82
A-Data 6 30 10.78 17.77 0.01 2.97 8.93 13.49 0.01 3.64
Patriot 10 29 10.54 17.67 0.01 2.96 8.83 13.38 0.01 3.72
PNY 10 29 15.31 17.90 0.01 3.56 10.28 14.02 0.01 3.95

from the table. Prices shown are as ordered from Amazon.com and its resellers, and
Buy.com (to be treated as approximate). We also performed similar benchmarking ex-
periments for the eight cards on the Nexus One phone itself, using our own benchmark
program. Testing configuration is as before with 4KB random I/O size and 128MB of
sequential I/O; results in Table III (shown on the right side) exhibit a similar trend
albeit lower performance than for desktop.

To summarize, read performance of the different cards is not a crucial differentiating
factor and much better overall than the write performance. Sequential reads clearly
show little or no correlation with the speed class; sequential write performance
roughly improves with speed class, but with enough exceptions to not qualify as
monotonic. Random read performance is not significantly different across the cards.
The most surprising finding is for random writes: Most if not all exhibit abysmal
performance (0.02MB/s or less!). Even when sequential write performance quadruples
(e.g., Transcend vs. Wintec), random writes perform several orders of magnitude worse.

In terms of overall write performance including random and sequential, Kingston
consistently performs the worst and tends to considerably skew the results; we try not
to rely on Kingston results alone when making a claim about storage performance. In
practice, we find that application performance varies even with the other better cards.
Transcend performs the best for random writes, by as much as a factor of 100 compared
to many cards, but performs the worst for sequential writes; Sandisk shows a similar
trend. A-Data, Patriot, Wintec, and PNY perform poorly for random but give very good
sequential performance. Kingston and RiData suffer on both counts, as they not only
have poor random write performance but also mediocre sequential write performance
(shown in bold in Table III); appliation-level measurements in Section 4 reflect the
consequences of the poor microbenchmark results.

3.2. Measurement Software

We first explain our measurement environment and the changes introduced to col-
lect performance statistics. First, we made small changes to the microSD card driver
to allow us to check “busyness” of the storage device by polling the status of the
/proc/storage usage file. Second, We wrote a background monitoring tool (Monitor) to
periodically read the proc file system and store summary information to a log file; the
log file is written to the internal /cache partition to avoid influencing the SD card per-
formance. CPU, memory, storage, and network utilization information is obtained from
/proc/stat, /proc/meminfo, /proc/storage usage (busyness) and /proc/diskstats,
and /proc/net/dev, respectively. Third, we used blktrace [Blktrace 2006] to collect
block-level traces for device I/O.
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Table IV. Apps for Install and Launch from Android Market
Install: top apps in August 2011, total size 55.58 MB, average size 5.56MB;
Launch: 10 apps launched individually.

App Name Size App Name Size
(Install) (MB) (Launch) (MB)
YouTube 1.95 Angry Birds 18.65
Google Maps 6.65 SnowBoard 23.54
Facebook 2.96 Weather 2.60
Pandora 1.22 Imdb 1.38
Google Sky Map 2.16 Books 1.05
Angry Birds 18.65 Gallery 0.58
Music Download 0.70 Gmail 2.14
Angry Birds Rio 17.44 GasBuddy 1.88
Words With Friends 3.75 Twitter 1.36
Advanced Task Killer 0.10 YouTube 0.80

In order to ascertain the overheads of our instrumentation, we conducted experi-
ments with and without the measurement environment. We found that our changes
introduce an overhead of less than 2% in total runtime.

Since many popular mobile applications are interactive, we needed a technique
to execute these applications in a representative and reproducible manner. For
this purpose, we used the MonkeyRunner [2012] tool to automate the execution of
interactive applications. Our MonkeyRunner set-up consists of a number of small
programs put together to facilitate benchmarking with the necessary application; we
illustrate the methodology next.

First, we start the Monitor tool to collect resource utilization information and note its
PID. Second, we start the application under test using MonkeyRunner, which defines
“button actions” to emulate pressing of various keys on the device’s touchscreen, for
example, browsing forward and backward, zooming in and out with the touchscreen
pinch, and clicking on screen to change display options. Third, while the various button
actions are being performed, CPU usage is tracked in order to automatically determine
the end of an interactive action. A class function UntilIdle() that we wrote is called
from the MonkeyRunner script to detect the execution status of an app; it determines
idle status using a specified low CPU threshold and the minimum time the app needs
to stay below the threshold to qualify as idle. Fourth, once the sequence of actions
is completed, we perform necessary clean-up actions and return to the default home
screen. Fifth, the Monitor tool is stopped and the resource usage data is dumped to the
host computer. Similar scripts are used to reset the phone to a known state in order to
repeat the experiment (to compute mean and deviation).

3.3. Application Benchmarks

We now describe the Android apps that we use to assess the impact of storage on
application performance; we automate a variety of popular and frequently used mobile
apps to serve as benchmarks.

—WebBench is a custom benchmark program we wrote to measure Web browsing
performance in a noninteractive manner; it is based on the standard WebView
Java Class provided by Android. WebBench visits a preconfigured set of Web sites
one after the other and reports the total elapsed time for loading the Web pages.
To accurately measure the completion time, we made use of the public method
of WebView class named onProgressChanged(); when a Web page is fully loaded,
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WebBench starts loading the next Web page on the list. We ran WebBench to visit
the top 50 Web sites according to a recent ranking [Compete 2011].

—AppInstall installs a set of top 10 Android apps on Google Android Market (listed in
Table IV on the left) successively, using the adb install command. App installation
is an important and frequently performed activity on smartphones. Once installed,
each application on the phone is typically updated several times during subsequent
usage. In addition, a user often needs to perform the install “on the go” based on
location or situational requirements (e.g., installing the IKEA app while shopping
for furniture or installing the GasBuddy app when looking to refuel).

—AppLaunch launches a set of 10 Android apps using MonkeyRunner listed in
Table IV on the right; the apps are chosen to cover a variety of usage scenarios:
games (Angry Birds and SnowBoard) take relatively longer to load, read traffic
to storage dominates. Weather and GasBuddy apps download and show real-time
information from remote servers, (i.e., network traffic is high). Gmail and Twitter
apps download and store data to a local database (i.e., both network and storage
traffic is high). Books and Gallery apps scan the local storage and display the list
of contents (i.e., read to storage dominates. IMDb has no storage or network traffic
due to Web cache hits, whereas YouTube launch is network intensive.

—Facebook uses the Facebook for Android application; each run constitutes the
following steps: (i) sign into the author’s Facebook account, (ii) load the news feed
displayed initially on the phone screen, (iii) “drag” the screen five times to load more
feed data, and (iv) sign out.

—Google Maps uses the Google Maps for Android application; each run constitutes
the following steps: (i) open the Maps application, (ii) enter origin and destination
addresses, and get directions, (iii) zoom into the map nine times successively, (iv)
switch from “map” mode to “satellite ” mode, and (v) close application.

—Email uses the native email app in Android; each run constitutes the following
steps: (i) open the app, (ii) input account information, (iii) wait until a list of received
emails appears, and (iv) close the application.

—RLBench [RedLicense Labs 2012] is a synthetic benchmark app that generates a
predefined number of various SQL queries to test SQLite performance on Android.

—Pulse News [Alphonso Labs 2012] is a popular reader app that fetches news articles
from a number of Web sites and stores them locally. Our benchmark consists of the
following steps: (i) open Pulse app, (ii) wait until news-fetching process completes,
and (iii) close the app.

—Background is another popular usage scenario is concurrent execution of two or
more applications (Android and iOS are both multithreaded); several apps run in the
background to periodically “sync” data with a remote service or to provide proactive
notifications. Our benchmark consists of the following set of apps in auto sync mode:
Twitter, Books, Contacts, Gmail, Picasa, and Calendar, and a set of active widgets:
Pulse, News, Weather, YouTube, Calendar, Facebook, Market, and Twitter.

For many of the benchmarks (e.g., Facebook, Email, Pulse, Background), the actual
contents and amount of data can vary across runs; we measure the total amount of data
transferred and normalize the results per megabyte. We also repeat the experiment
several times to measure variations; for multiple iterations, the local application cache
is deleted following each run.

4. PERFORMANCE EVALUATION

In this section, we present detailed measurement results for application runtime per-
formance, application launch times, concurrent app execution, and CPU consumption.
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4.1. Application Runtime Performance

The first set of experiments compare the performance of WebBench on internal flash
and the eight SD cards described earlier. Figure 4 shows the runtime of WebBench for
WiFi and USB reverse tethering.

Surprisingly, even with WiFi, we notice a 187% performance difference between the
internal flash and RiData; for Kingston, the difference was a whooping 2040%. To
ensure that the Kingston results were not due to a defective device, we repeated the
experiments with two more new Kingston cards from two different speed classes; we
found the results to be similarly poor. In the remainder of the text, so as to not rely
on Kingston alone when making a claim about application performance, we mention
the difference both with the second-worst and worst performing card for any given
experiment.

As expected, the faster the network (USB RT), the higher the impact of storage:
222% difference between internal and RiData, 2450% for Kingston. We find a similar
trend for several popular apps. Figure 5 shows the results over WiFi for AppInstall,
Email, Google Maps, Facebook, RLBench, and Pulse. Since the phenomenon of storage
and application performance correlation is clearly identifiable with existing WiFi
networks, we hereafter omit results for the USB network. The difference between
the best- and worst-case performance varies from 195% (225%) for AppInstall, 80%
(1670%) for Email, 60% (660%) for Maps, 80% (575%) for Facebook, 130% (2210%) for
RLBench, and 97% (168%) for Pulse; Kingston numbers are shown in parentheses.

To better understand why storage affects application performance, in Figure 6 we
present breakdown of the I/O activity during the WebBench workload. First, there are
few reads, the majority of which are issued in the beginning of the experiment. There
are significantly more writes, with about 1.3 times more data being written sequentially
than randomly. Since the difference between sequential and random performance is at
least a factor of 3 for all SD cards (see Table III), the time to complete the random writes
dominates. Although not shown in the figure, the /data partition receives most of the
I/O, with only a few reads going to the /system partition. Table V presents a breakdown
of the I/O activity for the other popular applications; the ratio of sequential and random
writes summarized in the table illustrates the effects of random I/O on performance.
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The disparity between sequential and random write performance is inherent with
flash-based storage; our evaluation results suggest this to be one of the primary rea-
sons behind the slower performance. However, this still does not explain the presence
of the random writes and overwrites even for seemingly sequential application needs.
In order to understand this, we take a closer look at the applications and their usage
of Android storage.

Figure 7 shows the storage schema used by the browser application consisting of sev-
eral components. The cache component contains webviewCache, the unstructured Web
cache storing image and media files. The databases component contains two SQLite
database files; webview.db is a database for application settings and preferences and
webviewCache.db stores an index to manage the Web cache. The database files are
much smaller in size compared to the cache; in our set-up, the cache consisted of 315
files totaling 6MB, whereas the database files were 34KB and 137KB for webview.db,
and webviewCache.db, respectively.
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Table V. I/O Activity Breakdown
Aggregate seq. and random, writes and reads during benchmark;
note moderate to high rand:seq write ratios for WebBench, Email,
Maps, Facebook, and low for AppInstall. Zero value means no activity
during run.

Write (MB) Read (MB)
Activity Sq Rn Sq Rn

WebBench 41.3 32.2 6.8 0.5
AppInstall 123.1 5.6 0.7 0.1
Email 1.0 2.2 1.1 0.1
Maps 0.2 0.3 0 0
Facebook 2.0 3.1 0 0
RLBench 25.6 16.8 0 0
Pulse 2.6 1.0 0 0

Figure 8 shows the write pattern to the Web cache directory and the SQLite database
files. Web cache writes are mostly sequential with reuse of the same address space over
time; SQLite exhibits a high degree of random writes and updates to the same block
addresses. Since the database writes are synchronous by default, each write causes a
(often unnecessary) delay.

4.2. Application Launch

Application launch is an important performance metric [Joo et al. 2011], especially for
mobile users. Figure 9 shows the time taken to launch a number of Android applications
on the various flash storage devices. Table VI lists those apps along with a summary
of disk I/O reads and writes, and data transferred over the network during the launch.
Most apps take a few seconds to launch, with games taking upwards of 10 seconds.
Larger apps (e.g., games) tend to take a noticeable amount of time to launch, contrary
to the target of “significantly less than 1 second to launch a new app” [Hackborn 2010].
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Fig. 7. Storage schema for WebBench. Storage data structures are cache of objects on FS and index of cache
in SQLite.

As shown in Figure 9, barring a few exceptions, the launch time varies between about
10% (for the Snowboard game) to 40% (for the Weather app); Twitter (120%) and Gmail
(250%) showed the most variation.

In order to ascertain the upper bound of launch time improvement through storage,
we placed all application data on a RAMdisk; the test is conducted with the PNY card
storing the /system, /sdcard, /cache partitions, and the /data partition mounted
with tmpfs. To remove the effects of reading from /system and /sdcard, we warm the
buffer cache; we verify the same by tracking all I/O to the flash storage. Launch times
do not significantly change even when all data is being read from memory. Storage
is likely not a significant contributor to app launch performance; research to speed
up launch times will perhaps benefit by focusing on other sources of delay such as
application think time.

4.3. Concurrent Applications

Figure 10 shows I/O activity for a 7,200-second run of the Background workload. Dur-
ing the period, the phone received about 1.6MB of data over the network. Interestingly,
the amount of data written to storage in the same period is 30MB (a factor of roughly
20); the majority of writes are for updating application-specific data and indices to the
SQLite databases. Although the storage throughput requirement is quite low, the addi-
tional random writes can cause latency spikes for foreground applications (not shown).
With the Android development team’s desire to minimize application switch time and
provide the appearance of “all applications running all of the time” [Hackborn 2010]
(see section: “When does an application ‘stop’?”) for mobile devices, handling concurrent
applications and their I/O demands can be an increasingly important challenge in the
future.
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4.4. CPU Consumption

Figure 11 shows the breakdown of CPU utilization for WebBench; the stacked bar chart
shows the CPU tick counts during active, idle, and ioWait periods (a “tick” corresponds
to 10ms on our phone). Figure 12 shows the CPU utilization and I/O busyness for
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Table VI. App Launch Summary
Total data (MB) read and written to storage and transferred
over the network for the set of apps launched.

App R W Rx Tx
AngryBird 20.69 0.04 4.09 4.44
SnowBoard 20.92 0.02 1.87 0.53
Weather 8.72 0.07 16.11 2.56
Imdb 2.71 0.00 0.08 0.00
Books 2.98 0.00 0.00 0.00
Gallery 1.88 0.00 0.00 0.00
Gmail 3.20 0.05 3.00 0.93
GasBuddy 7.47 0.00 2.28 0.80
Twitter 4.62 0.06 5.63 1.61
YouTube 2.06 0.00 65.47 4.83
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the same experiment for two SD cards: a fast Transcend and a slow Kingston. Since
the nonidle, non-ioWait CPU consumption includes not only the contribution of the
benchmark but also all background activities, we also measured CPU consumption for
background activities alone (to subtract from the total). Note that this is unlike the set
of background activities discussed in Section 3.3, as we turned off automatic syncing
and active widgets; we find that the share of CPU consumption due to background
tasks is less than 1% of the total.

The graphs reveal the interesting phenomenon that aggregate CPU consumed for
the same benchmark increases with a slower storage device (by just looking at the
“active” component). This points to the fact that storage has an indirect impact on
energy consumption by burning more CPU. Ideally, one would expect a fixed amount
of CPU to be consumed for the same amount of work. Since the results show CPU
consumption to be disproportional to the amount of work, we hypothesize it being due
to deficiencies in either the network subsystem, the storage subsystem, or both. We
need to investigate this matter further to identify the root causes.

Slower storage also increases energy consumption in other indirect ways; for ex-
ample, keeping the LCD screen turned on longer while performing interactive tasks,
keeping the WiFi radio busy longer, and preventing the phone from going to a low-power
mode sooner.

5. PILOT SOLUTIONS

We present potential improvements in application performance through storage system
modifications. We start with a what-if analysis to provide the envelope of performance
gains and then present a set of pilot solutions.
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5.1. What-If Analysis

The detailed analysis of storage performance gave insights into the performance prob-
lems faced by applications, but before proposing actual solutions, we wanted to under-
stand the scope for potential improvements. We performed a set of what-if analyses to
obtain the upper bounds on performance gains that could be achieved, for example, by
storing all data in memory. For comparison sake, we performed experiments, with both
memory as the backing store (using RAMdisk) and SD cards as the backing store; in
the different analysis experiments we placed different kinds of data on the RAMdisk,
for example, the cache, or the database files. Figure 13 compares the relative benefits
of the various approaches, as measured for the WebBench and Facebook workloads
for the RiData card and a RAMdisk; the trends for the other SD cards were similar,
although the actual gains were of course different with every card.

Placing the entire “cache” folder on RAM (bars B) does improve performance, but not
by much (i.e., 5% for WebBench and 15% for Facebook). Placing the SQLite database on
RAM (bars C), however, improves performance by factors of 3 and 2 for WebBench and
Facebook, respectively. Placing both the cache and the database on RAM (bars D) does
not provide significant additional benefit. Transforming the cache and database writes
to be asynchronous (bars E) recoups most of the performance and performs comparably
to the SQLite on RAM solution.

The performance evaluation in the previous section and the what-if analysis lead to
the following conclusions: First, the key bottleneck is the “wimpy” storage prevalent
today on mobile devices. Even while the internal flash and the SD cards are increasingly
being used for desktop-like workloads, their performance is significantly worse than
storage media on laptops and desktops. Second, the Android OS exacerbates the poor
storage performance through its choice of interfaces; the synchronous SQLite interface
primarily geared for ease of application development is being used by applications that
are perhaps better off with more lightweight consistency solutions. Third, the SQLite
write traffic itself is quite random with plenty of synchronous overwrites to the flash
storage causing further slowdown. Finally, apps use the Android interfaces oblivious
to performance. A particularly striking example is the heavy-handed management of
application caches through SQLite; the Web browser writes a cache map to SQLite
significantly slowing down the cache writes.
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We implement and evaluate a set of pilot solutions to show the potential for im-
proving user experience through improvements in the Android storage system. While
not rigorous enough to serve as deployable solutions, these can evolve into robust and
detailed solutions in the future. We classify the solution space into four categories.

—Better storage media for mobile devices to provide baseline improvements
—Firmware and device drivers to effectively utilize existing and upcoming storage

devices
—Enhancements to mobile OS to avoid the storage bottlenecks and provide new func-

tionality
—Application-level changes to judiciously use the supplied storage interfaces

Figure 14 shows the improvements through the pilot solutions for WebBench and
Facebook using Kingston and RiData; as with the what-if analysis, trends for other SD
cards were similar but actual gains varied. Bars A in Figure 14 represent the baseline
performance, whereas bars F are meant to represent an upper bound on performance
with all data stored in RAM.

5.2. Storage Devices Not Wimpy Anymore

An obvious solution is to improve the performance of the storage device, that is, using
better flash storage or a faster nonvolatile memory such as PCM. Indeed, flash fabrica-
tion technology itself is improving at a fair pace; scaling trends project flash to double
in capacity every 2 years until the year 2016 [ITRS 2009]. However, when it comes
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to performance, cost pressures in the consumer market are driving manufacturers to
move away from the more reliable, higher-performing SLC flash to the less reliable,
lower-performing MLC or TLC flash; this makes it harder to rely solely on improve-
ments due to flash scaling. Our findings reveal that the performance of a relatively
small fraction of I/O traffic is responsible for a large fraction of overall application
performance. A more efficient solution is thus to use the faster storage media as a per-
sistent write buffer for the performance-sensitive I/O traffic: A small amount of PCM
to buffer writes issued by the SQLite database can improve the performance.

We built a simple PCM emulator for Android to evaluate our solution. The emulator
is implemented as a pseudoblock device based on the timing specifications from recent
work [Chen et al. 2011], using memory as the backing store. The PCM buffer can be
used as staging area for all writes or as the final location for the SQLite databases;
our emulator can be configured with a small number of device-specific parameters. Fig-
ure 14 (bars E) show the performance improvements by using a small amount (16-MB)
of PCM; in this experiment, PCM is used as the final location for only the database files.

An alternative approach, as envisioned by Pocket Cloudlets [Koukoumidis et al.
2011], is to rely on substantial augmentation of existing flash storage capabilities on
mobile devices and/or full replacement of flash with PCM or STT-MRAM [Huai 2008].
In reality, storage-class memory may be placed in different forms on the mobile system,
for example, on the CPU-memory bus, or as backing store for the virtual memory. Our
intent here was twofold: (i) understand the approximate benefits of using such a per-
sistent buffer and (ii) demonstrate that even with a relatively small amount of PCM,
significant gains can be made by judiciously storing performance-critical data; a de-
ployed solution can certainly incorporate PCM in the storage hierarchy in better ways.

5.3. RAID over SD

Another solution is to leverage the I/O parallelism already existent on most phones: an
internal flash drive and an external SD card. We built a simple software RAID driver
for Android with I/O striped to the two devices (RAID-0) in 4KB blocks. Note that a
deployable solution will require more effort: It would need to handle storage devices of
potentially differing speeds and handle accidental removal of the external SD card.

While for some SD cards we obtained the expected improvements as in Figure 14
(bars B) (i.e., greater than 1X and less than 2X), for others we obtained a speed-up
greater than 2X (not shown); we suspected that this could be due to the idiosyncrasies
of the FTL on the card. As many consumer flash devices employ the log-block wear-
leveling scheme [Kim et al. 2002], their performance is sensitive to the write footprint;
a reduction in the amount of random writes reduces the overhead of the garbage
collection, improving the performance.

To verify our hypothesis, we performed another experiment. Figure 15 shows the
throughput obtained for an increasing address range with random writes; the I/O
size is 4KB and number of requests is 2,048, totaling 8MB of writes. In order to
minimize the effects of FTL state being carried forward from the previous experiment,
we sequentially write 1GB of data before every run.

For Kingston, Wintec, A-Data, Patriot, and PNY, as the address range increases,
the throughput drops significantly and then stabilizes at the low level. For RiData,
throughput drops but not as sharply, whereas for Transcend the throughput remains
consistently high (we do not have an explanation for the slight increase, multiple
measurements gave similar results). Sandisk exhibits more than one regime change,
dropping first around the 32MB mark and then around the 1,024MB mark.

To explain our surprising performance improvements, in a log-block FTL, a small
number of physical blocks are available for use as log blocks to stage an updated
block; a one-to-one correspondence exists between logical and physical blocks. Since the
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Fig. 15. Explanation of RAID speed-up. Variation in throughput for SD cards with increasing write address
range.

amount of data written to one disk in a 2-disk RAID-0 array is roughly half of the total,
the disk write footprint reduces and block address range shrinks; the RAID scheme
simply pushes the operating regime of an SD card toward the left, and depending
on the actual footprint, provides super-linear speed-up! While we came across this
performance variation in course of our RAID experiments, the implications are more
generic; one can design other solutions centered around the compaction of the write
address range.

5.4. Using a Log-structured File System

Log-structured file systems provide good performance for random writes [Rosenblum
and Ousterhout 1992]; another solution to alleviate the effects of the random writes is
thus to place the database files on a log-structured file system. We used the Nilfs2 [Kon-
ishi et al. 2006] file system on Android because it works with block devices, and we
created a separate partition on the phone’s flash storage to store the entire SQLite
database. Figure 14 (bars C) show the benefits of log-structuring; SQLite on Nilfs2
improves the performance of WebBench and Facebook by more than a factor of 4 for
Kingston, and more than 20% for RiData.

5.5. Application Modifications

Finally, several solutions are possible if one is able to modify either the SQLite interface
or the applications themselves. We demonstrate the benefits of such techniques with
a simple modification to SQLite: providing the capability to perform selective sync
operations based on application-specific requirements. In our current implementation,
we simply turn off sync for the database files that are deemed asynchronous as per
our analysis (e.g., the WebView database file serving as the index for the Web cache).
Figure 14 (bars D) compare the benefits of the selective sync operation with other
previously proposed solutions, providing noteworthy benefits especially for Facebook.

Another potential technique to improve performance at the application level is
through the use of larger transactions, amortizing the overhead of the SQLite sync
interface. A careful restructuring of the application programming interface can per-
haps lead to significant gains for future apps but is beyond the scope for this article,
the interface discussion is a classic chicken-and-egg problem in the context of storage
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systems [Sivathanu et al. 2003; Schlosser and Ganger 2004]. Recently, a new backend
for SQLite has been proposed that uses write-ahead logging [SQLite 2011]; such tech-
niques have the potential to ameliorate the random write bottleneck without requiring
changes to the API.

5.6. Summary of Solutions

Through our investigation of the solution space we notice several avenues for further
performance improvements in the storage subsystem on mobile devices, and conse-
quently the end-user experience. Our analysis reveals that a small amount of domain
or application knowledge can improve performance in a more efficient way. Through our
pilot solutions, we demonstrate the potential benefits of explicit and implicit storage
improvements.

Programmers tend to heavily use the general-purpose “all-synchronous” SQLite in-
terface for its ease of use but end up suffering from performance shortcomings. We
posit that a data-oriented I/O interface would be one that enables the programmer to
specify the I/O requirements in terms of its reliability, consistency, and the property of
the data (i.e., temporary, permanent, or cache data), without worrying about how its
stored underneath. For example, a key-value store specifically for cache data), does not
need to provide ultra-reliability; a Web browser can use the cache key-value store as
its Web cache in a more performance-efficient manner than SQLite.

6. RELATED WORK

We found little published literature on storage performance for mobile devices. One
of the earliest works on storage for mobile computers [Douglis et al. 1994] compares
the performance of hard disks and flash storage on an HP OmniBook; remarkably,
many of their general observations are still valid. Datalight [2011], provider of data
management technologies for mobile and embedded devices to OEMs, make an obser-
vation similar to ours with reference to their proprietary Reliance Nitro file system.
According to their Web site, lack of device performance and responsiveness is one of the
important shortcomings of the [Windows] Mobile platforms; OEMs using an optimized
software stack can improve performance. Our results also reaffirm some of the recent
findings for desktop applications on the Mac OS X [Harter et al. 2011]: lack of pure
sequential access for seemingly sequential application requests, heavy-handed use of
synchronization primitives, and the influence of underlying libraries on application I/O.

A recent study of Web browsers on smartphones [Wang et al. 2011] examined the rea-
sons behind slow Web browsing performance and found that optimizations centering
around compute-intensive operations provide only marginal improvements; instead,
“resource loading” (e.g., files of various types being fetched from the Web server) con-
tributes most to browser delay. While this work focuses more specifically on the browser
and the network, it reaffirms the observation that improvements in the OS and hard-
ware are needed to improve application performance.

Other related work has focused on the implications of network performance on smart-
phone applications [Huang et al. 2010] and on the diversity of smartphone usage [Falaki
et al. 2010]. Finally, there is extensive work in developing smarter, richer, and more
powerful applications for mobile devices, far too much to cite here. We believe the needs
of these applications are in turn going to drive the performance requirements expected
of hardware devices, including storage, as well as the OS software.

7. CONCLUSIONS

Contrary to conventional wisdom, we find evidence that storage is a significant con-
tributor to application performance on mobile devices; our experiments provide insight
into the Android storage stack and reveal its correlation with application performance.
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Surprisingly, we find that even for an interactive application such as Web browsing,
storage can affect the performance in nontrivial ways; for I/O intensive applications,
the effects can get much more pronounced. With the advent of faster networks and
I/O interconnects on the one hand, and a more diverse, powerful set of mobile apps on
the other, the performance required from storage is going to increase in the future. We
believe the storage system on mobile devices needs a fresh look and we have taken the
first steps in this direction.
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