
Techniques for Single System Integration of Elastic Simulation Features

by

Nathan M. Mitchell

A dissertation submitted in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the

UNIVERSITY OF WISCONSIN–MADISON

2017

Date of final oral examination: 11/22/2016

The dissertation is approved by the following members of the Final Oral Committee:

Eftychios Sifakis, Assistant Professor, University of Wisconsin - Madison, Computer Sciences

Michael Gleicher, Professor, University of Wisconsin - Madison, Computer Sciences

Bilge Mutlu, Associate Professor, University of Wisconsin - Madison, Computer Sciences

Court Cutting M.D., Professor of Plastic Surgery, New York University - Langone Medical Center

Mark Hill, Professor, University of Wisconsin - Madison, Computer Sciences

© Copyright by Nathan M. Mitchell 2017

All Rights Reserved

i

For my grandfather,

whose lifelong passion for teaching others

inspired me to pursue my own goals and education.

ii

acknowledgments

I would like to thank all the people who have supported me and my work over the years. In

particular, I would like to thank my family who have shown me unwavering support and

my friends who have kept me sane. Also, I would like to thank Ben Recht, Ronald Fedkiw,

Matthew Cong for their advice and discussions on several of the contributions made in this

dissertation. Additionally, I wish to extend my thanks to Dr. Timothy King, the medical

residents of the Plastic & Reconstructive Surgery program, and the School of Medicine and

Public Health at the University of Wisconsin-Madison for their involvement and support

with the virtual plastic surgery platform, as well as acknowledge Aaron Oliker and BioDigital

Systems for supplying the models used in this project.

This work was generously supported by the following grants and funding sources: NSF

grants IIS-1253598, IIS-1407282, CCF-1423064, CCF-1533885, CNS-1218432, CCF-1438992.

iii

contents

Page

Contents iii

List of Tables vi

List of Figures vii

List of Algorithms ix

Abstract x

1 Introduction 1

1.1 Thesis 1

1.2 Motivation 2

1.3 Contributions 3

1.4 Cartesian Grids as Model Representations 5

1.5 Parallelism Concerns with Modern Hardware 6

1.6 Practical Deployment of Surgical Simulations 7

1.7 Outline 8

2 Motivation 10

2.1 Medical Simulation: Requirement Specification 10

2.2 Simulation Assisted Visual Systems 18

3 Engineering Deconstruction 30

3.1 Background 31

3.2 Continuous Formulation of Deformation 32

3.3 Discrete form of Elastic Deformation 36

3.4 Constraints 47

iv

3.5 Topology Change 51

3.6 Engineering A Solid Foundation 53

4 Related Work 56

5 Non-manifold Embedding for Geometry and Contact 63

5.1 Non-manifold Embedding 63

5.2 Level Sets & Collision Processing 67

5.3 Non-manifold Level Sets 73

5.4 Examples 88

6 Parallelization Techniques for Lattice Deformers 91

6.1 A hybrid embedding lattice structure 92

6.2 Parallelization 94

7 Macroblock Technique for Hybrid Solvers 108

7.1 Macroblock-based discretization and numerical solution 111

7.2 An optimized direct solver for macroblocks 118

7.3 Justification of macroblock size choice 125

7.4 Examples and performance evaluation 126

8 Practical Deployment for Interactive Simulations 130

8.1 Deployment Issues 130

8.2 System Architecture Comparisons 132

8.3 Deployment Study 141

9 Discussion 143

9.1 Themes 143

9.2 Broader Applications 149

9.3 Limitations and Future Work 151

v

Bibliography 157

vi

list of tables

Page

5.1 Performance results for non-manifold level set generation and collision processing 89

6.1 Performance results for surgical and animation examples. 107

7.1 Performance results for the macroblock solver across several examples 127

vii

list of figures

Page

2.1 Z-plasty: Comparison between textbook illustration and simulation 11

2.2 Simulation of an advanced surgical repair at the top of the scalp 13

3.1 Example Deformation Map 33

3.2 Lattice Embedding 37

3.3 Illustration of non-grid aligned topology change 53

5.1 Illustration of incision technique 63

5.2 Illustration of the fine grid rasterization of a cut 65

5.3 Illustration of a cut generating a non-manifold lattice 66

5.4 Illustration of cases poorly handled by conventional level set discretizations 69

5.5 Illustration of the self-collision pipeline 70

5.6 Illustration of non-manifold mesh construction 75

5.7 Illustration of handling material bifurcations 78

5.8 A non-manifold level set is used to correctly track self-collision of a coil 79

5.9 Non-manifold level sets can correctly handle zero width cuts 83

5.10 Illustration of the backtrace procedure to determine surface crossings 85

5.11 Non-manifold level sets handle surgical scenarios and complex woven geometry 86

5.12 Non-manifold level sets are applicable to simulating small facial features 89

6.1 Illustration of cell type categorization 94

6.2 Embedding discretizations of surgical operations 95

6.3 Illustration of blocks formed from regions of manifold connectivity 98

6.4 Illustration of data structure optimized for vector hardware 99

6.5 Illustration of data structure optimized for vector hardware, with overlays 101

6.6 Kernel Components for Update Position Based State 104

viii

6.7 Kernel Components for Add Force 105

6.8 Kernel Components for Add Force Differential 106

7.1 Deformed model alongside illustration of its constitutive macroblocks 109

7.2 Macroblock solver used to handle rigid-elastic collision scenario 111

7.3 Macroblock solver used to handle basic quasistatic pose scenario 114

7.4 Illustration of the internal macroblock divisions and structure 117

7.5 Illustration of macroblock sparsity patterns 121

7.6 Illustration of SIMD-instruction groupings of a macroblock matrix 123

7.7 Macroblock collision scenario unsuitable for multigrid techniques 124

7.8 Skinning simulation example with spring-attached bones 124

8.1 Pilot deployment of web-based simulator 140

ix

list of algorithms

Page

3.1 Algorithm for computing elemental elastic force and force differentials 44

5.1 Non-Manifold Simulation Mesh Construction 66

5.2 Non-Manifold Level Set Mesh Construction: This algorithm is a modification

of the procedure to generate a basic non-manifold embedding (Algorithm

5.1) shown previously. The modfications here account for the addition of

transition faces to track the interface near material bifurcations instead of

simply collapsing vertices greedily. 81

6.1 General Parallelization Design Strategy . 94

6.2 SIMD Compatible Block Construction . 96

x

abstract

Techniques for simulating the behavior of elastic objects have matured considerably over the

last several decades, tackling diverse problems from non-linear models for incompressibility to

accurate self-collisions. Alongside these contributions, advances in parallel hardware design

and algorithms have made simulation more efficient and affordable than ever before. However,

prior research often has had to commit to design choices that compromise certain simulation

features to better optimize others, resulting in a fragmented landscape of solutions. For

complex, real-world tasks, such as virtual surgery, a holistic approach is desirable, where

complex behavior, performance, and ease of modeling are supported equally. This dissertation

caters to this goal in the form of several interconnected threads of investigation, each of which

contributes a piece of an unified solution. First, it will be demonstrated how various non-linear

materials can be combined with lattice deformers to yield simulations with behavioral richness

and a high potential for parallelism. This potential will be exploited to show how a hybrid

solver approach based on large macroblocks can accelerate the convergence of these deformers.

Further extensions of the lattice concept with non-manifold topology will allow for efficient

processing of self-collisions and topology change. Finally, these concepts will be explored in

the context of a case study on virtual plastic surgery, demonstrating a real-world problem

space where these ideas can be combined to build an expressive authoring tool, allowing

surgeons to record procedures digitally for future reference or education.

1

1 introduction

This document describes a set of techniques and design choices dealing with the processes of

modeling, discretization, and simulation of elastic deformable solids on data structures related

to regular Cartesian grids. The decision to use Cartesian grid representations for deformable

bodies was made due to their ease of use and the substantial potential for performance

optimizations. This document describes a series of contributions which enable the joint

support of a number of desirable simulation capabilities within this design regime, and allow

the performance potential to materialize in the context of real-world applications.

We use the task of crafting instructional animations of reconstructive plastic surgery as

the driving application and source of motivation for this work. This domain was used to

define the scope of the research presented in this document and the virtual surgery systems

developed within were leveraged as testing grounds for the algorithmic and data structure

contributions described in this dissertation.

Finally, this dissertation explores the practical challenges of deploying these algorithmic

contributions in the context of a practical and usable interactive system, addressing engineering

and deployment issues that extend beyond the details of the constituent core algorithms.

1.1 Thesis

This dissertation aims to support the following statement: Creating virtual simulators for

soft tissue reconstructive plastic surgery has reached the point of technical feasibility. This

capability is demonstrated using soft tissue reconstructive surgery as the benchmark, both

for its intrinsic value and the degree of complexity and challenges it exemplifies.

In pursuit of this goal, this document will describe how current practices for simulating

elastic materials can be combined in a holistic fashion to optimize for performance and

practical usability. In the process, limitations with the current approaches will be explored

and, in some cases, alternative techniques will be proposed to solve technical challenges that

2

our benchmark application exposes.

1.2 Motivation

Physicians have been seeking better methods to capture human anatomy and function, both

normal and pathological, for the purpose of healing since the earliest days of modern surgical

theory. From the anatomical drawings of Da Vinci, to more modern practices of constructing

realistic simulacra, surgeons, and their students, have been pursuing tools that allow them to

practice their skills before operating on real patients. Existing research shows the benefits

of engaging in these practice sessions in a virtual, non-invasive setting [Gallagher et al.,

2005]. Practiced surgeons make fewer mistakes and can use preparation sessions to plan new

approaches safely.

This general philosophy, which can be summed up with the classic proverb of “measure

twice, cut once”, is practiced by many high risk professions. From flight school to driving

simulators, computer constructed virtual environments have become an integral part of

training highly skilled professionals. The reasoning is three-fold: computer simulations are

relatively low cost and are easy to reset and reconfigure quickly, unforeseen parameters and

situations can be introduced more easily than in physical environments, and a trainee’s

progress can be easily recorded for later review. With these advantages over purely physical

training environments, why are surgeons still using aids such as diagrams, physical mannequins,

and cadavers?

Part of the answer involves the reality that better, technology-assisted alternative ed-

ucational aids are largely scarce and mature solutions are narrowly scoped. Performing

surgery is a complex task involving a combination of dexterous and cognitive, often spatial

reasoning, skills [Gallagher et al., 2005]. Tools that support all of these areas are difficult

to get right, and most attempts to build technological aids have focused on subsets of the

skills required. Historically, these have been the dexterous skills, which many authors have

3

tried to solve with a variety of haptic simulation techniques [Mendoza and Laugier, 2003,

Lindblad and Turkiyyah, 2007]. While these surgical simulation philosophies are useful, and

have been used in commercial products [Simbionix USA Corporation, 2002–2014a], they don’t

really meet the need of training cognitive skills. This need varies across surgical specialties -

reconstructive plastic surgery, which is highlighted in this document, requires the surgeon to

have internalized geometrical intuitions in order to manipulate tissue in the three dimensional

space of the human body. The lack of tools supporting this type of knowledge has kept

traditional, less technological aids as the core of many plastic surgery training programs.

In comparison to internal surgery, plastic surgery is also challenged by the practical reality

that the results of any operation will be visible to others. This fact adds an additional

constraint onto practitioners; not only must their work be as technically correct as before,

but they must also be considering the final aesthetics of their procedures. It follows then

that a simulator for plastic surgery operations must provide an environment for surgeons to

freely practice design, as well as correctly display the outcomes.

1.3 Contributions

General Material Support We present techniques for accommodating general classes of

materials, including nonlinear mechanical properties, and anisotropic media such as muscles,

in the context of a Cartesian grid-based discretization. This generality is supported despite

the challenge of simultaneously accommodating additional simulation constraints such as

parallelism, topology change, and collision handling.

Hybrid Grids for Non-Manifold Embedding We demonstrate an augmented data

structure that enables the resolution of thin, sub-voxel material features within an otherwise

standard hexahedral grid embedding context. This is accomplished by combining the implicit

topology of a grid and the flexibility of an explicit mesh structure, creating a hybrid data

structure that has large performance potential and modeling versatility. We demonstrate this

4

data structure in the context of surgical operations with complex, thin incisions created by

user input.

A Thread- and Vector-conscious Parallelization Framework We developed a pro-

gramming paradigm and an object-oriented code infrastructure for bridging the performance

divide between hand-optimized numerical kernels and what compiler optimizations were

able to provide in the context of complex simulation tasks. This framework drastically

simplifies the developer’s effort, generating highly optimized SIMD code while presenting

a API resembling scalar-style semantics. We demonstrated this framework by constructing

kernels for elastic simulations, showing how even large kernels can be successfully vectorized

without suffering inefficiencies of automatic compiler vectorization.

Non-Manifold Level Sets We propose a data structure for discretizing a level set over a

non-manifold domain, allowing the capture of implicit geometry with zero width incisions

and overlapping regions. Additionally, we provide algorithms for important tasks, such as

locating the nearest surface location from an interior point, enabling the use of the data

structure in self collision scenarios for elastic simulation.

Macroblock Solver Design We designed a hybrid iterative-direct solver for elastic mate-

rials defined over hexahedral grids, which divides the domain into self-contained abstractions

of simulation elements, labeled macroblocks. The interior of each macroblock is solved in a

direct fashion, using a cache-friendly, hierarchical factorization approach, while the interfaces

between macroblocks are solved iteratively. This technique provides excellent convergence for

non-linear materials, inheriting robustness properties of direct solvers, while remaining fast

and tunable, like iterative solvers.

Deployment Methodology for Remote Simulation In order to facilitate easy and

cost-effective deployment and collaboration, we developed a prototype surgical simulation

5

system that combines lightweight front-end clients with specialized remote simulation servers.

By employing modern web technologies, we are able to support cross-platform, multi-user

shared simulation environments over the network. This approach provides good scalability

across multiple clients, reduced infrastructure costs, and better long term maintenance

options.

1.4 Cartesian Grids as Model Representations

Capturing the shape of deformable models in visual computing applications has been ac-

complished in conjunction with a variety of geometry representations, including tetrahedral

meshes, point clouds, cages, and grids. This last method, which includes Cartesian grid rep-

resentations, has a number of benefits, including a simple and procedurally defined topology

along with an excellent potential for performance optimizations. Yet, these advantages come

with important caveats:

• Grid based representations form only an approximation of the object’s surface.

• Although the use of grids provides regularity at the data structure level, irregularity can

also manifest in other ways, such as the heterogeneity of material properties, especially

in models inspired by anatomy.

• Many of the ways that model topology might be required to change in scenarios of

cutting or fracture can jeopardize the regular implicit topology of the grid data structure.

• Several established methods for collision handling are not optimized for grid-based

representations, and even less so for the circumstances that can emerge from topology

change.

• Finally, translating the potential for performance in grid based representations into

practical gains in a fully-featured interactive system is a nontrivial proposition.

6

Handling all of these concerns simultaneously is the essence of the challenge at hand. The

work presented in this dissertation describes methods for addressing these issues. In particular,

techniques for infusing additional topological flexibility into grid representations, allowing

them to effectively capture thin, sub-cell material, while not giving up on performance

opportunities will be covered in Chapters 5 and 6; these chapters also address collision

processing within the same framework. In order to capitalize on the performance potential,

the regularity of the grid based representation will be used to build efficient streaming kernels

in Chapter 6. Additionally, higher level abstractions, described in Chapter 7, are possible:

grouping together multiple cells and creating larger macroblocks for improved performance

and to more effectively capture nonlinear behaviors.

1.5 Parallelism Concerns with Modern Hardware

Modern hardware and modern simulation techniques are currently intersecting with a high level

of maturity on both sides. This brings the possibility of being able to run large simulations

on commodity hardware at near real-time rates, something once considered impractical.

However, simple reuse of existing simulation implementations on current hardware does not

always result in competitive performance. Algorithms and techniques must be adapted to

the underlying performance mechanisms in modern computational hardware architecture

- namely thread and vector based parallelism. Each of these mechanisms carries its own

caveats and idiosyncrasies which must be accounted for in order to gain the most benefit.

Unfortunately, despite the advances in simulation capability and behaviors, less attention

has been paid to these parallelism concerns, often leading to algorithms which are poorly

structured to take advantage of both forms of parallelism simultaneously. Although for some

application domains the performance divide between platform-specific and platform-agnostic

algorithmic development might be limited, in the case of performance-conscious iteractive

applications, such as the clinical domain we target, the wasted performance opportunities are

7

too severe to ignore.

This concern is only complicated by the fact that current arithmetic bandwidth, expressed

in operations per second, is about two orders of magnitude greater than the available

memory bandwidth on most platforms. This impacts a large majority of low-level numerical

algorithms that deformable simulations are built on; as a consequence, the source of inadequate

performance in interactive simulation scenarios is often traced in our work to imbalances in the

memory-computation mix of the underlying algorithms. Thus, many of our interventions that

prove most effective in restoring interactive performance focus on the efficiency of low-level

throughput-sensitive kernels.

The work presented in this document attempts to address these issues in two key aspects.

First, a framework for building vectorized and multithreaded numerical kernels is presented

in Chapter 6. This approach delivers a scalar-like API to the developer, while being able

to generate efficient parallelized code for multiple architectures and architectural widths

automatically behind the scenes. This allows developers to focus on algorithmic correctness,

while not loosing the benefits of vectorization. The second intervention is the development

of a solver for local neighborhoods of grid cells (macroblocks) as discussed in Chapter 7,

which uses a delicate mirroring pattern to both expose large amounts of vectorization friendly

computation and to keep the memory bounds of the operation within first level processor

caches. This creates a lower demand for memory bandwidth, at the trade-off of additional

computation, improving upon the memory-computation imbalance found in modern hardware.

1.6 Practical Deployment of Surgical Simulations

Surgical simulation has been an active area for deformable solid research due to its intrinsic

value as well as its potential as a catalyst for algorithmic innovation. Unfortunately, some

of the most promising results from basic research are confronted with complex challenges

upon attempted integration into a comprehensive real-world system. Commercial surgical

8

simulation tools have fared better, but they are often restricted to expensive and bulky

workstations, only support a small number of simultaneous users, and provide a limited

feature set.

The work in this document attempts to address these issues by exploring methods for

practically deploying surgical simulation software to a wider audience of users. This problem

has been tackled along two fronts. First, we have attempted to build fast and interactive

simulations using commodity hardware, while not compromising on simulated features like

collisions and nonlinear materials. This allows for a wider range of platforms to be used and

not restricting the system to exotic, specific requirements. Second, we have explored a wide

range of implementations and approaches for delivering software to users. These include both

local and remote simulation designs, making use of modern web technologies, and taking

careful look at third party library implications. This approach was demonstrated in a live

pilot deployment of the surgical simulation software for medical students. The details of this

development strategy are covered in Chapter 8.

1.7 Outline

What follows is a short outline of the remaining chapters within this dissertation. In Chapter 2,

the motivation for this document is dissected in more detail, exploring both technical domain

considerations and design philosophies. A technical deconstruction of basic deformable solid

simulation practices is covered in Chapter 3, along with an introduction to notable technical

challenges. An examination of related work is covered in Chapter 4, placing the contributions

of this document in a broader context. Chapter 5 demonstrates how the regularity of Cartesian

grids can be combined with desired amounts of topological flexibility, both for capturing

model geometry and for contact scenarios. Chapter 6 continues with a discussion around

thread and vector based parallelism in the context of Cartesian grids. Chapter 7 describes

a new method for solving for elastic deformations which constructs larger macroblocks for

9

better convergence behavior. Chapter 8 describes practical deployment concerns and delivers

a critique of the various implementation options for surgical simulation systems. Chapter 9

concludes this document with a final look back at completed work and considers future work

along with current shortcomings.

10

2 motivation

Computer aided tools for plastic surgery serve as the external motivation for the work

presented in this document. In this chapter, this idea will be explored more thoroughly. The

goals of this chapter are twofold: first, we will formalize and review the concept of plastic

surgery simulation by studying the various aspects and requirements of such systems. As we

will see, there exist many subtleties of both plastic surgery training itself, and the task of

simulating it on a computer. Second, this chapter will attempt to bring these ideas into a

general conceptual framework, showing how they can be used in more areas beyond surgical

simulation and how these systems can drive research. Combined, these two discussions will

motivate the importance and utility of the technical contributions presented in later chapters.

2.1 Medical Simulation: Requirement Specification

When exploring computer science research with a domain specific focus, such as we are doing

here with plastic surgery simulation, it is critical to understand the expectations of domain

experts. Not only do these expectations guide the development of software, but they can

help triage research goals and serve as domain appropriate metrics for the evaluation of final

results. In this section, we will explore the specific requirements of our domain, specifically

soft tissue plastic surgery, while keeping practical engineering considerations in mind. In the

process, we will begin developing a framework in which these requirements can be placed and

will be explored further in later sections.

To accomplish this goal, we need to answer a series of questions that define the scope of

our proposed tools, as well as its metrics for success: What is the potential real-world utility

of the tool? How well does the system accomplish the task it was designed for? What are the

fine grained aspects of the required tasks? What features need to be implemented (or perhaps

more interestingly, not implemented)? Who are its users? We will answer these questions by

looking more narrowly at the problem of medical simulation for soft tissue operations which

11

Figure 2.1: Z-plasty: Comparison between textbook illustration and simulation
A comparison between the classic Z-plasty operation from a standard textbook [McCarthy,
1990] (left) and a simulated version of the procedure in three dimensions (right). The
simulation allows for more of the three dimensional shape of the procedure to be appreciated.

we have chosen for our benchmark.

For the purposes of this document, the range of soft tissue operations under consideration

will be restricted to “local flap” procedures [Baker, 2014]. These procedures locally alter the

geometry of skin tissue, but do not include any alterations to underlying bones or muscle

layers. Nor do they involve any remote effects, such as tissue grafts. These procedures are

fundamental building blocks of more complex operations, but, due to their often non-intuitive

geometry, can be difficult to learn. In fact, these procedures often have natural analogs in

computer graphics and geometry.

Graphics practitioners would associate these elementary actions with geometric transforms:

shear, rotation, uniform or anisotropic scaling. Of course, applying such transformation on

live tissue is very different than their application on a geometric model. When stretching

a tissue patch in one direction to 125% of its original length while contracting it in the

12

transverse direction down to 80%, squeezing-and-stretching in-place is typically not the

desired way to execute this transform. Real skin might not stretch that far or buckle in

the transverse direction during the process. A maneuver called the Z-plasty (see Figure 2.1,

right) achieves the same net effect, with a more graceful stress distribution and a smooth

blend to the surrounding tissues. In plastic surgery, cognitive training addresses the mental

challenge of how these elemental surgical puzzle-pieces are individually designed and how they

can be assembled into larger, more complex operations. Unfortunately, 3D computer-based

cognitive training solutions for facial reconstructive surgery are virtually nonexistent; common

educational materials are limited to 2D sketches (see Figure 2.1, left) and still photographs

of procedures.

Surgical skills targeted by computer-based training solutions have been classified Gallagher

et al. [2005] in two major categories. Psychomotor skills refer to the dexterous use of the

surgeon’s hands to manipulate instruments in the course of an operation. In plastic surgery,

psychomotor training involves mechanical aspects of surgical tasks, such as the “feel” of

tissue being cut or the nuances of manipulating a scalpel to enact a curved incision. For

example, training for laparoscopic procedures requires a clinician to be familiar with the

tactile response of pushing and pulling on organs and to practice coordination skills required

for suturing and cauterization. A number of computer-based solutions focus on psychomotor

training, including the works of Mendoza and Laugier [2003], De et al. [2005], Kim et al.

[2007], Lindblad and Turkiyyah [2007]. In contrast to psychomotor training, cognitive skills

and training are largely mental rather than dexterous exercises. For example, in the procedure

shown in Figure 2.2, the surgeon needs to contemplate how to best repair a large square

skin defect (i.e. area of excised tissue) by making auxiliary incisions that create properly

shaped “puzzle pieces” which can be sutured together without creating excessive stress. As

an example of a cognitive training system, Chentanez et al. [2009] described a cognitive

training system for steerable needle insertion, where the mental challenge lies in planning a

sequence of actions involving needle flexion and torsion, in order to achieve a desired insertion

13

Figure 2.2: Simulation of an advanced surgical repair at the top of the scalp
Simulated Dufourmentel-Mouly repair (see Baker [2014]) for a large gap of excised tissue
on the scalp. From top to bottom, left to right: Rendered stages of procedure, embedding
lattice, real time demo on a tablet running in a web browser.

trajectory.

Focusing on any individual type or aspect of skill training affects the design decisions

of a proposed tool. For instance, building a system for psychomotor training likely places

a greater emphasis on the interactivity aspects of the system, potentially requiring haptic

feedback mechanisms to provide tactile sensations. Likewise, a cognitive training aid might

require more involved reactivity and dynamism, such as a more accurate representation of

tissue behaviors. Ultimately, our goal should be to construct a virtual aid which resembles

reality as much as possible, in order to support all training goals. In our pursuit of this gold

standard, we need to take the opportunities as they arrive to target particular aspects of

surgical training. In this case, we find ourselves in a position to handle important cognitive

training tasks, even if we have to compromise on psychomotor skills.

This document will present techniques for supporting a cognitive simulation for plastic

surgery. In particular, the goal is to support an authoring tool which supports the following

basic tasks: design local flap operations on interactive, virtual tissue models, record and

playback operations for the purpose of knowledge retention and review, and support limited

14

training potential. It is not the immediate goal of this work to present a training tool in which

user’s actions are graded, nor do we claim a predictive model, where all tissue responses are

accurate enough to use as a basis for real surgery decisions. Instead, the tool should simply

allow an experienced practitioner to capture their knowledge of procedures in an interactive,

visual environment and to pass that knowledge onto others.

In order to further refine the ultimate shape of this proposed simulation aid, we will

now look at five important aspects as they relate to plastic surgery simulation: Geometry,

Reactivity, Dynamics, Interactivity, and Utility. In the following section, we will see how

these ideas can be generalized.

Geometry Surgery in general, plastic surgery in particular, are areas in medicine which

depend strongly on a practitioner’s intuitive spatial reasoning processes. At a high level,

the task of a plastic surgeon is to manipulate the geometry of the human body into a

new configuration. The reasons for this style of intervention are numerous and range from

cosmetic procedures, post-operation repairs, and fixing congenital deformities. Contrary

to popular public perception, plastic surgery is often employed to enact functional repairs.

Those living with injuries and deformities often have difficulties because the specific geometry

of their condition adversely affects the proper functioning of their body. A surgeon must

understand the geometry of their patient in order to produce both functionally correct, but

also aesthetically pleasing, outcomes. Since the results of these operations are often highly

visible, failures or mistakes can be extremely costly in an emotional and social sense for the

patient, let alone a continued disability. Any tool designed for this domain must take these

concerns seriously and present a compelling visual representation.

The work presented in this document achieves this goal by describing a tool for visually

authoring plastic surgery operations in a three dimensional virtual environment. However, it

is worth taking time to consider some potential alternatives. For instance, a two dimensional

sketching interface could be considered, drawing on the rich history of surgical instructional

15

diagrams that exist in the field. Certainly such approaches have been used for decades in

surgical textbooks, but they fall short of giving the viewer a comprehensive perspective of

the inherent three dimensional nature of human anatomy. Alternatively, one might consider

using video of real operations, annotated with information describing what is happening.

While this idea certainly leaves no question about the three dimensionality of the problem, it

does so by sacrificing the clarity a rendered computer model can provide and the ability to

alter the geometry easily.

A note should also be made on display technology. Here the word “display” should be

treated loosely and should be taken to mean any physical channel which conveys information

from the tool to the user. Commonly, this is restricted to visual interfaces, such as computer

monitors or head mounted displays (HMDs). However, it could also refer to force feedback

devices, where a user receives tactile responses from their actions in the system. Ultimately,

the proper device choice for a surgical simulation aid depends on its intended purpose. Many

commercial tools for training surgeons on laparoscopic equipment use a tightly coupled visual

and tactile feedback system. The goal of these tools is to replicate operating room conditions

exactly, hopefully instilling into physicians the tacit knowledge required.

Reactivity and User Interaction The display of three dimensional, static tissue geometry

is an improvement over the two dimensional illustrations commonly employed in training

literature. However, in order to provide surgeons more realism, we also need to have the

models react to their inputs. In real surgeries, there exist many ways a surgeon might

interact with human tissue: injecting drugs, cutting it, applying suction to remove blood,

and suturing it together are all candidate interactions. For the purposes of this document,

and to focus on the cognitive aspects of manipulating tissue geometry, we will be focusing on

three types of user interactions: pulling on tissue, joining tissue together, and changing its

topology. These concepts map directly to surgical tasks, namely using surgical hooks to pull

tissue around, adding sutures to close wounds, and cutting into tissue with a scalpel. This

16

subset of interactions, while small, is still capable of expressing many interesting operations,

particularly in regard to the cognitive problem solving scenarios we wish to target. The

ability for users to cut, pull, and join enables them to explore arranging the complex tissue

geometries required for local flap procedures. We then use physical simulation to compute a

mechanical response to these user inputs, which can be visualized by deforming the geometry

of the tissue model.

By creating a cause and effect relationship between the user’s input and the tissue’s

shape through simulation, we can provide users an environment in which to learn more about

how their proposed procedures might perform in reality. By leaving the simulation flexible,

we can also allow for later integration of realistic biomaterial behaviors. These materials

are extremely complex and often behave in non-intuitive, time dependent fashions. While

their accurate simulation is beyond the scope of this document, we want to not exclude the

possibility of including them later.

Dynamics It is worth discussing at this point the nature of time with respect to our

proposed tool, which can often be non-intuitive. The real-world phenomena we are representing

are heavily dependent on time in two major ways: sequencing and lag-based effects. Sequencing

refers to the nature of cause and effect, specifically the relative ordering of events and the

time taken between them. In the real world, we can generally think of the allowed user

actions (i.e. cutting, pulling, joining) as being naturally ordered and smoothly continuous in

time. For our purposes, we will relax this concept in our benchmark tool to allow for discrete

events. While we maintain that user actions should remain ordered, as we wish to track the

steps of an operation, we will record these actions as a series of discrete states. This is not

fundamentally different than the idea of discrete stages of an illustrated operation, as we saw

in Figure 2.1 earlier. As we transition between input states, the simulation will gradually

converge to a new mechanical response, creating the illusion of dynamic motion.

However, we need to be careful to distinguish between this illusion of motion and real

17

dynamic lag effects. These effects are commonly expressed in real materials as jiggling, but

can also be seen in surgical contexts in the form of swelling or other physiological reactions to

tissue damage. We will be specifically avoiding these types of dynamic behavior in our tool

for several reasons. First, the models describing these behaviors are extremely complex and

delicate. Moreover, the right answers to these problems are not clear yet in all cases. Second,

even if we had a well defined model, computing dynamic effects is computationally expensive,

which could harm the interactivity of our tool. Finally, we don’t really need perfect resolution

of these effects to initially accomplish our goal of cognitive training, which involves more

careful planning rather than immediate reactions to dynamic effects.

Utility The final topic to discuss is the planned utility of the tool, specifically the expected

use cases and deployment concerns. As mentioned previously, our goal is to support users in

authoring scenarios for local flap operations. The planned modes of interaction are two-fold.

First is the authoring mode, where an experienced user will interact with a three dimensional,

simulated tissue model to sequentially plan a procedure. This will be accomplished by using

the mouse and keyboard to select tools (i.e. cutting, pulling, and joining) and apply them to

the surface of the model. As each tool is applied and recorded, the simulation will update

providing the user with the results of their last input. The second mode is the playback,

or viewing, mode. In this mode, the user, potentially a student, will select a pre-authored

procedure from an available database. At this point, the user will be allowed to advance

through the procedure one step at a time, where the steps are the prerecorded inputs from

the previous authoring mode. During both modes of operation, the user will have freedom to

move the model around in virtual space, allowing them to see all aspects of the manipulation

at every stage.

In addition to the two modes of operation, we want the tool to support a multi-user

shared environment. This will allow the tool to support scenarios such as classroom settings

or shared presentations. Under this concept, multiple users will be able to connect clients

18

to a remote simulation server and observe the same scene. Each client will be permitted

their own independent view point, allowing the same freedom to look at the deforming model

as before. However, the simulation will be shared and the effects of any input entered by

any user will be propagated to every other connected client. The remote simulation server

should be designed to run as one of the clients or as a wholly separate device, allowing it

to be customized for additional performance or upgraded later. In comparison, the user

clients should be lightweight, allowing for easy deployment across a wide range of available

platforms.

2.2 Simulation Assisted Visual Systems

While assisting the plastic surgery community, by improving their available methods for

teaching and preparing for surgery, through computer simulation is certainly valuable,

additional value can be gained by understanding how the previous section’s concepts generalize

to a larger class of applications. This generalized class can be referred to broadly as

Simulation Assisted Visual Systems (SAVS). These systems are characterized by their use

of both physical simulation and interactive visuals to support practical tasks. Such visual

systems are commonplace in our modern society, though we do not often think of them in

these terms. Concrete examples include video games, animation tools, and virtual avatar

systems, though many more could be named. The goal of this section is to define the basic

concepts underpinning these systems, particularly in respect to physics based simulation.

This deconstruction will be followed by a examination of the challenges that exist when

developing a such a system, along with a short defense of their worth beyond their targeted

domains.

19

SAVS Deconstruction

The core of a SAVS is a virtual world, or environment. When discussing a SAVS, we are

talking about artificially constructed settings, often completely described by a computer

program and displayed via some device. This is contrast to other simulated environments

which are built entirely in the real-world, such as police training courses for example. However,

a SAVS is not completely disconnected from reality. In order to support a user in a particular

task, a SAVS is often designed to mimic real life situations. Returning to the definition above,

is it appropriate to declare any virtual environment a SAVS? Not exactly - building on their

proposed definition, we can structure a SAVS according to a series of important properties,

or aspects. These aspects should be familiar from the previous section: Geometry, Reactivity,

Dynamics, Interactivity, and Utility. However, now we will demonstrate how these aspects

are expressed in a more generic sense instead of the surgical context from earlier.

Geometry The Geometry of a SAVS refers to anything within the system dealing with

shape or visual appearance. This is an intentionally broad concept, including geometry

representation, texturing, and how these topics can be used functionally within the system.

Ultimately, the greatest challenge with the geometry aspect is our own desires. Like the legend

of King Midas, we must be careful to reign in our never ending need for more detail, in the

form of more refined meshes, higher resolution textures, or higher resolution discretizations,

or we run the risk of negatively impacting the overall system. Visual detail comes with steep

costs, whether in the form of computational time required to render images, the storage space

hold the information, or in the time required by artists to manually create assets. However,

improved visuals are not simply an optional feature. If we give them up for the sake of

performance or simplicity, we risk being unable to appreciate the results of the system in

a satisfying manner. Worse, we might adversely affect the system’s simulation components

by producing discrete models too coarse to capture the important continuous mechanical

properties. In the end, visual detail needs to be balanced between our wants and what we can

20

afford, while paying close attention to what we choose to comprise as the result of the choice.

Reactivity Reactivity describes the ability of a SAVS to hold state and allow its users

to change this state meaningfully via interactions with the system. In terms of simulation,

reactivity also captures the concept of boundary conditions, material models, and contact

behaviors. In the benchmark application described earlier, our boundary conditions were

limited to user defined hooks or point-to-point joins. In general, the types of boundary

conditions vary - from spatial spline curves [Setaluri et al., 2014b] to attaching virtual bones

to simulated muscles [Patterson et al., 2012, Mitchell et al., 2015]. The primary challenge

with boundary conditions is determining how to best translate the intuitive control we are

used to in the real-world into simulation friendly alternatives. It is easy to demand the ability

to push on a squishy simulated object, but reconciling that specification with the specific

discretizations employed or remaining robust throughout the process can be challenging.

Similarly complex are the available material models for simulated objects. While a fairly

standard set of materials were chosen for the surgical application, in order to facilitate

performance and robustness, more exotic models exist that exhibit properties like plasticity

and viscoelasticity [Wojtan and Turk, 2008]. Additionally, contact handling is a large part of

reactivity - the choice of including it or not, and whether or not collision free guarantees are

required can dramatically affect the results of a simulation. The choice of including some or

all of these features into a system can provide more control on the part of the user, but it

is important to avoid adding so much that the performance or robustness of the system is

negatively affected. Instead, these reactivity features should be selected for the utility they

bring to the system.

Dynamics As we discussed earlier, Dynamics refers to the effects of time in a system. For

our surgical simulation benchmark, we have chosen to do without many dynamic behaviors to

improve robustness and performance. However, dynamics are often an important property to

retain in other use cases. For instance, dynamic jiggling of soft material can be highly desirable

21

in character animation, where lifelike motion is often closely linked with this highly visual

behavior. Advanced animation use cases might require non-linear or anisotropic damping

models, depending on the underlying material composition and character design [Xu and

Barbič, 2017].

Interactivity Interactivity refers to two concepts: the overall speed or performance of the

system and the methods that a user has to interact with it. With regards to simulation,

we can talk about the concept of a time-sensitive simulation. Under this regime, we have

a limited budget of time before we must display a new visual frame to the user. Video

games are a classic example of this idea, where high frame rates are desirable to provide a

smooth and immersive experience. Simulations used in video games are under extremely

tight constraints in terms of time per simulation step [Parker and O’Brien, 2009]. This

problem also be thought of as lag, or the time between when a user performs and action

and when they see a change from the simulation. This issue only becomes exaggerated when

introducing remote simulations, where the network becomes an additional lag source in the

system. Video games have generally handled this problem by locally predicting game state

into the future and interpolating new information as it arrives, but this technique is difficult

for simulation based systems as good future predictions are on the same order of complexity

as the simulation itself.

The other side of interactivity is the user controls. For simulation, control is generally

achieved via user manipulable boundary conditions, potentially creating additional reactivity

requirements within the system. But in general, user controls exist to either serve a technical

function, such as the abstract manipulators in geometric modeling environments, or to

improve the immersiveness, such as the hand and body tracking technologies being explored

in video games. The proper choice of input mechanisms depends on the intended use of the

system and can greatly shape a user’s impressions of the system.

22

Utility We touched on some high level examples of Utility earlier, citing video games

and animation tools, but in general the reason we use simulation in a SAVS is to impart

some aspect of mechanical realism into a virtual environment. The term mechanical is

being used here to refer to objects which behave according to physical laws, not that we are

restricting ourselves to only simulating machinery. And certainly there are many applications

which benefit from these behaviors. Video games can use simulation to create procedurally

destructible environments [Parker and O’Brien, 2009] and animators use modeling tools to

create lifelike character motion through flesh simulation [McAdams et al., 2010]. More complex

simulations are regularly used to predict mechanical behaviors in advance of manufacturing,

saving both time and money during development.

SAVS Challenges

Designing a Simulation Assisted Visual System comes with a wide array of challenges, which

is not especially surprising when considering how many components can be included into their

framework. In this section, some of these challenges will be reviewed, hopefully to provide

better context for the design decisions that were made for the rest the work presented in this

document.

No One Size Fits All?

Reusability is commonly described in software engineering as an important design concept,

but comes with a particular set of challenges in a SAVS. In general, the idea is that reusable

components in a software system are desirable as the work required for their creation can

be amortized among multiple client systems. Designing a SAVS imposes some interesting

roadblocks for the principle of reusability.

The first issue that often comes up is that the requirements for a SAVS, while they can

appear similar in structure (e.g. display a 3D environment, respond to user input, simulate

materials, etc.), are often implemented with specific optimizations due to the tight restrictions

23

placed on such systems (e.g. near real-time performance, extremely complex environments,

etc.). Developers faced with these issues can easily fall into the trap of blind optimization.

This is a form of anti-pattern [Rising, 1998], where they optimize the implementation, often

quite expertly, for some aspect but without considering the rest of the system, or later

reusability. It is important to distinguish this from premature optimization, where the

developer spends time optimizing an implementation before knowing if such effort is required.

Blind optimization is performed under local justification. It is only with a broader context

that it can be determined to be a wise course of action. Premature optimization may end up

being wasted effort at best, detrimental at worst. In a simulation context, these activities can

result in rigid components, such as material models or solvers, which deliver high performance

but are not adaptable or easy to swap out for new functionality. These are issues the work in

this document has attempted to avoid.

Even if we ignore optimization, the fundamental design choices baked into simulation

systems can make them difficult to reuse. Often, in the pursuit of supporting a particular

physical property (e.g. strong incompressibility), choices are made in the mathematical

formulation or data structures that preclude other properties from easily coexisting. The

challenge here is in identifying these restricting choices early, either to avoid them or to

understand their effect on potential future development activities. Ignoring the consequences

can easily lead to situations where an implementation is abandoned simply because it will not

function well with other techniques, instead of any inherent mistake or flaw in its own design.

Designing general purpose SAVS platforms is not impossible. Game developers, over a long

developmental history, have created many excellent general platforms for game development,

referred to as game engines. But increasingly, these platforms, and the developers who

design them, are becoming a field in their own right. In the past, a game developer might

have done everything from writing low level graphics code to higher level game logic. In

contrast, modern games are often written by developers who know little about the low level

optimizations required to reach the fidelity and performance expected by current audiences.

24

Instead, these skills are expressed in game engines - highly tuned, carefully optimized systems

which are not a game per se, but act as a solid foundation for games written on top of them.

They provide services: rendering, resource management, network support, user interface

toolkits, and much more. In essence, this divide is not dissimilar to that of applications and

operating systems.

The work completed in this document generally follows this philosophy. As will be

described in later sections, the systems presented in this work adhere to two general principles.

1. Avoid Uncalled for Optimization During implementation of techniques presented

in this document, care was taken to avoid optimizing too soon. By doing so, we avoided

excessive specialization until the design goals could be cleared stated. In fact, many

design goals are still unclear, so a maintainable, if not fully optimized, system can be

an advantage.

2. Enforce Clean Separation As will be discussed in more detail in Chapter 8, the

domain specific motivation, plastic surgery, was separated as much as possible from

the underlying enabling technologies. This allowed a coupled, but functionally isolated,

system design, where the components needed to build a plastic surgery simulation

were isolated from the components needed to build a high performance finite element

simulator.

Realism and Cruciality

For the simulation underlying the virtual environment of a SAVS, one primary concern is

the balance between the concepts of realism and cruciality. Realism is a direct measure

of how much a user of a system sees what is being presented as an accurate simulacra, in

terms of the mechanical behavior, of a real object or environment. Here we are making

an assumption, which should be intuitively justifiable, that real world mechanics are the

highest standard of correctness possible. If we were capable of simulating these behaviors

25

with perfect accuracy, all users should be satisfied with the results. And yet, the nature

of our simulations fundamentally requires that they are an approximation of reality. One

goal of simulation research and building a SAVS is dealing with the issue of cruciality, the

process of identifying which features, or behaviors, of reality are most crucial to supporting

the primary, user-oriented tasks of the system. Every application has a different set of crucial

features which help define it uniquely. For the purposes of cognitive surgical training, we

are interested in simulated behaviors including smoothness of motion, maintaining surface

details, supporting contact scenarios, and inextensiblity of materials. Real tissue, in contrast,

supports many more behaviors such as incompressibility, viscoelasticity, and material failure

under high strain - but these are not crucial to our task. Attempting to support them in

order to improve realism both takes away developmental resources and unnecessarily increases

complexity.

Design Conflicts

A major problem facing the construction of any SAVS is that of design goal conflicts. This

is a common software development problem, where supporting one feature or aspect of a

system, such as performance, comes into direct conflict with implementing another feature.

Continuing with the performance example, suppose we wanted to impose a strict amount of

time between visual updates to the user. By doing so, we have restricted our updates with

an upper bound on the maximum amount of work they can complete at any one interval

due to these time restrictions. This choice may bias further choices towards the use of other

techniques, not because of any technical merit, but due to computational complexity.

Many of these conflicting goals exist, some of which are well known in general software

design circles. In the context of physical simulation, there are several conflicts we need to be

especially aware of.

26

Lag Vs. Accuracy Before, we touched on the ideas of reactivity and interactivity when

discussing the nature of cause and effect within a SAVS, but related idea is known as lag.

Lag is defined here to be the time between when a user applies some change to a simulated

system (a force impulse, a constraint change, etc...) and when the user sees the result of the

action1. The smaller this time, the more reactive the simulation feels. We can see this when

comparing the simulation to real materials. For real objects, the lag is effectively zero.

Of course, real materials have an advantage that simulated materials do not. Because

they are composed of individual atoms, real objects act as a nearly continuous finite element

simulation, where the elements are almost infinitely small and operate completely in parallel

to each other. Computer simulated materials are much coarser in their resolution and, despite

great advances in parallel processing, do not come close to that naturally available in real

materials. As we increase a simulated object’s resolution in order to capture more and more

detail, or use more complex elements that capture more interesting macroscopic effects, the

overall lag of the simulation increases as more effort is spent resolving each user action.

The challenge is to find the appropriate balance between the desired lag of a simulation

and the accuracy of the simulation. A major focus of this work has been to explore how both

of these aspects can be tackled simultaneously, both by exploiting underutilized parallelism

opportunities and by looking at novel data structures to extract additional effective resolution

without significantly doing so.

Domain Utility Vs. Generality Another two ideas that often find themselves in conflict

for physical simulation systems are the concepts of domain utility and generality. Lets look

at domain utility first, as it’s the more straightforward of the two. In the simplest terms,

domain utility refers to design choices in a system that primary serve the specific task, or

domain, that it is currently being built for. This may refer to choosing or discarding certain

features, deciding what API best suits the current task, or making optimization along critical
1This should be contrasted with the concept of hysteresis, where the effects of a stimulus naturally lag

behind the cause. What we are talking about with lag is an artificial delay which stems from algorithmic or
computational artifacts.

27

paths for the client application. All of these choices can be reasonable, even correct, as long

as you never intend to reuse the system for any other purpose.

Generality, on the other hand, asks what is the commonality of different tasks and guides

design choices along this route. A general design should be flexible to different and changing

requirements. Such a system typically eschews APIs built for specific tasks and instead tries

to distill out the fundamental building blocks that any potential client may need from the

system. The difficulties with this philosophy are two-fold. First, it isn’t always obvious what

the fundamental interfaces are, partially because designers by necessity must look at past

applications to define them and can only make educated guesses about future ones. But

secondly, general designs often cannot make the simplifying assumptions allowed by having

domain specific knowledge. These designs are often left with an awkward choice between

overly complex code that tries to optimize for every use case or simpler universal code which

doesn’t optimize anything.

On the surface, general systems seem harder to build effectively and often don’t result in

well optimized solutions, impacting other aspects such as interactivity, potentially leading

people to question the entire effort. The short answer in response is flexibility. For a well

studied domain, where every last detail is known and accounted for, a specialized system is

probably the best choice. But in order to answer challenging research questions, tools and

problems often have to change quickly and in unexpected directions as researchers adapt

to new findings and explore new ideas. Medical simulation is very much one of these areas,

where new questions are constantly arising and old preconceptions are abandoned. As such,

during the implementation of the systems described in this document, considerable effort was

spent on creating generalized simulation systems, and attempting to identify which areas are

ready for optimization and which were not.

28

A Rationale for Developing a SAVS

Despite the complexity involved in designing and implementing SAVS type systems, the

practice of developing them has significant benefits both inside and outside of academic

practice. This can be seen when comparing them with the traditional academic development

model. Designing isolated experiments for academic pursuits in computer science is a time

tested approach for performing research. This methodology is designed to control for unknown

factors during experiments - certainly this is what other scientific disciplines teach as the

proper approach. However, there can be significant value in building a large system as the

primary research platform. In order to support this claim, let us look at the three avenues by

which a SAVS creates value: As a Catalyst, By Filling a Need, and Intrinsically.

Catalyst for Advances

Reasoning about a SAVS is a complex task, as is the subsequent process of implementation. In

going about this process however, we have the potential to discover the unexpected. Anytime

we have to adapt a SAVS to a new domain or integrate new functionality, we will ultimately

generate questions and hopefully new answers. In this way, SAVS implementations are a

generator for new research. Whether it is answering questions about rendering, human-

computer interaction, software design, optimization, or in the case of this document, physical

simulation, a SAVS acts as fertile soil within which researchers are able to experiment in

many areas. But more than simply providing a platform to test isolated ideas, the integrated

nature of SAVS style systems encourage a global perspective. Every change affects and is

affected by everything else, forcing researchers to take in and understand the big picture

around their work and where it fits into the whole.

Utility Gap

The second reason that building a SAVS is often worthwhile is to fill a need. A SAVS

is, at its core, software with a purpose. In some cases, such as game development, many

29

implementations exist, making the bar to justify development high. But in other areas, such as

medical simulation, the gaps in functionality coverage are more severe. To use the benchmark

described in this document as an example, there have been many projects developing systems

for simulated organ surgery, but few systems for performing simulated plastic surgery. Filling

this gap is extremely valuable, as without it practitioners are being left behind while their

colleagues are more and more enjoying the benefits of modern computing technology.

Intrinsic Value

The development of SAVS itself is valuable, even if we ignore the added value of a SAVS in

fulfilling its specified purpose, or the additional research that can be spawned as a result

of its construction. Implementing a SAVS requires time, dedication, and skill - but no one

enters and leaves such a project unchanged. Simply being a developer on a SAVS helps a one

become a better software engineer, through the long hours of practice they will spend on it.

Beyond individual developers, building a SAVS is important to the community at large for

the reason that its existence demonstrates that such a project can be completed. Like all

large pieces of software, sometimes the most important idea they can convey is that such a

project is even feasible at all.

30

3 engineering deconstruction

Given the design challenge of creating a simulation assisted visual system for authoring

plastic surgery procedures, the next problem is determining by what methods can we best

accomplish this task. Commercially, there exist examples of surgical simulation products

based on both procedural animations and physical simulations. As discussed in the previous

chapter, a detailed procedural animation can accommodate some, but not all, of the goals for

a surgical authoring system. Procedural animation methods can provide realistic geometry,

respond to user inputs by advancing down pre-scripted event chains, and serve as a functional

replacement for traditional illustrated procedure guides. However, procedural approaches fall

short when assisting in cognitive training tasks.

Under cognitive training, the surgeon is expected to be developing a mental intuition for

how operations work at a fundamental level and be capable of adapting this knowledge to

new situations. These requirements go beyond a simple recall of a “correct” approach, but to

understand why these techniques work as they do. Traditionally, this level of understanding

is gained through years of experience working with live patients or animal models. Through

this process, surgeons experiment with designs (guided by experienced mentors) and observe

the results in order to better understand what works and what does not. Supporting this

style of intellectual freedom, the ability to deviate from diagrams in textbooks, is the goal of

the plastic surgery simulation system we wish to build. To address these concerns, we turn

away from procedural animations to physical simulation. Physical simulation can address

this problem by providing correct, real-time responses to a user’s actions, instead of forcing

them into pre-scripted routines.

The remaining chapters in this document will discuss technical contributions that form

the foundation of the plastic surgery benchmark application described in the previous chapter.

The goal of this chapter is to deconstruct the basic engineering challenges found in this

space. This deconstruction will frame the work presented in subsequent chapters, which can

31

otherwise feel somewhat disconnected from the topic of plastic surgery.

3.1 Background

To start, let us bring the topic of discussion down from the general specifications discussed in

the previous chapter and provide a concrete goal for what we want to provide. At the core, our

proposed surgical application can be described as a system which instills a reactive mechanical

response into three dimensional models of tissue to static and animated constraints. Let us

break this goal down further and look at each of these parts in more detail.

To begin, let us start with the concept of mechanical response. Mechanical response of

soft bodies, such as human tissue, can be described as a series of relationships between shape,

forces, and energy. At a very high level, when forces act on an object and alter its shape,

this requires a proportional amount of energy, which is then stored by the object. In real

materials, this potential energy can be dissipated in many ways, such as heat or by further

changes in shape. Our goal in the simulation of elastic materials is to minimize the energy of

our virtual materials by this latter outcome. In other words, we attempt to compute new

shapes, which minimize the energy of the object, in response to external conditions and forces.

The precise form of these shapes depends on the material of the object. For our purposes, we

are interested in a family of materials known as hyperelastic materials. The energy of these

materials depends only on the object’s current shape and do not consider the history of the

object’s shape, only its initial and final ones. While these materials are idealized, they are

most similar to rubbers or other materials that “bounce back” after being deformed.

If mechanical response is the relationship between shape, energy, and forces, shape itself is

the physical extents of the object. If we consider the virtual tissue models we are interested in

simulating, they can be described geometrically as a closed boundary in a three dimensional

coordinate system and the region the boundary encloses, which we represent by Ω. For the

moment we will consider this domain to be a continuous volume. In a later section, we will

32

discuss how this domain can be stored discretely on a computer.

The last part, relating to constraints, we will hold off on for now. We will return to this

idea at the end of the chapter, once we have covered the mathematical and computational

details surrounding mechanical response and shape, which will be the topic of the next two

sections.

3.2 Continuous Formulation of Deformation

In this section, we will expand on the relationship between shape, energy, and force from the

previous section and provide a mathematical foundation which we will later use for discrete

computations. The first idea we need to explore is that of shape change itself. When an

object changes shape from one configuration to another, we refer to this as a deformation.

To keep track of the deformation, we record it relative to the object’s reference configuration.

This is an arbitrarily chosen shape in the coordinate system of the object from which all other

deformations are measured. Mathematically, we can define the deformation as a mapping

between the locations in the domain of the object and R3:

φ : Ω ⊂ R3 → R3 (3.1)

Under this regime, we consider the domain of φ to be points inΩ, often referred to as material

space locations as they can conceptually be considered infinitesimal blobs of undeformed

material. We simultaneously locate and identify them by a spatial vector: ~X = (X, Y,Z).

The points in R3 which make up the image of φ are the corresponding deformed locations

~x = (x,y, z). This relationship can be seen in Figure 3.1.

Now that we have defined for what it means for an object to be deformed and the concept

of a deformation map, we can return to the relationship between shape, force, and energy. In

order to relate shape, or deformation, of an object to its energy, we need to define a way to

measure how the deformation varies throughout the object. We facilitate this by defining the

33

Figure 3.1: Example Deformation Map
The deformation map φ is illustrated here mapping between locations ~X in the object’s
reference configuration and corresponding deformed locations ~x in the object’s deformed
configuration.

quantity called the deformation gradient F, the jacobian of the deformation map.

F(~X) = ∂φ(~X)

~X
(3.2)

From the deformation gradient, we can extract metrics of deformation, known as strain

measures. The strain measure is directly used to compute the strain energy, the potential

energy of the material due to deformation. In the reference configuration, we want the

strain measure to be evaluate to zero. Additionally, if the object’s deformation is purely

translational, we would also like the strain measure to be zero. A simple strain measure that

meets these goals might be:

s = F − I (3.3)

While this evaluates to zero under translation and no deformation, this simple measure is

non-zero under rotation, which can result in inaccuracies under large deformation. We can

treat this issue by employing a different strain measure, the Green strain E:

34

E =
1
2(F

TF − I) (3.4)

The Green strain is more robust to large deformations by virtue of it being rotation

invariant, but is non-linear and can behave non-intuitively around extreme deformations. As

an example, consider a deformation that simply inverts an object along one axis. The Green

strain of this deformation would be zero in this case despite a significant deformation. If we

take a linear approximation around the undeformed configuration of the Green strain, we

arrive at the small strain ε:

ε =
1
2(F + FT) − I (3.5)

This formula is linear and under small deformations is approximate to the Green strain,

making it useful for scenarios with limited deformation, such as structural simulations for

buildings or other near rigid objects. As the deformation increases however, the small strain

suffers from the similar problems as the simple strain presented earlier (Equation 3.3). In

order to get a strain measure that is rotationally invariant and is more predictable than the

Green strain, one possibility is to apply a polar decomposition to the deformation gradient in

order to extract the rotational components:

F = RS

εc = S − I
(3.6)

While this strain measure is still non-linear, it behaves similarly to the small strain measure,

including a linear (not quadratic) relationship to axis aligned stretch, while maintaining

rotational invariance.

Once we have chosen our strain measure, we can use it to define a strain energy density

Ψ(F). This is a measure of the potential energy per unit volume of the material as a

consequence of undergoing deformation. Similar to the strain measure, there are several

35

popular energy density functions which can describe generic deformable materials. Linear

elasticity (Equation 3.7), derived from the small strain tensor, is easy and uncomplicated

to compute due to its linear relationship to the deformation gradient. However, since it is

based on the small strain tensor, it is not rotationally invariant and can exhibit physically

inaccurate behaviors under large deformations.

Ψ(F) = µε : ε+
λ

2tr2(ε) (3.7)

If we replace the strain measure used in the Linear elasticity model with the Green strain,

we get what is known as the St. Venant-Kirchhoff energy density function (Equation 3.8).

Ψ(F) = µE : E +
λ

2tr2(E) (3.8)

While this model is more accurate under large deformations due to the Green strain, it has

the unfortunate property of not penalizing significant compression and inversion. In the

film production industry, another nonlinear energy function is often used instead, called

Co-rotated elasticity, which is based off the fourth strain measure detailed in Equation 3.6:

Ψ(F) = µεc : εc +
λ

2tr2(εc)

= µ‖S− I‖2
F +

λ

2tr2(S− I)

(3.9)

Finally, we can calculate the energy of the entire object by integrating the energy density

over the domain:

E(φ) =

∫
Ω

Ψ(F)d~X (3.10)

In the next section, we will convert these continuous equations of deformation and energy

into discrete forms, allowing us to solve for our object’s deformations. Up until now, the

36

equations we have been using have assumed a continuous deformation field, free of any

particular discretization. The expressions in the next section will replace these continuous

equations with those appropriate for the lattice based discretization we use in our application.

3.3 Discrete form of Elastic Deformation

With these equations in hand, we can now reason about how to produce realistic mechanical

responses from our virtual tissue models on a computer. To do so, we need to change how we

have been treating the expressions from the previous section from a continuous representation

to a discrete representation suitable for computation. To do this, we will be dividing our

continuous domain in to smaller regions, or elements. Each element represents a finite quanta

of material, thus giving rise to the name of the approach we will be using throughout this

document: Finite Element Method (FEM).

In our new discrete world, we must first translate our former continuous domain Ω into a

data structure representable on a computer. Here we have a number of choices to pick from.

FEM literature has described many approaches for discretization over the years, ranging from

volumetric meshes to particle based approaches. These designs can be evaluated over several

categories: regularity, conformity, and ease of use. Regularity refers to the extent that the

technique uses repeating data structures or provides implicit internal relationships that can

be predicted, which is often extremely beneficial for performance optimization. Conformity

refers to how the data structure represents the object’s boundary shape, either attempting to

directly replicate the object’s domain or acting as a scaffolding around it, which can affect the

accuracy of the simulation. Finally, ease of use is a catch all term that includes any property

which makes the data structure easy or troublesome to include in higher level pipelines. In

this document, the approach we will be using is a mesh discretization. In particular, we

will be using a design referred to as an embedding lattice. Seen in Figure 3.2, we have an

example mesh of a lion and its embedding lattice. This data structure is extremely regular

37

Figure 3.2: Lattice Embedding
Show here is a three dimensional lion model1(left) and the corresponding embedding lattice
(right). Each vertex of the lion model is embedded into a cell of the lattice, which acts as a
deformable scaffold around the model.

and generally easy to construct, though it can suffer from a lack of conformity.

Under this representation, our material will be sampled at Cartesian nodes of a regular

hexahedral lattice and our elements of computation will be its cells. We refer to these nodes

as containing degrees of freedom, as they represent the discrete points where deformation

can occur. To deal with the issue of conformity, we utilize a technique known as lattice

embedding - whereby the discrete boundary of our object, represented by a separate surface

mesh, is embedded in cells of the lattice via a weighted interpolation of its nodes. Later in

this document, additional techniques will be presented to further increase the accuracy of the

lattice’s boundary conformity. Since the terms presented in regards to embedding can be

confusing, we will stick to the following terminology:

lattice - The simulation lattice is the discrete representation of our simulation domain and

is composed of elements of material known as cells. Through the simulation lattice, we

compute deformation gradients, energy, and ultimately forces.

node - A node is a topological point in our simulation lattice. Each node is identified by a

spatial location as a label and stores three degrees of freedom, or DOFs. These degrees
1The lion model was rendered with a shader created by Anthony Pilon.

38

of freedom are represented by the discrete deformation values. Additionally, nodes store

the discrete forces resulting from this deformation.

cell - A cell is the basic computational unit of our simulation lattice. It is represented as a

regular hexahedral volume and connects the eight nodes at its corners.

mesh - Our tissue material surface is represented by a mesh. This mesh is conforming, i.e

it attempts to match the shape of the continuous domain as closely as possible. The

deformed material surface is the desired visual result of our physical simulation.

vertex - A vertex is a topological point in our material mesh. Its position in space is wholly

determined by its embedding relationship, typically bi-linear, to its parent cell in the

deformation lattice.

Using this simulation lattice as a discrete approximation of our continuous domain, we

can now translate the concepts from the previous section. Instead of material points, we

have nodes. Each node is labeled by an unique identifier. This identifier can be as simple

as an integer, e.g. Node 52, but since we are using a regular lattice, we will continue with

the previous spatial labeling, although in this case we will now use integer coordinates. Our

former concept of a reference configuration will remain, by assigning each node a reference

position in space. Defining our deformation map φ then becomes as simple as:

φ(~X; x) =
∑
i

xiNi(~X) (3.11)

We define x = x1, x2, x3, . . . , xn to be our discrete deformation state, which includes the

displacement of every node in our lattice from its reference location. In this expression Ni

is the shape function for each node in the cell. This shape function is used to interpolate

the discrete nodal displacements into a continuous deformation deformation field. For the

hexahedra we are using, our shape functions are derived from trilinear interpolation. Using

39

this new description of φ, we can derive a continuous definition of the deformation gradient

for any point ~X inside the cell just as before:

F(~X; x) = ∂φ(~X; x)
∂~X

(3.12)

From this expression, we can integrate over the volume of a cell to arrive at an expression

for a cell’s energy.:

Ee(F) =
∫
Ωe

Ψe(F(~X; x))d~X (3.13)

In order to evaluate the integral over the volume of the cell, we employ a numerical

quadrature approach. This discrete approximation of the cell’s energy is expressed in Equation

3.14:

Ee(x) =

∫
Ωe

Ψe(F(~X; x))d~X

≈ ||Ωe||

Q∑
wqΨ

e(F(~Xq; x)) = Êe(x)
(3.14)

Here, we are evaluating Q = {~X1, ~X2, ..., ~Xq} quadrature points, each with a individual

weight wq, such that
∑
qwq = 1. ||Ωe|| corresponds to the volume of an individual cell. Our

choice of quadrature points greatly affects the accuracy of the approximation. Using an eight

point Gauss quadrature, while expensive, is third-order accurate for regular, axis-aligned

hexahedra. For cells which are only partially covered with material, Patterson et al. [2012]

demonstrated an alternative quadrature scheme that second order accurate and uses four

points. Finally, one point quadrature is possible [McAdams et al., 2011] if an additional

stabilization energy term is included to compensate for unpenalized deformation modes.

At this point, it is straightforward to define the global discrete energy to be the sum of

every cell’s energy:

40

E(x) =
∑
e

Êe (3.15)

From these expressions, we can derive an expression for forces at each node by simply

taking the derivative of the systems energy at each cell and summing its contribution onto

the node:

~fi(x) =
∑
e

~f
(e)
i (x), where ~f

(e)
i = −

∂Êe(x)
∂xi

(3.16)

We define f = ~f1, ~f2, ~f3, . . . , ~fn as our force state, which is similar to our deformation

state x. Using this relationship between nodal displacements and nodal forces, we can finally

describe the process for computing deformations.

Solving for Deformations

When a real object is exposed to external forces and constraints, it will naturally attempt to

assume a shape that equilibrates its internal energy with its external constraints. We will

seek the same situation in our case by solving for a deformation which corresponds to a local

minimum in the object’s energy E. This is equivalent to solving for a deformation state x

such that f (x) = 0, as minimums in E correspond to zero values in its first derivative, i.e. the

discrete force state f .

Since the relationship between forces and deformation is generally non-linear, unless we

use the linear elasticity model for small deformation situations, we employ the standard

Newton-Rhapson method to determine the solution. This method uses a series of linear

approximations to determine the roots of our function f (x). Given some initial configuration

x0, which will typically be the last equilibrium shape, our goal is to find a δx such that

f (x0 + δx) = 0. To solve for δx, consider the Taylor expansion of this expression:

f (x0 + δx) = f (x0) +
∂f
∂xδx +O(δx2)

f (x0 + δx) ≈ f (x0) +
∂f
∂xδx

(3.17)

41

If we assume that f (x0 + δx) = 0, since this is our goal, we can solve for an approximate

solution to δx:

0 ≈ f (x0) +
∂f
∂xδx

−
∂f
∂xδx ≈ f (x0)

δx ≈ (−
∂f
∂x

−1
)f (x0)

(3.18)

Which suggests an update formula for x:

xn+1 = xn −

(
−
∂f
∂x

∣∣∣∣
xn︸ ︷︷ ︸

K(xn)

)−1

f (xn) (3.19)

We refer to the matrix K as the stiffness matrix. In order to arrive at a solved equilibrium

configuration, for each iteration n our task becomes the following steps:

1. Update the stiffness matrix K for the current configuration xn.

2. Compute forces fn corresponding to xn for our right hand side of the update expression.

3. Terminate if we are within tolerance to zero net forces.

4. Solve K−1 for a displacement update δx.

5. Update our current deformation state xn+1 = xn + δx

6. Repeat

At the end of this process, our final deformation shape will be the one that equilibrates

the internal and external forces of the object. We can use this process to create animations

by solving for a series of quasi-static poses. These poses are controlled by time varying

constraints which are successively applied to the object between solves. If moved in smooth

trajectories, these constraints can create the appearance of smooth deformation, despite the

42

simulation converging to a static pose at every iteration. This can be thought of as taking

snapshots of an object’s motion, similar to how film is captured, though it does not include

dynamic effects such as jiggling or damped motion. However, this approach is much more

robust and can handle rather sudden and dramatic departures from prior constraints more

readily than techniques that allow more dynamic motions.

Unfortunately, the solution to K−1 is not without significant challenges. Some of the

major difficulties include:

Memory Footprint Each entry in K is a relation between force along one axis and dis-

placement along another between every connected degrees of freedom. Quantitatively,

this means we are faced with a matrix which has 27 non-zero entries on each row, where

each entry is a dense three by three matrix. To simply store K for a modest sized

domain of 1283 degrees of freedom, it would require 500 million scalar values at just

under two gigabytes of storage if 32-bit floating point representation is used2. Since we

are required to rebuild and then solve this matrix repeatedly, this footprint represents

a significant bottleneck on most platforms where available compute bandwidth exceeds

memory bandwidth by an order of magnitude.

Solver Choice Since our goal is to solve a large linear system, we have several options

including both direct and iterative style solvers. However, both general techniques

have different and significant drawbacks. Direct solvers are generally robust even when

the matrix is poorly conditioned due to stiff constraints or non-uniform materials.

Unfortunately, direct solvers typically work via a factorization and backward substi-

tution solution, which both requires storing the entire matrix and then performing

relatively little computation over its entries compared to the memory reads, making

their performance poor on very large systems. Iterative solutions in contrast can do

away with storing the entire matrix, instead only requiring that its multiplicative effect
2This is not including any additional storage cost overheads for representing the sparse matrix itself. This

number is simply the space required to store only the non-zero coefficients alone.

43

can be provided. This approach is known as a matrix-free solution. Iterative methods

are potentially faster and allow early termination for approximate solutions, but they

are sensitive to matrix conditioning. Iterative solvers can also be slow to propagate

effects throughout the domain, focusing on local errors before global smoothness.

Performance Concerns When computing the solution to K−1, attention needs to be paid

to how parallelization through multithreading and vectorization can be used to increase

performance. What makes this task particularly tricky is that by being more efficient

with computation only makes the divide between available memory and computation

bandwidth even worse. Careful management of access patterns and data organization

needs to be done in order to avoid starving the processor and undoing any advantage

parallelization can bring. An additional concern is that if explicit construction of K

is required, considerable expense must be paid for building a data structure used for

a single Newton step. We can avoid this issue by sticking with solutions which don’t

require explicit construction.

Discrete Formulas

In order to invert K without forming an explicit copy of the matrix, we can use algorithms

which are referred to as matrix-free, such as Conjugate Gradients (CG). These techniques

operate by taking products of the form K(xn)δx, where δx is an arbitrary vector used by the

specific algorithm being employed (for convenience, we label this vector as δx, though it does

not necessarily correspond to a deformation or displacement).

K(xn)δx = −

(
δf

δx

∣∣∣∣
xn

)
δx (3.20)

The product of (δf
δx
|xn)δx is equivalent to the differential δf[δx; xn] = (δf

δx
|xn)δx. In this

section, we’ll cover the process of computing discrete values for this differential, along with

the corresponding forces (the right hand side of Equations [3.18,3.19]).

44

Algorithm 3.1: Algorithm for computing elemental elastic force and force differentials

1: procedure FElastic(xe, Q, params p)
2: reshape xe → Ds
3: for q ∈ Q do
4: compute G← Gradient(Xq)
5: compute F← DsGT
6: compute P← P(F,p)
7: accumulate H← V0

wq
PG

8: reshape & accumulate H→ f e

1: procedure δFElastic(δxe,xe,Q, params p)
2: reshape xe → Ds, δxe → δDs
3: for q ∈ Q do
4: compute G← Gradient(Xq)
5: compute F← DsGT , δF← δDsGT
6: compute T ← dPdF(F,p)
7: compute δP← T : δF
8: accumulate δH← V0

wq
δPG

9: reshape & accumulate δH→ δfe

These two algorithms for elemental forces and force differentials, respectively, receive as
input values from each of the eight nodes of a cell e, indicated by xe, and accumulate
forces back onto these nodes. The functions P and dPdF can be user-defined to implement
arbitrary isotropic materials, controlled by material parameters p. The reshape operation
concatenates eight nodal vectors in a cell (positions, forces, etc) into a 3× 8 matrix and vice
versa. Q is the set of quadrature points used to approximate the volume integral. G is a
3× 8 gradient matrix encoding the derivative of the shape functions. V0 = h3 is the volume
of the cartesian cell. T is a sparse 4th order tensor as defined in Teran et al. [2005b]

45

Trilinear elements and gradients We start by deriving a concise expression for the

deformation gradient F(~X; x). We use the notation {~Xi1i2i3} s.t. {i1, i2, i3} ∈ {0, 1} for the

eight vertices of a given cell with ~Xi1i2i3 = ~X0 + (i1, i2, i3)h, where h is the diameter of a cell.

Their respective interpolation basis functions are Ni1i2i3(~X) =
∏
k(ξk)

ik(1 − ξk)
1−ik where

~ξ(~X) = (ξ1, ξ2, ξ3)

= (X− X0, Y − Y0,Z− Z0)/h

are the trilinear coordinates of ~X. Partial derivatives of the interpolating functions are readily

computed as ∂jNi1i2i3(~X) = (−1)1−ij
∏
k6=j(ξk)

ik(1−ξk)1−ik . From this point, we shall refer

to the vertices of a specific cell simply as ~X1... ~X8, and N1(~X)... N8(~X) for the respective

trilinear basis functions, with the understanding that we know how to relate to the prior

indexing convention. By equations (3.11,3.12) the deformation gradient at a location ~X∗ is

F(~X∗; x) =
∑
i

~xi∇Ni(~X∗)T

= Ds(x)G(~X∗)T
(3.21)

where Ds(x) = [~x1 ~x2 . . . ~x8] ∈ R3×8 is the cell shape matrix. The matrix G(~X∗) ∈ R3×8

with Gij(~X∗) = ∂iNj(~X∗) will be referred to as the gradient matrix at ~X∗. Note that for any

material point ~X∗, G(~X∗) can be precomputed as its value is independent of any deformation.

Force computation We mimic the elastic force derivation from McAdams et al. [2011],

referring to Equations [3.14,3.16], for an individual force components f(j)i , where i indicates

which node and j ∈ {1, 2, 3} indicates the axis:

46

f
(j)
i = −

∂Ee

∂x
(j)
i

= −h3∂Ψ(F
e)

∂x
(j)
i

= −h3
∑
k,l

∂Ψ(Fe)

∂Fkl

∣∣∣∣
Fe

∂Fekl

∂x
(j)
i

= −h3
∑
k,l

[P(Fe)]klG
e
liδik

= −h3
∑
l

[P(Fe)]jlG
e
li

(3.22)

Continuing from this expression, we can pack, or reshape, the resulting forces into a

unified matrix: He(x) = [~f1 ~f2 . . . ~f8], which is a 3× 8 matrix containing all nodal elastic

forces in a cell Ωe. The force matrix He, for a set of quadrature points Q, is assembled as:

He(x) = −h3
∑
Q

wqP(F(~Xq; x))G(~Xq) (3.23)

where P(F) = ∂Ψ(F)/∂F.

In this last expression, P is the 1st Piola-Kirchhoff stress tensor.

Force differentials The Conjugate Gradients (CG) solver used to solve equation (3.18)

does not require the matrix K(xn) to be explicitly constructed, as long as its action on an

input vector δx can be evaluated. The result of this implicit matrix-vector multiplication are

the force differentials δf . We perform this matrix-free operation on an element-by-element

basis, adding the contribution of each Ωe to the aggregate differentials. The force differentials

can be collectively computed as δHe(δx; x) = [δ~f1 δ~f2 . . . δ~f8], described in McAdams et al.

[2011] and Patterson et al. [2012], as follows:

δHe(δx; x) = −h3
∑
Q

wqδP(δF; F(~Xq; x))G(~Xq) (3.24)

where δP(δF; F) = T(F) : δF,

47

and δF = Ds(δx)G(~Xq)T .

In this expression, the fourth order tensor T = ∂2Ψ/∂F2 is the stress derivative. We refer the

reader to Teran et al. [2005b] for a discussion of how this tensor can be constructed via the

SVD for isotropic materials.

3.4 Constraints

Until this point, the discussion of materials and mechanical responses has not mentioned the

last component of the initial problem statement: constraints. This is a complex topic and

it is best to approach it after having a basic understanding of how simulated materials are

solved in general. At basic level, a constraint is a condition we are either forcing or strongly

encouraging the simulation to meet. For our purposes, we will consider two general categories

of constraints, defined by their use cases: animated user interaction constraints and static

scene constraints.

User Interactions

User interaction constraints are the mechanism through which users are able to control and

direct the simulation. In the real world, we interact with objects intuitively - we push and pull

things, glue them in place, or join them via mechanical connectors. For simulated objects, we

can perform many of the same conceptual tasks by mapping their high level descriptions into

the fundamental forces behind them. Our benchmark application will support two primary

types of user interaction constraints: hook constraints and suture constraints.

A hook constraint acts to pull material locations towards user specified points in space.

This constraint is treated as an influence, not a hard requirement. During the simulation, a

user is allowed to place an arbitrary number of hooks, move their target locations, and remove

them. We consider these hooks to be animated, as the user is allowed to dynamically alter

them over the course of the simulation. However, as was discussed before, our simulation is

48

quasi-static - meaning that changes to the hooks can only occur in between solve steps. While

this prevents a user from having smooth control, we can create its illusion by decreasing

the time of each solve step. In later chapters we’ll look at techniques for improving raw

performance, but we can also stop the Newton method early - displaying partially converged

deformations to the user, but allowing them the opportunity to engage in further control

actions to refine the partial results.

Suture constraints are similar to hook constraints, in that they pull material towards other

locations, except sutures pull two material locations towards one another instead of arbitrary

spatial locations. Users are allowed to place and remove sutures during the simulation, just

like hook constraints. However, they are not allowed to move them. Once created, a suture

acts as a semi-permanent influence between two material locations, attempting to pull them

together.

Both hooks and sutures are allowed to be placed in arbitrary material locations and are

not restricted to discrete locations, like nodes. This is accomplished by embedding them,

similar to how we embed vertices of the surface mesh. However, in this case we are embedding

a constraint point which imparts external forces on its embedding cell, rather than the cell

imparting a deformation on the point, as would be the case for a vertex. To generate these

forces, we implement hooks and sutures as as zero-rest length springs, which obey the simple

one dimensional form of Hooke’s law:

~f = −k‖xa − xb‖2 (3.25)

In this relationship, the restorative forces (forces acting in a direction to return the spring to

its resting length) ~f are proportional to the amount the spring has been stretched, represented

by the distance between its two end points xa and xb, all of which is modulated by a spring

constant k. In our case, the endpoints xa and xb might be absolute positions, or they may

be relative to a cell, defined by a set of trilinear interpolation weights. The forces, similarly,

49

are applied by distributing themselves to their surrounding nodes through the inverse of the

interpolation operation.

Challenges In terms of the equations we’ve looked at before, force constraints modify

both the stiffness matrix K and the right-hand side f in Equation 3.19. This immediately

suggests several technical challenges. First, there is a question of the strength of the spring

constant k. This value directly controls how much influence the constraint exerts on the

material to which it is attached. If it is made too weak, the hooks and sutures will not look

realistic, not moving the material enough. If there are too many springs embedded in a cell,

there may be insufficient degrees of freedom available to satisfy the constraints, creating

locking behaviors. Strong springs can also cause iterative methods like CG to spend large

amounts of effort correcting their local effects, leading to slow global convergence. Hooks

and sutures additionally disrupt the regularity aspects of the deformation lattice, making the

force computations in some cells different from others. Sutures are more challenging, as they

additionally introduce non-local effects - forces in one cell depend on the deformation of a

potentially far away cell, instead of its immediate neighbors.

Scene Constraints

The second category of constraints are the static scene constraints. In this case the term

static is referring to the notion that the user does not have control over the creation of these

constraints and that they are instead initialized once for each surgical model. This is a

subtle distinction, which will be more clear during the discussion about collision handling a

little later. There are two types of scene constraints that are employed in our application:

positional constraints and contact constraints.

Arguably the easiest constraint type, positional constraints can be thought of as holding

a part of an object fixed in space with infinitely strong glue. Mathematically speaking, these

constraints are referred to as Dirichlet, or boundary conditions which are defined by enforcing

50

a specific value at a location. Numerically, Dirichlet conditions are applied by enforcing a

specific deformation on constrained nodes, usually being no deformation. For virtual surgery,

these constraints could serve to pin the edges of tissue down, or act as a transition between

the simulated and non-simulated regions, preventing separation. For our application, we

enforce positional constraints only at node granularity as this is relatively easy and satisfies

the use cases we have.

Contact handling, or collision handling, is the constraint which exists to prevent one

object from non-physically penetrating another object. Collision is a particularly tricky

property to support in elastic simulation, especially self collision. Collision can be broken

into two distinct steps: collision detection and collision response. Collision detection is the

aptly named process of determining whether or not collision has occurred at any particular

point in time. For volumetric objects, which possess distinct inside and outside regions,

collision detection typically takes the form of testing for surface penetration. This task, in a

general sense, is rather expensive, so we reduce the computational load by restricting our

tests to specific locations, or proxies. Proxies are points distributed (and embedded into the

simulation lattice) over the surface of the object, creating a discrete stand-in for the true

surface. The next step is determining which proxies are currently in states of collision or

interpenetration.

For rigid body collisions, i.e. collisions between the soft body and an external rigid object,

level sets have been employed quite successfully for collision detection purposes [Teran et al.,

2005b, McAdams et al., 2011] with complexities in the order O(1) for any point of interest.

The general idea is to define a level set over a rigid body and then between each quasi-static

solution check which proxies are in a state of penetration. For each proxy that is colliding,

the collision response we employ is a penalty force. This takes the form of an additional

spring constraint we introduce between the proxy and the closest location on the surface

of the object, which can be determined via the level set. This spring, over the course of

subsequent solves, acts to push (or pull) the material into a non-colliding state. Self collision

51

scenarios work similarly, but with an additional complication that both surfaces involved are

potentially deforming. This topic will be covered in more detail in Chapter 5, where a full

collision processing algorithm with level sets will be described.

Challenges The primary difficulties with this approach are due to geometry, robustness,

and performance. The first problem that comes up is that our proxies need to be a good

representation of our object’s surface. Too few and we can miss substantial penetrations.

But too many can be needlessly expensive to handle during the collision response phase.

Distribution is important as well. For instance, choosing to place a proxy at the barycenter of

each embedded mesh triangle is only reasonable if the mesh is uniformly discretized - uneven

coverage of large and small triangles can lead to uneven collision detection. Additionally, since

our penalty forces are implemented via spring constraints, we suffer from the same robustness

issues discussed earlier for user constraints. Only now we have many more such constraints,

potentially orders of magnitude more, making the problem more delicate. This approach can

also suffer from instabilities relating to the discrete nature of the penalty forces - as proxies

return to non-colliding states, other forces acting on the object can easily push them back,

creating a pseudo-vibratory behavior as penalty forces are removed and reinstated. Finally,

we need a way of handling the response in a performant manner. Before we mentioned that

springs can break the regularity of the stiffness matrix making parallelization more difficult,

but now we have lots of springs which only intensifies the potential problems. Maintaining

reasonable performance in the face of these challenges will be touched on in Chapter 6.

3.5 Topology Change

The last topic that needs to be discussed in relation to simulation and constraints is the

concept of topology change. Apart from physically moving tissue around or joining it with

sutures, this interaction represents a user’s ability to incise material with some type of virtual

cutting implement. As such, supporting topology change is very important as without support

52

most surgical procedures would be impossible to perform. It is worth considering the ways

that topology change in simulated objects can be done. Initially, it might be tempting to

say that topology change needs to mimic the actual physics of a scalpel cutting tissue. In

other words, track the physical forces at the tip of the blade, the strain limit of the tissue,

and cause the material of the simulated object to separate as the blade traverses the surface.

This approach is appealing due to the naturalness of the effect - as the blade moves, tissue

is cleanly cut and slides away from it on either side, just as one might expect in a real life

procedure.

Unfortunately, this form of online cutting, where the topology change and deformation

solution are fully coupled, is very complicated. It requires careful maintenance of multiple

data structures and the stiffness matrix, all while ensuring the problem remains robust and

avoids spurious forces. It is also not, strictly speaking, necessary. If we were approaching the

problem from a psychomotor perspective, where we were interested in training the user on

how it would feel to cut tissue, this type of cutting would be required to correctly inform

haptic feedback devices. However, as stated in the previous chapter, we are mostly interested

in the cognitive aspects of plastic surgery. Under this regime, online cutting is less important

than providing users a clear interface in which to plan and enact cuts with precision.

To provide for this need, our system defines cuts via user traced paths. Working in the

undeformed, or reference, configuration, users are allowed to trace cutting paths on the

model’s surface. These paths are then extruded into triangularized cutting surfaces which

follow the normal of the surface. We allow users to enact these cuts in discrete points in time,

creating a sequence of cut operations. These cutting surfaces are then used to geometrically

divide the underlying surface mesh, simulating the separation of tissue. While this approach

does not support certain types of operations, such as cleft lip repair or operations on highly

volumetric regions like the human breast, due to its inability to cut deformed material, it

easily supports the local flap style operations we are targeting.

53

Challenges Even this restricted description of cutting has an important challenge to

overcome, namely how we embed the cut surface mesh into our lattice. Simply embedding

the mesh into a lattice would almost certainly place both sides of the cut into the same

cell, effectively joining the material as if the cut never happened. We could simply increase

the resolution of the lattice, making the cells small enough to resolve the cut - but this

doesn’t work for zero thickness cuts. If we had replaced our lattice with an explicit simulation

discretization, perhaps a conforming tetrahedral mesh, we could consider re-meshing the

simulation discretization to conform to the cut. However, a generic lattice doesn’t have that

kind of flexibility, as its topology is implicit. The best approximation to the tetrahedral

case would be to simply remove entire cells, leading to extremely coarse, axis-aligned cuts.

In Chapter 5, we’ll show how these problems can be overcome with the introduction of a

non-manifold topology design (as previewed in Figure 3.3), in Chapter 6 we’ll look at dealing

with the regularity challenges due to cutting, and in Chapter 7 we will cover an advanced

solver approach that can more capably handle cells with partial material coverage.

3.6 Engineering A Solid Foundation

The following chapters will discuss in more detail some of the important engineering challenges

and present techniques to overcome them. The primary goal is to demonstrate a set of related

approaches that work well with each other and can be used to construct a highly performant,

Figure 3.3: Illustration of non-grid aligned topology change
A cutting path (far left) gives rise to new cells on either side of the cut (center), allowing the

lattice to be divided below cell resolution (far right).

54

yet flexible foundation for a plastic surgery Simulation Assisted Visual System (SAVS). After

a short related work section, highlighting some informative prior work, there will be several

technical chapters dealing with the topics below. Finally, there will be a brief discussion

section which will touch briefly on remaining philosophical issues and technical conclusions.

Thin Feature Support Due to the nature of the application, ensuring our simulated

tissue can support thin geometric features, arising from incising tissue or simply the original

tissue itself, is critical. What do we mean by support? In particular, our simulations need to

be able to represent this geometry correctly within an embedded lattice deformer without

compromising performance and accommodating behaviors like self collision. The current

danger we face is that by embedding geometry in a lattice, instead of making our simulation

elements conforming, we will not only loose accuracy around the boundary but potentially

create unrealistic behavior by incorrectly connecting material across gaps unresolved by

the lattice. In Chapters 5 and 6, we’ll look at solutions to these concerns via a process of

non-manifold embedding.

Optimized Lattice Deformers We defined a SAVS to be an interactive system, and in

order to use elastic simulation as a supporting technology we must ensure it can maintain

sufficient levels of interactivity. Thus simulation performance is a key engineering challenge

for us. Several times in this chapter we have mentioned that embedding lattice deformers

were picked as the discretization model of choice over competing solutions, such as conforming

mesh designs, due to their performance opportunities. These opportunities stem from their

implicit data structures and regularity. These qualities reduce the amount of information

than needs to read in order to access the store simulation data and allow for simplified

computational designs. However, these advantages do not come for free. In Chapters 6 and

7, we’ll show how these properties can be exploited to create hardware aware algorithms for

the solutions to the elasticity equations presented in this chapter.

55

Support for Non-linearity While linear elastic materials are popular and easy to

simulate, they fall short of the complexities observed in real biological material. While this

document doesn’t make any claim at delivering such materials, which require significant testing

and validation against real tissue properties, we do wish to support these materials effectively.

Moreover, even with relatively simple material models, adding additional constraints (either

from user interactions or from contact) can make the problem non-linear. In Chapter 7,

we demonstrate a powerful generic technique for solving these highly non-linear problems,

allowing for rapid convergence onto a correct solution.

Deployment While often overlooked, it is equally important to deliver a finished simula-

tion to a user as it is to perform the simulation quickly and correctly. In Chapter 8, we’ll

explore solutions for presenting simulated surgery operations to a multi-user environment. In

particular, we’ll look at issues such as available operating environments, suitability of cloud

services, and maintainability.

56

4 related work

Faced with the challenge of providing an interactive virtual environment for authoring plastic

surgery simulations, the field of computer graphics research has generated many potential

solutions and techniques to solve this problem. Procedural techniques [Joshi et al., 2007,

Wang and Phillips, 2002, Kavan et al., 2008, Vaillant et al., 2013] offer real-time performance

for certain animation tasks but lack the physical accuracy needed in surgical simulations.

Consequently, some research ventures into surgical simulation turned to elastic deformation

models [Terzopoulos et al., 1987] that responded more realistically to scenarios of probing

and cutting [Bro-nielsen and Cotin, 1996, Mendoza and Laugier, 2003, Nienhuys and van der

Stappen, 2001]. However, these early works were limited in their scope and effectiveness

due to computational cost, geometric constraints and oversimplified material models. In

this chapter we outline prior contributions that help address these limitations, and review a

number of existing surgical simulation systems.

Simulation of Elastic Materials

Simulation of elastic deformable models is ubiquitous in computer graphics and remains a

vibrant area of research. Algorithmic techniques for deformable body simulation, pioneered by

Terzopoulos et al. [1987] have attained a significant level of maturity, leading to broad adoption

in visual effects, games, virtual environments and biomechanics applications. Over the years,

a number of different approaches have been explored for the simulation of deformable objects,

each with different strengths.

Lattice-based volumetric deformers are popular components in both physics-based and

procedural animation techniques. In the case of physics-based simulation, one of their key

advantages is that they avoid having to construct a simulation-ready conforming volume mesh,

which is a delicate preprocessing task often requiring supervision and fine-tuning. Another

crucial benefit is that the regularity of such data structures enables aggressive performance

57

optimizations as vividly demonstrated by shape matching techniques [Rivers and James,

2007]. Cartesian lattices have also been leveraged to accelerate performance in physics-based

approaches, albeit predominantly for simple models such as linear or corotated elasticity

[Müller et al., 2004, Georgii and Westermann, 2008, McAdams et al., 2011]. Prior graphics

work, however, has not demonstrated such aggressive performance gains from lattice-based

discretizations when highly nonlinear, anisotropic or incompressible materials are involved.

In part, this is attributed to the fact that simulation of complex materials commands an

increased level of attention to issues of robust convergence. Mature solutions to these concerns

have predominantly been demonstrated in the context of specific discretizations (e.g. explicit

tetrahedral meshes) where regularity of data structures, compactness of memory footprint

and parallelization/vectorization potential were not inherently emphasized. Furthermore, as

applications requiring the use of complex materials are also likely to emphasize geometric

accuracy, they often opt for conforming mesh discretizations due to their superior performance

in capturing intricate boundary features, even if their computational cost is higher.

Despite the popularity and feature set of conforming discretizations, many researchers

have explored improving embedded techniques for reasons of simplicity and performance.

Embedding has been combined with homogenization [Nesme et al., 2006, Kharevych et al.,

2009] to resolve sub-element variation of material parameters, optionally with the use of

non-manifold embedding lattices to support objects with a branching structure [Nesme

et al., 2009]. Jerabkova et al. [2010] employed a method similar to the one presented in

Chapter 5, using a finer voxel grid to capture material topology to be embedded in a coarser,

non-manifold voxel grid. Finally, Zhao and Barbič [2013] demonstrated the use of multiple

voxel grid domains to segment a model hierarchically, which they used to simulate plants at

interactive rates.

In addition to classical FEM approaches, some authors have achieved success with more

exotic variations. Extended FEM (XFEM) formulations have also been explored [Jeřábková

and Kuhlen, 2009], where discontinuities are introduced into the element’s shape functions, to

58

model cutting. In a similar vein, Kaufmann et al. [2009b] used discontinuous Galerkin FEM

formulations. Others have dispensed with mesh based discretizations completely, preferring

meshless methods [De and Bathe, 2000] which were also used for surgical simulation [De

et al., 2005].

Anatomical Modeling

Approaches based on the FEM have been particularly popular in the medical simulation

community [Marchal et al., 2008] where the need for biologically accurate materials is more

pronounced. In one of the earliest uses of advanced materials in computer animation, Chen

and Zeltzer [1992] focused on anatomical structures such as muscles. FEM techniques were

further leveraged in the animation literature for the discretization of linear elasticity for

fracture modeling in a small-strain regime [O’Brien and Hodgins, 1999]. Highly nonlinear

materials such as active musculature Teran et al. [2003] exposed challenges in robustness and

numerical stability of FEM discretizations. Invertible FEM [Irving et al., 2004] improved

simulation robustness in scenarios involving extreme compression, while modified Newton

methods [Teran et al., 2005b] reduced the cost of implicit schemes with large time steps.

Several of these algorithms have been incorporated in open-source modeling and simulation

packages [Sin et al., 2013]. Solutions have also been proposed for material behaviors such as

incompressibility [Irving et al., 2007] and viscoelasticity [Goktekin et al., 2004, Wojtan and

Turk, 2008], both of which can be found in typical biomaterials. Recent results in coupled

Lagrangian-Eulerian simulation of solids have also facilitated the inclusion of intricate contact

and collision handling in biomechanical modeling tasks [Sueda et al., 2008, Li et al., 2013,

Fan et al., 2014].

Topology Change

A number of techniques have targeted topology change during simulation, due to cutting or

fracture. Early work [Terzopoulos and Fleischer, 1988] resorted to breaking connectivity of

59

elements when stress limits were exceeded. Later methods [Nienhuys and van der Stappen,

2001] split tetrahedra near cut boundaries and then used vertex snapping to more accurately

approximate the cut. Steinemann et al. [2006] used a similar approach in the context of

surgical simulation, where a combination of node-snapping and edge cuts on tetrahedra

were used to avoid thin elements, while still remaining close to the user’s specified cuts.

Local remeshing was also employed to simulate cracks in brittle materials [O’Brien and

Hodgins, 1999]. An issue with such subdivision schemes is the possible creation of poorly

conditioned elements, which prompted a number of authors to pursue embedded simulation

schemes [Molino et al., 2004, Teran et al., 2005a]. These techniques use non-conforming

meshes with elements which are only partially covered by material, in lieu of conforming

remeshing. Embedded simulation can provide a great degree of flexibility in cutting and

fracture scenarios [Sifakis et al., 2007], although cutting meshes along arbitrary surfaces

requires delicate book-keeping and careful handling of degeneracies.

Surgical Simulation

While much of the previously discussed work is geared towards general elastic body simulation

in computer graphics, many relevant results originated in surgery-specific work. Pieper et al.

[1995] demonstrated a very early surgical simulation platform for facial procedures, using

FEM elastic shells. Many surgical simulation projects focus on the mechanical manipulation of

organs and other soft internal objects [Nienhuys and van der Stappen, 2001, Kim et al., 2007].

Even expensive commercial simulators like the Lap Mentor and GI Mentor primarily focus on

pushing and cutting simulated internal organs [Simbionix USA Corporation, 2002–2014b,-].

These types of simulations are so common that several open source frameworks have been

built to specifically support further development [Allard et al., 2007, Cavusoglu et al., 2006].

These provide easy access to common components like haptic feedback and APIs to connect

multiple simulated components. Certain surgical simulation systems are tailored to specific

skills, including interactive simulations of needle insertion [Chentanez et al., 2009].

60

Performance Optimization

Improving simulation rates is a common challenge for many interactive modeling tasks, and

even more so for accuracy-conscious applications such as virtual surgery. Attempts to improve

performance have either relied on new data structures, faster solvers, or aggressive use of

parallelization. The Boundary Element Method [James and Pai, 1999] has been used to

achieve interactive deformation rates for objects manipulated via their surface. Other authors

have employed similar formulations that abstract away interior degrees of freedom to accelerate

collision processing [Gao et al., 2014]. Grid-based, embedded elastic models [Müller et al.,

2004, Nesme et al., 2006, McAdams et al., 2011, Patterson et al., 2012, Mitchell et al., 2015]

have been very popular due to their inherent potential for performance optimizations, and

can also be used with shape-matching approaches [Rivers and James, 2007]. They form the

foundation for a class of highly efficient, multigrid-based numerical solution techniques [Zhu

et al., 2010, Georgii and Westermann, 2008, Dick et al., 2011]. Regular discretizations have

also been coupled with multigrid solvers to facilitate GPU accelerations for elastic skinning

techniques [McAdams et al., 2010]. However, in spite of the efficiency of multigrid schemes,

adapting them to the presence of incisions or other intricate topological features can be a

nontrivial proposition.

Hermann et al. [2009] analyzed data flow in their simulations to inform a parallel scheduler

for multicore systems. To avoid write hazards during parallel code execution, Kim and Pollard

[2011] proposed a system of computation phases with coalesced memory writes, which allowed

them to parallelize force computation. Related efforts by Courtecuisse and Allard [2009],

developed a parallel version of the Gauss-Seidel algorithm that can run on GPUs. Finally,

optimized direct solvers have been shown to be very effective [Sin et al., 2013] and have

employed techniques such as delayed updates to factorization approaches [Hecht et al., 2012]

for improved efficiency. The approach outlined in Chapter 7 is related to these approaches,

as well as the general class of Schur complement methods [Quarteroni and Valli, 1999].

61

Level Sets and Collision Handling

Level set methods were first introduced by Osher and Sethian [1988] for tracking moving

interfaces in the context of Hamilton-Jacobi equations. Subsequently, Adalsteinsson and

Sethian [1994] proposed substantial runtime savings by restricting computations to a thin

band of active voxels near the interface. Sethian [1998] proposed fast marching methods

for monotonically advancing fronts as well as for redistancing the level set using values

seeded only on the narrow band. Besides fast computation, a number of methods have also

been proposed for efficiently storing level sets including octrees [Losasso et al., 2004], RLE

representations [Houston et al., 2006, Irving et al., 2006, Chentanez and Müller, 2011], the

VDB data structure [Museth, 2013] which evolved from Dynamic Tubular Grids [Nielsen and

Museth, 2006] and the DB+Grid data structure [Museth, 2011], and the virtual-memory

based SPGrid data structure [Setaluri et al., 2014a].

Methods have been proposed for computing implicit representations of non-manifold

surfaces [Bloomenthal and Ferguson, 1995, Yuan et al., 2012]. Similar ideas were used for

simulating bubbles [Zheng et al., 2006] and multiphase fluids [Losasso et al., 2006]. The

work in Chapter 5 diverges from these approaches as we enhance the expressive capability

of a single level set by embedding signed distance values on an explicit mesh. Our work is

related to the practice of embedding high-resolution geometry in regular meshes, a concept

that was first leveraged by Muller et al. [2004] for deformable body simulations and fracture.

In addition to hexahedral embeddings, methods such as the virtual node algorithm [Molino

et al., 2004] have been used to create non-manifold tetrahedral lattices that correspond to

thin topological features in the embedding geometry. Virtual node concepts are also similar

to XFEM methods which were used for crack modeling [Moës et al., 1999] and for cutting

and fracturing thin shells [Kaufmann et al., 2009a]. This principle has continued to evolve

with many of the topological limitations in prior approaches being raised by Sifakis et al.

[2007] and has been successfully used in production tools as well [Hellrung et al., 2009].

Our non-manifold level set approach in Chapter 5 is inspired by these methods, but

62

it needs to be made cognizant of further topological limitations that the signed distance

field imposes on our representation (see Section 5.3). Notably, when dealing with collisions

near thin features, all of the aforementioned approaches employed detection and response

techniques based on surface meshes [Bridson et al., 2002] that rely on the availability of good

surface meshes, are computationally expensive, presume collision-free history or use impulses

which makes implicit integration challenging. To accelerate collision detection and response

while allowing for implicit integration, methods have been proposed using implicit surface

representations [McAdams et al., 2011] which work even in near-interactive settings, but

require enough level set resolution to avoid any non-manifold features altogether. Recently,

image-based techniques [Faure et al., 2008, Wang et al., 2012] have been proposed which

provide an interesting alternative. Finally, implicit surfaces have also been recently used in

real-time skinning applications [Vaillant et al., 2013, 2014].

63

5 non-manifold embedding for geometry and

contact

5.1 Non-manifold Embedding

We employ an embedded simulation similar to other authors, who used regular lattice

embeddings for performance [Müller et al., 2004, Rivers and James, 2007, McAdams et al.,

2011]. However, due to the presence of extremely thin incisions common in surgical models,

standard lattice embedding would not be able to resolve the tissue topology, unless an

extremely high resolution embedding was used. We thus adopt a non-manifold lattice-derived

embedding discretization in the spirit of Virtual Node or XFEM methods [Molino et al., 2004,

Sifakis et al., 2007, Nesme et al., 2009]. In this chapter, we describe how these non-manifold

embedding structures can be easily constructed and how they can be used for handling

contact scenarios in addition to geometry representation. The following chapter will discuss

how these structures can be further optimzed for parallel processing.

Figure 5.1: Illustration of incision technique
Incisions in the flesh surface model are created by extruding and thickening user specified

line segments.

64

Surface Model

Prior to elasticity discretization, a watertight surface model of the flesh, including any

incisions, must be created. The method choosen to generate these models is immaterial to

our embedding algorithm, but for completeness we present our solution for incising surgical

tissue models. In our system, incisions are generated from user specified line segment curves,

which guide constructive solid geometry (CSG) difference operations to produce cut surface

meshes. We begin from a user specified line segment curve from which we construct prisms

by thickening the line segments tangentially and perpendicularly along the surface normal.

We then apply these prisms in a subtraction operation with the surface, resulting in a slightly

thickened incision (Figure 5.1). Disconnected regions produced during this step can be marked

and removed by the user. Note that for scenarios involving malignant tissue, discarding of

excised tissue is commonplace.

Rasterization

Given a cut surface mesh, we first create a fine rasterization of the surface. The resolution

of the rasterization is selected to capture all desired topological detail (typically an order

of magnitude finer than simulation resolution). In Figure 5.2, it is possible to see the

fine rasterization grid in contrast to the coarser simulation resolution. The rasterization is

performed by detecting all voxels intersected by the object surface and flood-filling to mark

the volumetric material region. Once the rasterization is complete, subsequent embedding

operations are purely combinatorial and not sensitive to poor conditioning of surface mesh

elements. Additionally, this fine-grid embedding can also act as an interface layer to more

complex embedding schemes, such as the non-manifold approach described next. We leverage

this by translating any deformation results back to the fine-grid embedding prior to rendering,

to hide non-manifold embedding or numerical solution details from the visual front-end.

65

Figure 5.2: Illustration of the fine grid rasterization of a cut
Fine cells within the cut are empty, and colored to show material continuity.

Non-Manifold mesh generation

We now seek to construct a coarser resolution explicit mesh discretization, which is allowed

to be non-manifold in regions, as shown in Figure 5.3. We will extend the paradigm of

non-manifold embedding proposed by Teran et al. [2005a] and Sifakis et al. [2007] using

the precomputed fine grid rasterization to answer material connectivity predicates. Our

non-manifold mesh generation process is outlined in Algorithm 5.1, and illustrated intuitively

in Figure 5.3. Note that, in the pseudocode provided, there are two geometric predicates

being used: (a) Determination of material components (line 3) requires the identification of

all disconnected components of material present in the intersection of our domain with a

given lattice cell. (b) Adjacent-element material continuity (line 10) is a predicate invoked to

determine if two material fragments, associated with adjacent lattice cells, exhibit material

66

Algorithm 5.1: Non-Manifold Simulation Mesh Construction
This algorithm describes the steps required to identify material connectivity across voxel
boundaries, and generate appropriate voxel topologies which respect this underlying material
toplogy. Material continuity across voxel faces results in vertex collapse. While this can lead
to loss of simulation resolution near incision points, it doesn’t affect the embedding process
and is less complicated to simulate.
Input: Coarse Resolution
1: function Generate_Nonmanifold_Mesh
2: for all Coarse Cells: i do
3: C ← Determine_Material_Components(i)
4: for all Components in C do
5: Instance separate copy of i
6: Generate unique, separate DOFs
7: Assign descriptor of material content
8: for all Geometrically adjacent cell pairs: (i, j) do
9: for all Pairs of duplicates from i and j: (h,k) do

10: if Material_Is_Continuous(h, k) then
11: Mark shared vertices as equivalent
12: for all Coarse Cells: i do
13: Compare all duplicates of i
14: Collapse duplicates with equivalent DOF’s
Output: An explicit, possibly non-manifold mesh

Figure 5.3: Illustration of a cut generating a non-manifold lattice
(a) A cut passing through the grid. (b) Mesh cells generated for the top half of the cut. (c)
Mesh cells generated for the bottom half of the cut. (d) Cut surface is colored to show cell

assignment.

67

continuity across their common face. These two geometric predicates are expressed in a

fashion that is agnostic to the underlying geometric representation of material; in Teran et al.

[2005a] the assumption is that a tetrahedralized model of the material is available, while

Sifakis et al. [2007] define material fragments indirectly, by specifying cutting surfaces instead.

In our case, the availability of the fine-grid rasterization makes both such operations purely

combinatorial in nature. Material fragments within a coarse cell are computed via flood-fill,

and fragments on adjacent cells are continuous if they contain adjacent fine cells on their

rasterization. At the conclusion of this step, we have produced a coarse mesh (with explicitly

stored connectivity), whose topology is as close as possible to the embedded geometry.

This generated mesh is now suitable for simulation, allowing us to correctly embed

opposite sides of a cut or thin feature in topologically disconnected cells. However, beyond

simulation, this approach can also be valuable for detecting and handling contact scenarios

under the context of soft-body self collisions. The remaining sections in this chapter will

demonstrate how this embedding technique can be adapted to this purpose via a technique

we call non-manifold level sets.

5.2 Level Sets & Collision Processing

Before we discuss the details of non-manifold levelsets, it is important to review the basic

concept of a level set and how it can be used for collision handling. Nearly three decades after

their introduction [Osher and Sethian, 1988], level sets have evolved into one of the most

widely used representations of geometry, alongside traditional alternatives such as meshes,

splines and subdivision surfaces. A level set implicitly represents a domain boundary Γ = ∂Ω

as the zero-value isosurface (i.e. zero level set)

Γ = {~x ∈ Rn | φ(~x) = 0} (5.1)

68

of a scalar field φ(~x)1 measuring signed distances to the boundary of the object Ω ⊂ Rn.

Level sets allow for fast O(1) time point-object intersection queries or point projections

to the object surface. Model deformation is also possible, including topological split and

merge operations, simply by varying the underlying scalar field. Level sets are used in a

diverse range of applications including surface editing [Museth et al., 2002], tetrahedral

meshing [Labelle and Shewchuk, 2007], scattered point interpolation [Zhao et al., 2001], fluid

simulation [Osher and Fedkiw, 2002] and collision processing for deformable solids [Gascuel,

1993], rigid bodies [Guendelman et al., 2003] and skinning animations [Vaillant et al., 2013].

Level set collisions for volumetric solids

Self-collision processing is paramount in generating visually attractive and realistic shapes,

as is evident in character skinning pipelines [McAdams et al., 2011, Vaillant et al., 2013].

Handling collisions in volumetric solids can be quite different than the typical cloth collision

pipeline. With volumetric solids there is a clear distinction between an inside and an outside

region, making it possible to process collisions in a single time instance of a simulated

deformation. In contrast, if collisions are detected in a cloth simulation, we need to rely on

deformation history to determine how the cloth surface is to be untangled (unless global

intersection analysis [Baraff et al., 2003] is performed). While cloth simulations typically

strive for a collision-free state at all times, commonly enforced via impulses in semi-implicit

integration schemes [Bridson et al., 2003], volumetric objects can tolerate occasional, limited

interpenetration, and respond to collision with penalty forces which are more easily coupled

with explicit integration schemes. In this section, we review a level-set assisted technique that

capitalizes on these opportunities to handle volumetric object collisions in large time-step

implicit integration schemes, without requiring a collision-free deformation history. In section

5.3 we explain when standard level sets are inadequate for this task, and use this as motivation

for our non-manifold variant.
1It should be noted that the function φ(~x) used here is different than the deformation map φ(~X) described

in Chapter 3, despite the use of the same symbol.

69

Figure 5.4: Illustration of cases poorly handled by conventional level set discretizations
Scenarios where standard Cartesian grid-based level sets lack the expressive ability to resolve
thin features. For the vector art hand (top left), the cells highlighted in red show features
that will not be resolved. While many cases can be resolved with fine enough resolutions, the
fractured cube (bottom left) is an instance that cannot be resolved with conventional level

sets.

70

e

Figure 5.5: Illustration of the self-collision pipeline
(a) a triangulated torus model is pictured in its undeformed configuration. Collision proxies

on the surface shown in red. (b) The torus is deformed into a self-colliding state. A
bounding box hierarchy yields initial candidates of triangles colliding with the proxy. (c)

After pruning false positives, the material location that the proxy collided onto is identified,
and mapped back to the undeformed configuration (blue dot). The level set (stored on the
pictured grid) is used to project to the closest surface point (brown dot). (d) A zero-rest
spring is initialized between the proxy and its surface-projected target. (e) The deformed

torus after the self-collision is resolved.

71

Our collision pipeline consists of two stages: In the detection stage, discrete material

points (labeled collision proxies) are checked for collision against the object interior. In

the response stage, we use a spring-like penalty force to push each colliding proxy to the

object surface [Teran et al., 2005b, McAdams et al., 2011]. Since simulated solids are

typically endowed with elastic material models that prevent (or discourage) inversion, in

all our examples we chose to only seed collision proxies on the object surface, as internal

non-inversion combined with boundary non-collision would imply a globally non-intersecting

state. Interior collision proxies can also be used, if desired, with no algorithmic change.

Figure 5.5 illustrates the detection and response process on an elastic torus model squished

into self-collision. For any colliding proxy, we identify the offending (internal) material

location that the proxy collided with. The closest surface point to that material location is

calculated, and a zero rest-length spring is introduced between that surface location and the

original proxy. This spring remains active just until the collision detection phase is repeated;

typically for one step of the time integration method employed, or for just a single Newton

iteration in an implicit scheme. The most costly predicates in this process are (i) detecting

whether a proxy intersects the object interior, and (ii) projecting the offending location to

the model surface. Both predicates could be answered in O(1) if a level set representation

of the model was available; unfortunately, the continuous deformation makes updating an

implicit representation impractical. Hence, we opt for an approximate algorithm [McAdams

et al., 2011] that only relies on a level set representation of the undeformed model.

For simplicity, let us assume that the deformable volumetric solids are tetrahedralized (we

can make this choice without loss of generality - the following algorithm applies equally well

to hexahedral discretizations). Let Ei denote the i-th simulation element in the undeformed

configuration and ei denote the same element in the deformed configuration. Similarly, let

Pi denote the location of the i-th collision proxy in the undeformed configuration and pi

denote its deformed counterpart. Collision proxies can be regularly sampled on the surface of

the simulated object, or the surface vertices of the embedded object themselves can be used

72

as proxies, if their distribution is reasonably regular2. Let φ denote the level set function

for the simulated volume in the undeformed configuration. The collision handling routine

performs the following steps for each proxy pi :

Step 1 The set of (deformed) elements E = {ei1 , ei2 , . . . , eik} are checked against pi for

intersection. This is performed as follows:

(a) We use an axis-aligned bounding box hierarchy, defined over all deformed elements, to

identify all elements whose bounding box intersects pi, i.e. Eint = {ek ∈ E|Box(ek)∩pi 6=

∅}.

(b) We identify the element Ei that contains the proxy Pi in the undeformed configuration.

This may be more than one element, e.g. if Pi was a mesh vertex. We trivially have

that ei ∈ Eint, as pi is embedded in it. Similar to McAdams et al. [2011], we prune ei

along with all of its immediate topological neighbors from Eint, since collision response

between primitives that share embedding parents can be problematic (instead, we rely

on elasticity to discourage extreme cases of local collision).

(c) We perform an exact intersection test between any elements et that have not been already

pruned. We do so by computing the barycentric coordinates of pi with respect to et, and

discard elements if those coordinates are out of bounds.

Step 2 For every colliding proxy, we identify the location Xt in the undeformed configuration

of the material point the proxy impacted3. We do so using the barycentric coordinates

computed in step 1(c) to interpolate Xt from the undeformed colliding element Et.
2Proxy spacing is an important task, though somewhat tangential to this conversation. Too few proxies

in a region can lead to poor collision response or excessive penetration. Too many proxies can lead to an
over-constrained problem, resulting in slow convergence or other unfortunate artifacts. For our system, a
Poisson-disk sampling technique [Corsini et al., 2012, Devroye, 1986] was used to generate a blue noise
pattern of proxies over the model surfaces.

3Note that the location Xt is unique if the element Et is a triangle in two spatial dimensions or a tetrahedron
in three spatial dimensions, but this may not be the case for polygonal or polyhedral elements such as squares,
hexahedra, etc. We first triangulate or tetrahedralize such elements, which can result in several locations
{Xt1 ,Xt2 , . . . ,Xtr } in the rest configuration corresponding to each of these several triangles/tetrahedrons. In
this case, we initialize the spring between pi and the point ytj , where Xtj is closest to the surface.

73

Step 3 Elements Et with φ(Xt)>0 are dismissed as non-colliding (this could be due to

discretization discrepancy between mesh and level set, or if an embedded simulation approach

is used where elements in E reach beyond the extent of the simulated model).

Step 4 Using the level set, point Xt is projected to the surface point Yt = Xt−φ(Xt)∇φ(Xt),

for all elements Et, where et ∈ Eint.

Step 5 In the deformed configuration, a zero rest-length spring is initialized between points

pi and yt to resolve the collision.

In step 5, yt corresponds to the point Yt in the deformed configuration. Note that our

algorithm, in steps 3 and 4, relied upon a level set representation of the undeformed shape

of the simulated model. The cost paid for this convenience is that the surface location yt

(the collision target) is only an approximate surface projection in the deformed configuration;

nevertheless, this disparity vanishes as the effect of the collision springs progressively brings

the penetration depth closer to zero.

Figure 5.5 illustrates the individual steps of the algorithm on a torus in two spatial

dimensions.

5.3 Non-manifold Level Sets

In principle, based on equation (5.1) a level set could represent any object Ω ⊂ Rn. In

practice, however, the scalar field φ(~x) is never provided analytically, but instead sampled at

discrete points in Rn. As a consequence, the expressive ability of discrete level sets is limited

by the sampling resolution and the interpolation scheme used. In the common practice where

φ values are sampled on the nodes of a uniform Cartesian grid, and trilinear interpolation is

used to define a continuous scalar field, models with multiple boundary crossings per grid

edge (near narrow gaps or strips, see Figure 5.4) cannot be represented. These issues can be

alleviated to some extent by using adaptive schemes [Losasso et al., 2004, Museth, 2013] to

concentrate resolution near fine features, or hybridizing with point-based methods [Enright

74

et al., 2002] to capture details at a sub-cell level. Nevertheless, gratuitously increasing the

level set sampling resolution is a brute-force remedy which quickly becomes impractical if the

thickness of topological gaps approaches zero, as is commonly the case with geometries arising

from cutting and fracture modeling pipelines (see Figure 5.11(top)). It is also unfortunate

that even though level sets are perfectly capable of localizing the implicit surface to sub-cell

resolution (trilinearly interpolated level sets on Cartesian grids converge quadratically to

surfaces of bounded curvature) they cannot resolve multiple interface crossings within a single

cell.

Furthermore, the self-collision algorithm outlined in Section 5.2 works well only when

a good quality level set can be computed from the model’s undeformed configuration. In

such cases, it provides the opportunity for excellent performance, even allowing interactive

simulation for highly detailed models [McAdams et al., 2011], as it allows very aggressive

integration time steps (tolerating occasional mild inter-penetration) and exploits the fast

intersection/projection level set queries. The approach breaks down, however, in cases where

the object cannot be resolved by the level set resolution. As a brute-force remedy, it might be

possible to pose a model in a reference configuration that avoids thin features (e.g. modeling

a hand such that the fingers are generously separated [McAdams et al., 2011]). However,

this pre-processing can be tedious (e.g. for faces with narrow clearance between the lips),

unnatural (if the “reference pose” is not really a rest pose, see the elastic coil in Figure 5.4),

or impossible to perform a priori if the thin features arise during simulation (e.g. cracks and

cuts). We propose a principled remedy, designing a new implicit geometry data structure that

fully supports the necessary geometric predicates, but accommodates models with narrow

gaps or even material overlap.

We argue that these apparent limitations of level sets are not intrinsic defects of the

implicit representation (equation 5.1), but consequences of the data structure (e.g. Cartesian

grid) conventionally used to store the signed distance values. Instead of using Rn as the

domain of φ(~x), we propose to define this scalar field over an explicit quadrilateral (2D) or

75

a
c

b

Figure 5.6: Illustration of non-manifold mesh construction
(a) A self-overlapping 2D model with template mesh overlaid. (b) Duplicate elements created

during non-manifold embedded mesh generation, along with their associated material
fragments. (c) Final non-manifold embedding mesh.

hexahedral (3D) mesh. We use regular (square or cube) elements in these meshes, identical

in shape to the cells of a conventional Cartesian grid. However, the explicit connectivity in

our mesh allows us to have multiple overlapping elements associated with geodesically distant

regions (see Figure 5.6). Furthermore, this enables us to introduce non-manifold connectivity

to capture topological bifurcation at the tip of a crack or incision, or in the vicinity of highly

concave regions (see Figure 5.7).

76

Review: Basic non-manifold embedding

Models such as the ones illustrated in Figure 5.4 have been known to pose challenges not

just for level set generation, but also for certain dynamic simulation techniques even in the

absence of collision processing. Of course, simulation of elastic deformation is a straightforward

proposition, e.g. using the Finite Element Method [Sifakis and Barbic, 2012], if an explicit

tetrahedral mesh representation of the model is available. However, if we wish to use lattice

deformer techniques, capable of high degrees of performance optimization [Rivers and James,

2007, McAdams et al., 2011, Mitchell et al., 2015], we run the risk of “tying” together

disconnected material regions if they are separated by a distance smaller than the embedding

mesh resolution (e.g. adjacent helices of the coil, or the two lips of the face model pictured in

Figure 5.4). Fortunately, as we saw earlier in this chapter, we have algorithms designed for

constructing embedding lattices capable of handling these thin incisions and fine features.

These methods add non-manifold connectivity to the embedding mesh, duplicating elements

and degrees of freedom as necessary to best capture the embedded model topology.

Before discussing the details behind our non-manifold level sets, we will take a moment

to review a common formalism of the non-manifold embedding process [Sifakis et al., 2007].

The algorithm is illustrated in Figure 5.6. This algorithm is very similar to the one presented

in Algorthim 5.1, except here we are assuming a material predicate defined by a triangulation

(or tetrahedralization in 3D). We do this partially to show how the algorithm adapts to

multiple material description predicates, but also to support models with zero width cuts

and overlapping geometry. These later aspects are not supported by the discrete fine grid as

presented earlier in the chapter. The choice of material description is somewhat arbitrary - a

decision made around what geometric features one needs to capture.

Input: (a) A geometric description of the shape to be embedded (the green-shaded area

in Figure 5.6). For simplicity, we may assume the geometry is given as a triangulated model,

which allows us to express the self-overlap in our specific example. (b) A mesh which will be

used as a template for our embedding process. In Figure 5.6(a) this is the regular quadrilateral

77

mesh pictured in the foreground.

Step 1 [Element separation] We separate each element of the template (quadrilateral)

mesh, keeping track of the subset of our material model that is contained in each such element

(e.g. taking note of all material triangles that intersected each quadrilateral).

Step 2 [Element duplication for disconnected components] For each embedding ele-

ment, we identify all disjoint connected components of material contained therein (e.g. by

checking connectivity of the respective material triangles). We generate a duplicate embedding

(quadrilateral) element for each material component. Note that, at this point, all embedding

elements are still disconnected.

Step 3 [Restoring connectivity] For any pair of geometrically adjacent embedding ele-

ments, we check if there is material continuity across their common face (e.g. by checking if

they both intersect the same material triangle on that face). If such continuity exists, we

collapse all vertices along their common face. This collapse is transitive; in the example of

Figure 5.7(left) all three elements near a convex material region have acquired a common

face (with non-manifold connectivity) due to transitive pair-wise vertex collapses.

The result is shown in Figure 5.6(c); after discarding embedding elements with no material

content, the final embedding mesh has been fully assembled, with overlapping duplicates of

elements properly connected, respecting the topology of the embedded material.

Mesh bifurcation and transition faces

The intent of our proposed level set data structure would be to store signed distance values on

the nodes of the embedding mesh produced by the algorithm just described (to our knowledge,

these non-manifold embedding meshes have only been previously used to store deformation

data, not level set values). Of course, such signed distances would be computed geodesically,

along the embedding mesh, rather than in the Euclidean sense. Subsequently, a continuous

signed distance field would be computed on the embedding mesh via standard bilinear (2D)

or trilinear (3D) interpolation. We note that in “simple” cases such as the example of

78

Figure 5.7: Illustration of handling material bifurcations
(Left) An example where material bifurcates at an edge in a non-manifold Cartesian

embedding. (Right) Level sets can only store a single interface transition at an edge. In the
non-manifold level set bifurcations are explicitly recorded in transition faces that record a

connectivity graph between all cells on the left and right.

Figure 5.6 (where we have element overlap, but no non-manifold connectivity) this approach

would have been fully sufficient. Unfortunately, scenarios such as the one illustrated in

Figure 5.7(left) reveal a newfound challenge: elements hinged in a non-manifold configuration

on a common face may disagree on the sign of the signed distance value stored on one of

their common vertices. In Figure 5.7(left), elements A1 and B2 record the vertex in orange as

being inside the material domain (hence carrying a negative level set value), while the same

vertex is outside the embedded domain (with a positive level set value) as far as element B1

is concerned. At this point, we should emphasize that any discrete level set is an inherently

approximate representation of geometry, as it depends on interpolation of signed distance

value samples. The severity of this phenomenon, however, is much greater as it carries the

risk of eliminating parts of the model boundary, or forcing it to spuriously appear in parts of

the embedding mesh that it did not originally traverse. Note that this behavior does not

affect non-manifold embedding for simulation purposes, since such techniques explicitly track

the material embedded in each element, rather than using interpolated vertices.

We posit that, for the proper resolution of non-manifold connectivity, the Algorithm

79

Figure 5.8: A non-manifold level set is used to correctly track self-collision of a coil
(Top) A volumetric coil self-collides under user manipulation. (Bottom) A coil is compressed

against two walls. Subsequently, collision handling is disabled and the geometry
self-intersects (third frame in row). Self-collisions are turned back on and the coil recovers.

80

5.1 presented in Section 5.1 and Section 5.3 cannot be allowed to indiscriminately collapse

vertices (in Step 3) based solely on material continuity if this yields a contradiction in the

nodal signed distance values across connected elements. Thus, we introduce the concept of a

transition face which encodes connectivity between incompatible (in terms of the signs of

nodal distance values) materially connected elements. This construct is illustrated in Figure

5.7(right). The transition face is envisioned as an infinitesimally thin connective strip between

between elements A1, B1 and B2 with the appropriate internal structure as to connect the

material of each element as reconstructed from their nodal values via bilinear interpolation.

For example, we see that element A1 is considered to be fully interior to the domain, once

described by the signed distance values stored at its nodes. We explicitly store a transition

face as a connected bipartite graph as seen in Figure 5.7, which records pairwise material

continuity of elements on either side, which would normally be lost once only nodal level set

values are retained for each element.

Non-manifold level set mesh algorithm

Using the transition face mechanism, we can now describe our new algorithm for generating

the embedded mesh whose nodes will be used to store the signed distance values of our

non-manifold level set. The entire process is outlined in Algorithm 5.2. The first phase

of the algorithm is identical to the initial phase of the stock embedding algorithm 5.1. As

before, given a geometric material description M (e.g. a tessellation of the model) we identify

the material region M ∩ Ei contained within the embedding element Ei from an embedding

“template” mesh T. We identify connected components {mj}j in this set, and create a duplicate

embedding element Di,j associated with each material component. As before, all duplicate

elements Di,j are completely disconnected at this point.

Subsequently, we analyze material continuity on adjacent embedding elements, with

the goal of reconnecting the previously separated elements into the final embedding mesh.

For any two elements Ek, El that were adjacent in the template mesh T, we identify the

81

Algorithm 5.2: Non-Manifold Level Set Mesh Construction: This algorithm is a modification
of the procedure to generate a basic non-manifold embedding (Algorithm 5.1) shown previously.
The modfications here account for the addition of transition faces to track the interface near
material bifurcations instead of simply collapsing vertices greedily.
Input: Template Embedding Mesh T, Material Description M

1: procedure Construct_NonManifold_LevelSet_Mesh
2: . Phase 1: Duplicate elements by connected components
3: for all Elements in T : Ei do
4: C ← Connected_Components(M ∩ Ei)
5: for all Components in C : mj do
6: Di,j ← Create_Duplicate(Ti , mj)
7: . Phase 2: Reconnect or build transition faces
8: for all Geometrically adjacent element pairs: (Ek,El) do
9: G ← Initialize_Bipartite_Graph(Dk,Dl, {})

10: for all Duplicates from Ek and El: (D(k,q),D(l,r)) do
11: if Material_Continuous(D(k,q),D(l,r)) then
12: Insert_Edge(G,D(k,q),D(l,r))
13: for all Connected subgraphs of G: Ci do
14: if #Edges(Ci) = 1 then . Face is Manifold
15: Collapse(Vertices on common face)
16: if #Edges(Ci) > 1 then . Face is Non-Manifold
17: Register_Transition_Face(Ci)

sets Dk = {Dk,q}q and Dl = {Dl,r}r of duplicate elements that were respectively spawned

from them. We examine each possible pair (Dk,q,Dl,r) drawn from these sets for material

continuity across their common face. At this point, however, instead of collapsing vertices on

the common face of such pairs that are found to be materially connected, we simply record

this connectivity with an edge in a bipartite graph G defined over the sets Dk and Dl. Once

all pairs from Dk and Dl have been processed, we proceed to split the graph G into its

connected components (in terms of graph connectivity, not material connectivity as in Phase

1). For every connected component (subgraph) of G, we proceed as follows:

• If a connected subgraph contains exactly one edge, the duplicate elements Dk,q and

Dl,r connected by that edge are guaranteed to be compatible relative to the sign of

the distance value stored on their nodes, since they agree exactly on the material

intersecting their (geometrically) common face. This is a consequence of this edge

82

being a connected component of G, indicating that no other element is independently

connected to either Dk,q or Dl,r. In this case, we are free to collapse the vertices of the

two duplicate elements across their common face, exactly as we did in section 5.3.

• If a connected subgraph contains two or more edges (see Figure 5.7(right)), we cannot

collapse all vertices on the duplicate elements’ common face, since some of these elements

may disagree on the sign of the distance field stored on their nodes. In this case, we

simply generate a transition face, which is encoded using the same connected subgraph,

allowing the duplicate elements that are juxtaposed on that transition face to retain

independent signed distance values on their nodes. As we will see in the next sections, a

transition face is semantically equivalent to a “hard” topological connection (a collapsed

face) for operations that traverse the final embedding mesh, with the exception of its

ability to allow separate signed distance values on each duplicate element it connects.

For example, Figure 5.9 demonstrates an elastic model being cut by a user-specified

fracture surface. For this, we leveraged the method of Sifakis et al. [2007] which explicitly

subdivides each element of the template mesh T into disjoint polyhedra (a 2D analogue

of this process is shown in the inset image to the right, where a “cutting curve” of line

segments is used to section square cells into polygonal regions). This decomposition natively

provides connectivity information, and can easily detect material continuity across embedding

elements by checking adjacency of polyhedral material regions. Finally, the transitive Collapse

operation (line 15) is simply implemented using a Union-Find structure which records the

equivalences of vertex identifiers.

Level set operations on nonmanifold meshes

Initialization of signed distances Once the topology of the embedding mesh has been

constructed, including the creation of the necessary transition faces, the embedding mesh

nodes must be populated with the proper signed distance values. We start by explicitly

83

Figure 5.9: Non-manifold level sets can correctly handle zero width cuts
A cube is partially sliced by 6 planes and a ball subsequently squashes it to push the

resulting 16 fingers apart. Our non-manifold level set can robustly resolve zero width cuts
which could not be resolved with standard Cartesian grid-based level sets.

84

computing such distances on embedding elements that intersect the object boundary. Since

we possess an explicit description of the material contained in each element, for each of

their nodes we compute the minimum (absolute) distance from all material contained in

that element. We also compute the sign depending on whether the node is inside or outside

the embedded material component. Adjoining elements that have had common vertices

collapsed (topologically; not connected via transition faces) will agree on the sign of the

signed distance field at shared nodes, but not necessarily the magnitude. We retain the

distance value with the minimum magnitude, across all elements incident to this node. Of

course, no such reduction is performed on nodes connected via transition faces. Subsequently,

we propagate the signed distance field in the interior of the object using the O(n logn)

Fast Marching Method [Sethian, 1998], with the only modification that this Dijkstra-type

algorithm is allowed to propagate through transition faces in exactly the same fashion as

through explicitly connected nodes. While we only compute a scalar signed distance field, it

would be straightforward to also compute a normal field [Kobbelt et al., 2001] to support

higher quality reconstructions.

Distance queries and surface projection The basic level set predicates required in the

collision pipeline of section 5.2 include a lookup of the signed distance value φ(~x) at an

arbitrary location ~x in space, and the projection of a material point to the closest location

Proj(~x; Γ) on the model surface Γ . Since our embedding mesh may contain several overlapping

elements, it is no longer sufficient to define such predicates as functions of just the spatial

location ~x being queried; we also need to identify the appropriate branch of material being

referred to. Thus, we reformulate these predicates as φ(~x,Di) and Proj({~x,Di}; Γ), where the

element Di embeds the material point ~x in the non-manifold level set mesh. Subsequently,

the result of the projection operator is also a tuple (~x?,Dj) denoting a material point ~x? and

its respective embedding element Dj.

Given an embedding element Dl and a location ~x embedded in it, level set value and

85

Figure 5.10: Illustration of the backtrace procedure to determine surface crossings
Different surface projection scenarios. (a) Backtracing terminates after covering a distance of
φ without intersecting the interface. (b) Backtracing stops at the first interface crossing. (c)
Backtracing hits a transition face and continues into the connected neighbor that has the

negative φ value with the smallest magnitude.

86

Figure 5.11: Non-manifold level sets handle surgical scenarios and complex woven geometry
(Left) Surgical simulation of a z-plasty procedure, with self-collision processing. (Right) A
net is stretched out, twisted to a saddle configuration and a ball is subsequently dropped on

it. A single level set is used for the entire net during self-collision processing.

87

gradient are computed via trilinear interpolation:

φ(~x,Dl) =
1∑

i,j,k=0

Nijk(~x)φijk, ∇φ(~x,Dl) =
1∑

i,j,k=0

∇Nijk(~x)φijk

where Nijk denotes the trilinear basis functions and φijk are the signed distance values at

the nodes of Dl. This formula for the gradient can be used throughout the embedding mesh,

and has been fully adequate for our collision processing application. However, should higher

accuracy be desired, a higher order finite difference scheme [Osher and Fedkiw, 2002] can

be optionally substituted for cells exibiting manifold connectivity with all their neighbors.

It is known that the gradient of the level set function, i.e. the steepest ascent direction of

the distance field, is a unit normal which points in the direction of the closest point on the

surface. Thus, the closest point to ~x on the model surface is to be found in the direction of

~n = ∇φ(~x,Dl), at a distance of |φ(~x,Dl)|. Thus, analytically:

Proj({~x,Dl}) = ~x− φ(~x,Dl)∇φ(~x,Dl)

To compute the projection Proj({~x,Dl}; Γ) we topologically backtrace the non-manifold

level set mesh along ~n element-by-element, to ensure that we follow a geodesic path along

the embedding mesh, as shown in Figure 5.10. If while traversing a distance φ(~x,Dl) along

~n we land in an element Dm that is crossed by the interface, then we use bisection search to

compute the interface point ~x? and return the tuple (~x?,Dm) (Figure 5.10(b)). If we have

traversed a distance equal to φ(~x,Dl) without crossing any interface, we stop the backtrace

operation and report the location reached after the requisite distance has been traveled

(Figure 5.10(a)); we do so to avoid grazing by a nearby interface without actually stopping

there. Finally, if the backtracing process crosses a transition face f, then we compute the

point ~xf where the ray from ~x along ~n crosses f. We then compute the value of φ at ~xf for

all elements on the other side (connected through the transition face) and choose the one

with a negative value but with the minimum magnitude (to approach the surface as soon as

88

possible). If no such element is present, then we assume that the interface lies exactly at ~xf

and return this point along with the cell from which we entered the transition face as the

result of the projection. We note that although this projection is approximate, the error is

comparable with conventional, grid-based level sets, and is acceptable for collision handling.

5.4 Examples

We simulated a number of examples to demonstrate the efficacy of our method in several

challenging scenarios. Figure 5.8(top) shows a user pulling a three dimensional volumetric

coil at the red handle creating complex self-collisions. Figure 5.8(bottom) shows the same

coil being compressed against two moving walls. Self-collisions are turned off at some point

to make the geometry self-intersecting, and subsequently turned back on again resulting in

the coil bulging outwards. This example shows that our method does not require any history

information for resolving self-collisions. Figure 5.11(top) shows a simulation of the Z-plasty

operation (as described in Chapter 2), while Figure 5.11(bottom) shows a ball dropping on a

net that has been stretched outwards and twisted into a saddle configuration. Our method

uses a single level set for the entire net during self-collision processing, obviating the need

for multiple collision level sets and circumventing the complexity in bookkeeping associated

with such scenarios. Figure 5.12(b) shows an example where the lower jaw of a face model

is pulled down and subsequently pushed back up, opening and closing the mouth in the

process. Note the slight bulge in the cheeks due to self-collisions at the lips when the mouth

is closed because the jaw is pushed further up compared to the rest state. Figure 5.12(c)

shows a user moving around two points on the lips (shown in orange) to demonstrate complex

self-collisions that our method can resolve. Finally, Figure 5.9 shows an example where a

cube is partially sliced by six planes using the method of [Sifakis et al., 2007]. This results in

sixteen fingers which are pushed apart when squashed by a ball from the top. Note that a

standard Cartesian grid-based level set cannot be used for resolving this structure irrespective

89

Figure 5.12: Non-manifold level sets are applicable to simulating small facial features
(a) Cutaway view of the non-manifold level set generated on a face model. (b) The lower jaw
is displaced vertically, opening and closing the mouth. Note the small bulges in the cheek
due to self-collisions at the lips because the jaw is pushed further up compared to the rest

state. (c) A user moves around two points on the lips (orange) to demonstrate the
robustness of our method in resolving self-collisions.

of its resolution.

Model Level set
Gen. (s) Solve (s) Collision

Proc. (s)
Backtrace
Total (ms)

Proxy
Count

Z-plasty 222.6 1.961 0.0671 0.0479 7121
Coil 580.5 13.22 0.4651 14.8 31126
Net 524.0 23.47 0.4123 5.38 48042
Face 271.0 24.46 0.2977 0.620 48851

Table 5.1: Performance results for non-manifold level set generation and collision processing
Example timing comparing the cost of solving elasticity equations to running collision
detection using our non-manifold level set data structure. Compared to the cost of simulation
per frame, collision processing is generally insignificant. Level set generation, while currently
expensive, is performed only as a pre-processing step.

This table captures the performance impact of our collision methodology. The first column

lists the computation times for generating the non-manifold level set mesh; we emphasize that

this is a one-time precomputation cost, before dynamic simulation even starts. The following

columns list the cost for each step of our Backward Euler implicit integration scheme, divided

into the solution of the linearized equations, the cost of collision processing, and specifically

the aggregate cost of all backtracing operations for projecting proxies to the object surface. It

can be seen that the cost of collision processing is a minute fraction of the overall simulation.

90

This stems from the fact that we do not require a history of collision-free states, and can

take more aggressive steps than semi-implicit schemes that disallow interpenetration [Bridson

et al., 2002].

91

6 parallelization techniques for lattice deformers

In this chapter, we will explore techniques for optimizing the force computation procedures

for lattice deformers. Recall from Chapter 3, that our goal in solving elastic deformations

is to compute forces and force differentials from current nodal positions. We codified this

process in Algorithm 3.1, where we detailed the computational steps required for converting

nodal positions into the corresponding nodal forces according to a material specific energy

function. The important take away from this algorithm is that we are able to compute these

forces on a per cell basis. On the surface, this would seem to be an excellent opportunity for

thread-based parallelism: divide all the cells among available processor cores and have each

core operate on its cells in isolation. Unfortunately, this is where we run into problems.

The first problem is that while all cells are functionally independent, the nodes themselves

are not. When we compute forces on nodes, we are actually producing aggregate forces.

That is, for any node in the lattice, we are interested in sum of all forces from all cells it

is connected with. By using thread-based parallelism, we encounter a significant problem.

In the context of a single thread, the processing of cells is serial. But when two or more

threads, each operating on different cells, try to accumulate to a single node we encounter a

serious write hazard. In this case, the hazard is that we don’t have any guarantees that our

final result will be the sum of all forces from all involved cells. Due to the behaviors of the

processor caches and system memory, we might have a result equal to any one single cell’s

result, any combination of the cells combined, or some unrelated value. We could attempt

to remove this confusion by adding a locking protocol around each node, but this would

introduce significant performance penalties.

The second problem we encounter is when reading and writing nodal information. In

Chapter 5, we demonstrated how non-manifold embedding meshes could be constructed to

represent material geometry with thin features or incisions. However, this approach comes

with a significant drawback: The explicit topology required to define the mesh removes much

92

of the regularity we could otherwise depend on for performance. One nice benefit of using an

implicit topology for our lattices is that the memory locations of all cells and nodes can be

quickly computed via a function of their geometric positions. This allows reading and writing

to these locations to be done via a single memory access: the exact storage location. In

contrast, the explicit topology we constructed previously has no such guaranteed relationship

between storage locations and geometric positions. Instead it uses an explicit record of

pointers for each cell that informs us where the memory is stored. This can hurt performance

in two ways: first, there is no guarantee that memory is well ordered. Neighboring geometric

nodes might be arbitrarily far apart in memory. Since modern processors load memory in

linear strips, known as cache lines, this distance might require multiple loads, where a single

load might have sufficed if they were closer. Second, by using a collection of pointers per

cell, we are actually reading twice for every entry. The first read is to load the value of the

pointer, followed by the data itself. Combined, these memory access issues can be extremely

detrimental to performance, especially since modern processors operate in a regime of roughly

two orders of magnitude more available computational resources than memory access rate.

Despite the significant number of numerical steps required to process each cell, any delays in

memory access could lead to the computation becoming memory bound.

We can deal with these problems by more carefully arranging our data for computation.

Our proposed solution makes use of two concepts: hybrid grids and blocking. Along the way,

we will also show how C++ templates can be employed for guiding SIMD vectorization of

blocks. The following sections will cover these concepts in more detail.

6.1 A hybrid embedding lattice structure

We build on the non-manifold embedding mesh concepts discussed in Chapter 5, but now

we seek to optimize these data structures for computational performance. Although the use

of non-manifold embedding meshes recovers much of the topological expressive ability of

93

conforming meshes, it jeopardizes one of the most attractive features of regular embedding

lattices, the fact that connectivity is implicit in the lattice structure as opposed to explicitly

stored in a mesh. The performance impact of implicitly defined topology can be profound;

the memory footprint of explicitly stored connectivity information can easily exceed the

state variables themselves (e.g. nodal positions) and reduce effective memory bandwidth

by necessitating indirect memory access. In this section, we strive to leverage the best of

both worlds: We use an (implicit topology) Cartesian grid to capture the majority of the

embedded model in regions where non-manifold duplication is not needed. We retain the

topological flexibility of non-manifold embedding lattices by hybridizing this grid with an

(explicit topology) hexahedral mesh used to describe regions in the vicinity of narrow slits

and incisions.

Reduction and Remapping

To transform an explicit non-manifold mesh into a hybrid grid, we attempt to map as

much of the explicit-connectivity mesh as possible back onto an implicit-connectivity grid

to recover regularity. From the explicit mesh, we have two geometric primitives to consider

for remapping: nodes and cells. For simplicity, we will first consider nodes and then cells.

Figure 6.1 illustrates the results of the remapping rules below:

• Nodes are mapped to the grid if and only if they possess no duplicates.

• Cells are mapped to the grid if and only if all of their vertices have been mapped to

the grid.

Each mesh cell remaining in the hybrid lattice is associated with a coordinate from the grid.

This mapping will become important later when we discuss the block-based acceleration

structures. After these rules are applied, the new structure must adhere to several post-

conditions.

• All grid cells are composed only of grid nodes.

94

(a) (b)

Figure 6.1: Illustration of cell type categorization
From an explicit mesh (top), we generate (a) mesh mapped nodes in red, grid mapped nodes

in black and (b) mesh mapped cells in red, grid mapped cells in gray.

• Mesh cells contain one or more mesh nodes.

It should be noted that this set of rules is not strictly optimal in the sense of mapping the most

elements into the grid. A more aggressive strategy would be to select one element from each

set of geometrically co-located items and map it to the grid. We defer investigation of similar

compaction heuristics to future work. Note: In these surgical examples (Figure 6.2) mesh-

mapped embedding cells are indicated with blue color, grid-mapped ones in red. Typically,

only a minority of cells is mesh-mapped, allowing us to retain the bulk of performance benefits

of implicit grid-mapped embeddings.

6.2 Parallelization

Algorithm 6.1: General Parallelization Design Strategy
1: for t = 0 . . .N do
2: {o1(t),o2(t), . . . ,om(t)} = Kernel({i1(t), i2(t), . . . , in(t)})

Our framework relies on both multithreading and vectorization (SIMD) to obtain the best

possible performance. The fact that our Cartesian-based discretization consists of identically

95

Figure 6.2: Embedding discretizations of surgical operations
Three different surgical operations, S-Plasty (Top Left), Z-Plasty (Top Right), and a

Rhomboid Flap (Bottom), are shown with their embedding hybrid grids. Cells in red are part
of the grid region, while blue cells are mesh mapped. Green cells mark Dirichlet regions.

shaped elements offers a great opportunity to leverage both thread-level and data-level

parallelism, due to the inherent regularity of the simulation kernels. Our general strategy is

to design operations that resemble the form shown in Algorithm 6.1. Under this approach,

our numerical kernels for computing nodal values operate on multiple streams of input data,

{i1, i2, . . . , in}, and produce multiple streams of output data, {o1,o2, . . . ,om}. Collections

of streams can be grouped together logically into vectors or matricies. By structuring the

computation in this form, we can clearly see where multithreading and vectorization apply:

Each thread will be assigned a partition over N, while vectorization can be used to execute

multiple instances of Kernel by stepping through the partition in strides. This also suggests

a data structure design: Arrays of Structs of Arrays (AoSoA), where each struct contains the

96

data for each computational stride and the array of structs can be divided evenly between

threads. In the next couple of sections, we will look at how the simulation data, currently

arranged in a hybrid grid, can be repackaged according to the AoSoA methodology, a process

called blocking.

Algorithm 6.2: SIMD Compatible Block Construction
Input: Block region i
1: function GenerateBlocks
2: for all Cell c in i do
3: Create new empty block
4: Copy c into new block
5: Build connectivity graph between blocks
6: repeat
7: for all Symmetric connected block pairs do
8: Find pair with fewest neighbor mismatches
9: if Suitable pair found then

10: Collapse, merging block contents
11: until No further collapses occurred
12: return All remaining blocks
Output: A collection of one or more manifold Blocks

Blocking

As described in Section 3.3 and Algorithm 3.1, forces are computed on a per cell basis. A

naive multithreaded port would result in write hazards at nodal positions, unless expensive

synchronization was used. Simple partitioning would eliminate this issue, but would not

make efficient use of modern SIMD-enabled processors. Instead, we employ a blocking scheme

to avoid write hazards while retaining a memory layout favorable for vectorization. Our

objective is to redefine our “quantum” of computation from a single lattice cell, to a geometric

neighborhood (or block) that is processed concurrently using vector operations. We adopt a

block size of eight cells arranged as a 2× 2× 2 cube. This formation allows us to fit blocks

into eight-wide vectors and later we will demonstrate how we can adapt to larger and smaller

vector widths. In this way, each cell in the block can be considered a “channel” in the vector.

97

Blocks are tiled together to cover the extent of the lattice. However, restricting the contents

of a non-manifold hybrid lattice to the spatial extent of a single block could easily yield more

than one cell at each position in the block, as illustrated in Figure 6.3. To create blocks

without overlapping cells, we employ a greedy algorithm which collects cells into manifold

groupings along block boundaries, as seen in (Figure 6.3c). The full algorithm for this process

is described in Algorithm 6.2.

We use the partitioning of our lattice into blocks to circumvent write dependencies during

multithreaded execution. Our approach is illustrated in figure 6.4. Prior to the execution

of any kernel involving force computation, we copy the state variables from either the grid

or mesh structures that natively store them, into duplicate copies for every block. We

label this process a Compaction step, which is essentially a gather operation that yields a

representation of the state variables into a flattened array of blocks (with shared variables

duplicated across blocks). Of course, this step entails creating multiple copies of data, but is

not as expensive as if a separate copy of all nodal data was made for every individual voxel (the

practical data overhead is < 3x for this scheme, compared to 8x for a replication of all nodes

for all cells). The cost of this data duplication is reduced by the fact that additional simulation

meta-data (material parameters, precomputed stress derivatives and Singular Value/Polar

decompositions, if needed) which are conceptually cell-centered can be stored persistently in a

flattened array of blocks. Once this translation is completed, fully balanced multi-threading is

possible by simply subdividing the processing of this flattened array across computing threads.

Within each thread, we leverage the 23 multiplicity of each block to compute differentials with

SIMD instructions. The blocks of nodal and cell data are first copied from the heap-allocated

flat arrays onto a stack-allocated copy. Then, we perform a final separation of cell and node

data, creating one fully separate copy for each of the 8 voxels. Note that this operation does

not incur memory bandwidth expense, since this local stack-allocated copy (typically less

than 6 − 8KB in size) is expected to be cache-resident for the duration of the computation.

We have leveraged the AVX instruction set available in modern Intel CPU architectures to

98

process all 8 voxels of the block simultaneously. Subsequently, force computation can be

executed in parallel on each block, without write dependencies, by allowing each block to

record its own force contribution to the lattice nodes it touches. Upon completion of the local

computation, the reverse operation, labeled Uncompaction, scatters and accumulates the

contents of the per-block forces back to their native (non-duplicated) grid or mesh storage.

(a) (b)

(c)

Figure 6.3: Illustration of blocks formed from regions of manifold connectivity
Generating Blocks. (a) Block boundaries superimposed over hybrid lattice. (b) Non-manifold

contents of each block region. (c) Final manifold blocks for each region.

99

+

Figure 6.4: Illustration of data structure optimized for vector hardware
A 2D illustration of our simulation data structures. Left: Nodal (deformation) data stored on
a grid. Middle: On demand, nodal data is copied to an array of 2d-sized blocks and combined
with cell-based data which are persistently stored in arrays of blocks. Right: Nodal and
cell-centered data for a single block are copied to a stack-allocated structure, and duplicated
for each voxel for SIMD computation.

Write dependencies can be avoided at this stage by partitioning this parallel operation on the

grid or mesh variables that collect the per-block contributions. As a result, complex force

computations can fully enjoy the benefits of thread- and SIMD-parallelism, without being

concerned with data dependencies arising from the non-manifold mesh structure.

Supporting Irregular Cells

In simple cases, where all cells are composed of material or not, the previous approach for

data organization works well. Even for cases where cells are allowed to be practically full of

material, we can simply adjust the force computation [Patterson et al., 2012]. While this

increases the complexity, it does so in a uniform fashion - all cells become more complex. The

true enemy of vectorization is irregularity. Unfortunately, when we are faced with features like

point spring constraints and optional material layering, useful in adding non-uniform, local

anisotropic behaviors like muscle fiber effects, we quickly encounter cells which require more

or less computation than their neighbors. Fortunately, we can adapt the blocking approach

to handle this situation with a few minor modifications.

The primary idea we will use in this situation is the concept of a block overlay. A block

100

overlay is additional metadata applied to each block to handle optional force generating

components. For each block which contains any irregular cells, we can build a block overlay

data structure which contains additional per cell data. The exact description of each overlay

varies, depending on its reason for existence. For instance, a spring constraint overlay would

contain embedding weights and a spring stiffness coefficient for each cell with an embedded

spring. By building these overlay structures at the level of whole blocks, we can easily

integrate them with the thread-parallelized loop over all blocks. In order to handle cells with

more than one special feature (e.g. it is reasonable to have more than one spring constraint

per cell), we can repeat the same idea we used earlier when constructing the block layouts.

In this case, we attempt to pack block overlays as full as possible, as long as each cell in the

overlay has at most one special feature. Thus, we will generate as many block overlays as

the most complex cell in the block, where the worst case is that only one cell in the overlay

has non-null data. The drawback of this approach is that we have now have some amount of

variable processing per block, given an arbitrary number of overlays, but computing each

overlay’s contribution can be done in a vectorized fashion. The entire breakdown of the

process, over multiple blocks with overlays, can be seen in Figure 6.5.

Guided Vectorization

The high degree of regularity exposed by our blocking procedure naturally suggests using

modern processor’s SIMD capabilities to compute on all cells of a given block simultaneously.

Although the performance potential is undeniable, porting code from a scalar implementation

to a SIMD platform is a tedious task, one that auto-vectorization features of compilers have

been traditionally ineffective in providing automatically (especially for large kernels, as the

ones in our solver, which might contain thousands of machine instructions for processing

forces on a single cell). An example is the highly optimized SVD routines, published with the

work of McAdams et al. [2011] which replicates almost instruction-by-instruction identical

SIMD intrinsics to implement scalar, SSE and AVX versions; it can be easily verified that

101

Figure 6.5: Illustration of data structure optimized for vector hardware, with overlays
A complete 2D illustration of the block based vectorization computation of elastic forces,
including irregular cell data overlays. From top to bottom: Gathering positional data from
hybrid grid cells, combining with cell centered metadata for elastic force computation, adding
block dependent overlays for force constraints and local material mix-ins, final forces are
scattered back to hybrid mesh.

compiler auto-vectorization cannot provide competitive performance with these tediously

hand-optimized kernels.

We have designed a programming paradigm called guided vectorization, with which we

practically achieve the performance of hand-vectorized kernels, while only providing a single

specification for scalar and vector variants. Our solution is object-oriented and based on the

observation that the semantics of fundamental data types are very similar across scalar/vector

platforms, even if the interface differs. Our system is rooted on two templatized C++ classes:

102

template<class scalar_arch> class Number;

template<class boolean_arch> class Mask;

Class Number is an abstraction of a single floating point number in a scalar platform

(scalar_arch==float) or of a 4/8/16-wide vector register in SSE/AVX/Xeon Phi platforms

(scalar_arch:=__mm128|__mm256|__mm512). Similarly, class Mask is an abstraction of the

result of a comparison operation, in a form that can be used to perform a conditional assign-

ment; thus Mask<bool> encapsulates a single C++ boolean variable, Mask<__mm256> captures

a 256-bit mask usable in AVX BLEND instructions, while Mask<__mmask16> encapsulates the

special concept in Intel Xeon Phi of a 16-bit mask register that is used in comparisons and

conditional assignments. We provide enough overloaded operators in the interface of these

classes to allow them to be used in algebraic expressions regardless of the encapsulating

vector width. Ultimately we use them to construct macroscopic kernels of the form:

template<class scalar_arch,class T_DATA>

void Add_Force_Differential(

const T_DATA (&dx)[3][8], ...

const T_DATA (&V)[9],

const T_DATA (&dPdF)[12],

T_DATA (&df)[3][8]);

These kernels are broken out in Figures 6.6, 6.7, and 6.8.

In this paradigm, we have separated the programmatic data width (type T_DATA, which

could be float, for scalar code that computes forces on individual cells, or float[8], for

the force computation of all 8 cells of a block at once) from the architectural vector width.

This allows us to design all of these kernels with the same semantics that would be followed

103

for scalar execution, and automatically generate code that works on geometric blocks of

any size, and vector architectures of different vector widths. For example the function

call Add_Force_Differential<__m128,float[16]>(....) would use SSE instructions to

compute force differentials of geometric blocks containing 16 cells each (e.g. blocks shaped

like 4× 2× 2 grid cells).

Performance Results

This particular strategy for performance optimization for lattice deformers was tested in a

prototype surgical simulation tool (For more details, see Chapter 8 on its deployment). In

addition to the surgical models simulated with this tool, we also benchmarked our system

with a high resolution human body model with anisotropic active musculature. Detailed

timings, including time taken at the individual kernels of our solver, can be seen in Table 6.1.

104

Fi
gu

re
6.

6:
K

er
ne

lC
om

po
ne

nt
s

fo
r

U
pd

at
e

P
os

it
io

n
B

as
ed

St
at

e

D
ia

gr
am

de
m

on
st

ra
tin

g
th

e
su

b-
ke

rn
el

co
m

po
ne

nt
s

fo
r

th
e

U
pd

at
e

P
os

it
io

n
B

as
ed

St
at

e
ke

rn
el

.
T

hi
s

ke
rn

el
is

ex
ec

ut
ed

on
ce

pe
r

N
ew

to
n

st
ep

an
d

co
m

pu
te

s
th

e
de

fo
rm

at
io

n
gr

ad
ie

nt
F
,t

he
Si

ng
ul

ar
Va

lu
e

D
ec

om
po

sit
io

n
of
F
,a

nd
th

e
st

re
ss

te
ns

or
T
,

as
of

Te
ra

n
et

al
.[

20
05

b]
,o

ft
he

cu
rr

en
t

co
nfi

gu
ra

tio
n.

T
he

se
va

lu
es

ca
n

be
re

us
ed

in
su

bs
eq

ue
nt

fo
rc

e
di

ffe
re

nt
ia

lc
om

pu
ta

tio
ns

as
th

ey
do

no
t

ch
an

ge
be

tw
ee

n
N

ew
to

n
st

ep
s.

U
pd

at
e

Po
sit

io
n

B
as

ed
St

at
e

U
nw

ei
gh

te
d

G
ra

di
en

t

Si
ng

ul
ar

Va
lu

e
D

e-
co

m
po

sit
io

n

Pe
na

lty
M

ea
su

re
G

ra
-

di
en

t

Is
ot

ro
pi

c
St

re
ss

D
er

iv
at

iv
e

R
ot

at
ed

St
re

ss
D

er
iv

at
iv

e

105

Fi
gu

re
6.

7:
K

er
ne

lC
om

po
ne

nt
s

fo
r

A
dd

Fo
rc

e

D
ia

gr
am

de
m

on
st

ra
tin

g
th

e
su

b-
ke

rn
el

co
m

po
ne

nt
s

fo
rt

he
A

dd
Fo

rc
e

ke
rn

el
.

T
hi

s
ke

rn
el

pr
od

uc
es

no
da

lf
or

ce
s

du
e

to
a

sin
gl

e
ce

ll’
s

no
da

ld
ef

or
m

at
io

n.
It

is
ca

lle
d

on
ce

pe
r

N
ew

to
n

st
ep

as
th

e
rig

ht
ha

nd
sid

e
of

th
e

up
da

te
ex

pr
es

sio
n

3.
19

.

A
dd

Fo
rc

e

U
nw

ei
gh

te
d

G
ra

di
en

t

M
at

rix
T

im
es

Tr
an

s-
po

se

Pi
ol

a
K

irc
hh

off
St

re
ss

Te
ns

or
Vo

lu
m

e
Pr

es
er

va
tio

n
D

ev
ia

tio
n

U
nw

ei
gh

te
d

A
cc

um
u-

la
tio

n

106

Fi
gu

re
6.

8:
K

er
ne

lC
om

po
ne

nt
s

fo
r

A
dd

Fo
rc

e
D

if
fe

re
nt

ia
l

D
ia

gr
am

de
m

on
st

ra
tin

g
th

e
su

b-
ke

rn
el

co
m

po
ne

nt
s

fo
r

th
e

A
dd

Fo
rc

e
D

if
fe

re
nt

ia
l

ke
rn

el
.

T
hi

s
ke

rn
el

is
ca

lle
d

re
pe

at
ed

ly
du

rin
g

ea
ch

N
ew

to
n

st
ep

,a
ct

in
g

as
th

e
eff

ec
t

of
m

ul
tip

ly
in

g
by

th
e

st
iff

ne
ss

m
at

rix
K

.
T

hi
s

ke
rn

el
co

ns
um

es
th

e
de

fo
rm

at
io

n
gr

ad
ie

nt
,S

V
D

co
m

po
ne

nt
s,

an
d

th
e

st
re

ss
te

ns
or

T
pr

od
uc

ed
fro

m
th

e
U

pd
at

e
Po

sit
io

n
B

as
ed

St
at

e
ke

rn
el

.

A
dd

Fo
rc

e
D

iff
er

en
tia

l

U
nw

ei
gh

te
d

G
ra

di
en

t

M
at

rix
T

im
es

Tr
an

s-
po

se

Pr
es

su
re

Fo
rc

e
D

iff
er

-
en

tia
l

St
re

ss
Te

ns
or

D
iff

er
-

en
tia

l

M
at

rix
Tr

an
sp

os
e

T
im

es

U
nw

ei
gh

te
d

A
cc

um
u-

la
tio

n

107

E
xa

m
pl

e
P

la
t.

T
ot

al
V

ox
el

s
G

ri
d

V
ox

el
s

M
es

h
V

ox
el

s
B

lo
ck

s
N

ew
to

n
It

er
at

io
n

(s
)

U
pd

at
e

St
at

e
(m

s)

A
dd

Fo
rc

e
(m

s)

A
dd

D
iff

er
.

(m
s)

C
om

pa
ct

(m
s)

U
nC

om
pa

ct
(m

s)

D
uf

ou
rm

en
te

l
M

ou
ly

X
eo

n
47

68
9

47
20

6
48

3
88

21
0.

36
30

1.
5

1.
4

1.
6

0.
4

0.
6

29
42

48
29

40
15

23
3

47
68

1
2.

06
48

7.
8

5.
1

4.
2

2.
1

3.
0

Ph
i

47
68

9
47

20
6

48
3

88
21

0.
42

59
1.

3
1.

5
0.

9
0.

1
2.

0
29

42
48

29
40

15
23

3
47

68
1

0.
73

49
2.

8
3.

3
2.

2
0.

7
4.

7

R
ho

m
bo

id
Fl

ap

X
eo

n
48

52
9

47
20

3
13

26
69

09
0.

16
20

1.
1

0.
9

0.
7

0.
2

0.
4

87
95

71
87

73
62

22
09

11
23

02
2.

41
31

18
.4

9.
6

9.
0

3.
2

4.
0

Ph
i

48
52

9
47

20
3

13
26

69
09

0.
37

35
1.

3
1.

4
1.

0
0.

1
1.

5
87

95
71

87
73

62
22

09
11

23
02

1.
13

23
5.

3
6.

2
3.

9
1.

2
9.

6

ZP
la

st
y

X
eo

n
54

00
3

49
30

6
36

97
69

43
0.

22
93

1.
2

0.
5

0.
9

0.
3

0.
5

96
08

10
95

79
08

29
02

12
70

70
2.

77
07

20
.5

9.
3

10
.1

3.
6

4.
5

Ph
i

54
00

3
49

30
6

36
97

69
43

0.
38

14
1.

3
1.

4
1.

1
0.

1
1.

5
96

08
10

95
79

08
29

02
12

70
70

1.
24

01
5.

9
6.

8
4.

3
1.

3
10

.8

H
um

an
X

eo
n

20
06

90
3

20
06

90
3

0
26

50
78

12
.1

12
35

.9
21

.5
20

.8
8.

4
12

.0
Ph

i
20

06
90

3
20

06
90

3
0

26
50

78
3.

96
08

11
.4

16
.3

7.
8

3.
3

16
.2

Ta
bl

e
6.

1:
Pe

rfo
rm

an
ce

re
su

lts
fo

r
su

rg
ic

al
an

d
an

im
at

io
n

ex
am

pl
es

.
Ex

am
pl

es
ru

n
on

th
e

X
eo

n
pl

at
fo

rm
us

ed
a

6-
co

re
In

te
lX

eo
n

C
PU

E5
-1

65
0

m
ac

hi
ne

w
ith

64
G

B
of

m
em

or
y,

w
hi

le
th

e
Ph

i
ex

am
pl

es
ra

n
on

a
60

-c
or

e
X

eo
n

Ph
i5

11
0P

ca
rd

w
ith

8G
B

of
m

em
or

y.
A

ll
su

rg
ic

al
ex

am
pl

es
we

re
ru

n
w

ith
50

co
nj

ug
at

e
gr

ad
ie

nt
ite

ra
tio

ns
w

hi
le

th
e

hu
m

an
ex

am
pl

e
wa

s
ru

n
w

ith
10

0
ite

ra
tio

ns
.

108

7 macroblock technique for hybrid solvers

In this chapter, we will explore an alternative approach for solving elastic deformation

problems. Compared to Chapter 6, the approach outlined in this part of the document will be

focusing on the challenge of poor convergence when using complex, non-linear materials. We

will also be focusing on how careful attention to the interplay between modern compute ability

verses memory availability can help us create more optimized solvers for elastic materials.

To do this, we will be targeting the common approach used by many non-linear elastic

simulations, namely the combination of an outer Newton method around an inner linear

solver.

The Newton method has largely been the golden standard for the simulation of nonlinear

elastic bodies, although a number of interesting deviations from this standard approach have

garnered attention in the graphics literature (e.g., nonlinear multigrid cycles [Zhu et al.,

2010], projective and position-based dynamics [Müller et al., 2007, Bouaziz et al., 2014,

Wang, 2015] and shape matching [Rivers and James, 2007]). In a typical Newton scheme,

once a linear approximation to the governing equations is computed, most practitioners will

either employ a direct method or select a technique from a spectrum of iterative methods in

order to solve the resulting system.

Direct solvers are perhaps the safest and most straightforward way to solve the system

that results from the linearization of the governing equations. These methods can be quite

practical for relatively small problems when direct algebra is not very expensive. Additionally,

these techniques are quite resilient to the conditioning of the underlying problem. Even for

large models, high quality parallel implementations such as the Intel MKL PARDISO library

are available. Despite such advantages, direct methods suffer from inherently superlinear

computational complexity. Even with the benefit of parallelism, direct methods will typically

be more expensive than several iterative schemes, especially if few number of iterations are

performed. Additionally, direct methods are inherently memory bound; at the core of direct

109

Figure 7.1: Deformed model alongside illustration of its constitutive macroblocks
(Left) High resolution human mesh posed quasistatically by a skeleton with soft spring
constraints. (Center) Embedding lattice divided into macroblocks (shown as alternating
regions of green and purple). (Right) Illustration of the degrees of freedom along the
macroblock boundaries. Conjugate Gradients is applied to a system with the size of these
interface nodes. The model has 286K grid cells.

solvers are forward and backward substitution routines that carry out a very small number

of arithmetic operations for each memory access required. This often results in grossly

memory-bound execution profiles on modern hardware. This drawback is even more heavily

felt for large models that do not fit in cache. Finally, each iteration of the Newton method

is inherently inexact, providing only a step towards the converged solution. With direct

methods we often find ourselves perfectly solving an inaccurate linearized approximation.

With iterative solvers, we can aim for an approximate solution to the linearized problem

with the understanding that with each Newton iteration the problem itself will change.

These methods include Krylov methods like Conjugate Gradient, Multigrid, and fixed-point

iterations such as Jacobi, Gauss-Seidel and SOR. The primary benefit of iterative techniques

is that each individual iteration is relatively cheap; this allows users the option to either

iterate as much as they can afford, or alternatively truncate the iterative process when

the approximate solution is acceptable. Also, many iterative methods are assembly-free,

alleviating the need to construct or store the stiffness matrix. In fact, some of the most

efficient techniques go to great lengths to minimize memory footprint [McAdams et al., 2011]

while leveraging SIMD and multithreading.

Iterative solvers often have to cope with challenges of their own. Local methods like Jacobi,

110

GS, and SOR are slow to capture global effects, as they propagate information at a limited

speed across the mesh. Krylov methods will typically prioritize the most important modes

that contribute to a high residual; for example, consider a system with a few tangled elements

that create large local forces. Elements suffering from small errors will be relatively neglected

by a method like Conjugate Gradients, while the solver focuses on the highly tangled elements

before turning its attention to the bigger picture. Multigrid is an interesting alternative that

often emerges as the performance champion; however, it can often be tricky to get to work

robustly, and might be less appropriate for thin elastic objects, such as a thin flesh layer on a

simulated face. Preconditioning can accelerate the convergence of iterative solvers but, in

contrast to certain fluids simulation scenarios, the accelerated convergence might not always

justify the increased per-iteration cost. Preconditioners based on incomplete factorizations

are memory bound as they require matrix assembly, and generally require an expensive

re-factorization step at each Newton iteration. We note that the same factorization overhead

would be incurred even when the Newton method is nearly converged, where just a handful

of iterations would suffice to solve the linearized equations. Multigrid-based preconditioners

might achieve more competitive performance, but such approaches have been primarily tested

in the area of fluid simulation [Ferstl et al., 2014] and not so much in nonlinear deformable

solids.

We propose a hybrid method that balances certain advantages of both direct and iterative

schemes. Specifically we endeavor to achieve a good compromise between memory and

compute load, reduce the memory footprint whenever possible, while significantly reducing

iteration count. We pursue these goals while being competitive with the per-iteration cost

of unpreconditioned CG. We employ a grid-based discretization, and aggregate rectangular

clusters of cells into “macroblocks” with a proposed size of 16× 8× 8 cells. These clusters

essentially act as composite elements the same way that a typical hexahedral element can be

thought of as a black box that takes displacements as inputs and produces nodal forces as

output. However, our composite elements only take in displacements on the nodes of their

111

Figure 7.2: Macroblock solver used to handle rigid-elastic collision scenario
A kinematic rigid sphere collides against a high-resolution embedded face model. The
relatively small thickness of the elastic flesh, in addition to the topological features near the
nose and mouth regions, would complicate the use of a typical multigrid solver [McAdams
et al., 2011] .

periphery and return forces on those same boundary nodes. Using this construct we obtain

an equivalent linear system with degrees of freedom only on cluster boundaries.

Scope This chapter is an exploration of the performance potential offered by composite

“macroblock” elements, initially focusing on the well-established simulation paradigm of

a Newton-type scheme for solving a nonlinear system of governing equations. Thus, we

only focus on grid-based discretizations of elasticity, and forgo the exploration of different

simulation paradigms (e.g., multigrid, projective dynamics) where our formulation might still

have a viable role. Finally, we consciously restrict our investigation to grid-based models that

do not exhibit non-local interactions, such as spring-based constraints or penalty-based self-

collision resolution mechanisms (one-sided collisions between the elastic body and kinematic

objects are supported).

7.1 Macroblock-based discretization and numerical

solution

We start by reviewing the equations that our method targets, and detailing how our proposed

macroblock concept can reformulate them into an equivalent but more efficiently solvable

112

form. This process will necessitate the exact solution of several smaller systems of equations,

each in the order of a couple thousand of unknowns. In this section we will simply assume

that a highly efficient direct solver for those systems is available. Section 7.2 will provide the

implementation details of this highly optimized solver.

The governing equations describing the deformation of an elastic nonlinear solid depend

on the time integration scheme employed. For example, in quasistatic simulation we have to

solve the nonlinear equilibrium equation f (x; t) = 0 at any time instance t. Using an initial

guess xn of the solution, Newton’s method computes a correction δx = xn+1−xn by solving

the linearized system: (
−
∂f
∂x

∣∣∣∣
xn︸ ︷︷ ︸

K(xn)

)
δx = f (xn) (7.1)

If an implicit Backward Euler scheme was used, a system with similar structure would form

the core of Newton’s method [Sifakis and Barbic, 2012]:

[
(1+ γ

∆t
)K(xn)+

1
∆t2

M
]
δx =

1
∆t

M(vp−vn) + f (xn, vn) (7.2)

where M is the mass matrix, γ is the Rayleigh coefficient, vp the velocities at the previous

time step, and f now includes both elastic and damping forces (see [Sifakis and Barbic, 2012]

for further details).

Despite the semantic differences, the linear systems in equations (7.1) and (7.2) are very

similar from an algebraic standpoint:

• Their coefficient matrices are both symmetric positive definite.

• Their coefficient matrices have the same sparsity pattern.

• In a grid-based discretization, their coefficient matrices can be assembled from the

contributions of individual grid cells.

We note that in order for this last property to hold true, we have assumed that our

113

elastic model does not have any interactions between remote parts of its domain, such as

penalty forces used to enforce self-collision (which we consciously excluded from our scope).

Incidentally, penalty forces used to enforce collisions with external kinematic bodies are

allowed, since their point of application on the elastic body can be embedded in a single

grid cell. For brevity, we will write any linear system that shares the three properties above

using the simplified notation Kx = f , without individual emphasis on whether the system

originated from a quasistatic, or a dynamic implicit scheme as in equations (7.1) and (7.2),

respectively.

The crucial next step in our proposed approach is a partitioning of the active grid cells into

macroblocks, which are grid-aligned rectangular clusters of a predetermined size, as illustrated

in figure 7.1. In our implementation we use macroblocks with dimensions of 16× 8× 8 grid

cells, although the formulations in this section are largely independent of the macroblock size.

Section 7.3 provides the reasoning behind the choice of this particular size of a macroblock.

Each macroblock Bi consists of up to 16× 8× 8 = 1024 grid cells Ci1 ,Ci2 , . . . ,CiM ; note

that in some cases this maximum number of constituent cells will not be reached, if the

macroblock overlaps with the boundary of the elastic object, or if “gaps” of empty grid cells

are present within its extent. Similarly, up to 17× 9× 9 nodal degrees of freedom will be

present in the region spanned by Bi. Up to 15 × 7 × 7 of them will be on the interior of

Bi and thus will not be touched by any other macroblock; we will denote this interior node

set with Ii. The remaining nodes, located on the boundary of Bi are potentially shared by

neighboring macroblocks; we will call these interface nodes (as they reside at the interface

between macroblocks) and denote their set with Γi. All sets Ii are clearly disjoint, and we

will denote their union by I = ∪Ii. The interface sets Γi do overlap with one another, and

we denote their union by Γ = ∪Γi. For large enough models, we expect around 72% of grid

nodes to lie in some interior set, and approximately 28% on the interface set Γ , using the

aforementioned macroblock size.

Our objective will be to replace the linear system Kx = f with an equivalent system,

114

Figure 7.3: Macroblock solver used to handle basic quasistatic pose scenario
Armadillo model deforming as a result of kinematically animated Dirichlet constraints.
Embedding lattice shown on the right.

which only includes the interface nodes in Γ as unknowns. To do so, we first write the system

in block form, by separating interior and interface variables as follows:

 KII KIΓ

KΓ I KΓΓ


 xI

xΓ

 =

 fI

fΓ


Using block Gauss elimination, this system can be converted to the following equivalent

block-triangular form:

KII KIΓ

0 KΓΓ − KΓ IK−1
II KIΓ


 xI

xΓ

 =

 fI

fΓ − KΓ IK−1
II fI

 (7.3)

Equation (7.3) suggests the following algebraically equivalent method for solving the

system Kx = f :

Step 1 Compute an interface-specific right hand side, from the bottom block of the right

hand side of system (7.3):

f̂Γ = fΓ − KΓ IK−1
II fI (7.4)

Step 2 Solve the interface-specific system K̂xΓ = f̂Γ to compute the values xΓ of all interface

115

nodes. Note that the matrix of the system

K̂ = KΓΓ − KΓ IK−1
II KIΓ (7.5)

is the Schur complement of the symmetric positive definite original matrix K, hence it is

symmetric and positive definite in its own right. We will solve this system, which only

involves interface degrees of freedom, using Conjugate Gradients.

Step 3 Conclude the computation by solving for the interior nodal variables from the top

block of system (7.3) as:

xI = K−1
II (fI − KIΓxΓ) (7.6)

In order to reproduce the exact solution of Kx = f , we would need to solve the interface

problem K̂xΓ = f̂Γ in Step 2 exactly. However, given that we only use this solution as part

of an iterative Newton update, there is nothing preventing us from stopping the Conjugate

Gradients solver for the interface system short of full convergence. However, as we discuss

in sections 7.4 and 7.4, the interface problem requires far fewer CG iterations to produce

good quality results than the same Krylov method applied to Kx = f . Furthermore, the

optimizations of the following section allow us to make the per-iteration cost of CG on the

interface problem be comparable to each CG iteration on the original problem, resulting in a

significant net performance gain. When assessing the cost of Steps 1-3, it is important to

observe the following:

Inversion of KII is the main performance challenge. The most performance-sensitive

component of this process is the multiplication with the inverse K−1
II of the matrix block

corresponding to variables interior to macroblocks. Nevertheless, since there is no direct

coupling (in K) between interior variables of neighboring macroblocks, KII is a block diagonal

matrix, comprised of decoupled diagonal components for each set of interior variables of each

macroblock. We thus use multithreading to invert the interior of each macroblock in a parallel

and independent fashion. Within each macroblock, we use the aggressively SIMD-optimized

116

direct solver detailed in section 7.2 to perform the inversion exactly and efficiently.

Multiplication with KIΓ , KΓ I in Steps 1 & 3 is inexpensive. The off-diagonal blocks

KIΓ and KΓ I appearing in Steps 1 and 3 are small and sparse sub-blocks of K. In addition,

they are only used in two matrix-vector multiplications across Steps 1 and 3 for an entire

Newton iteration (we will address their role in Step 2, next). These matrices can be efficiently

stored in sparse format, and their multiplication with vectors can be parallelized (in our

implementation, via SIMD within macroblocks and multithreading across blocks). These

matrices have minimal performance impact in our examples.

Conjugate Gradients does not need to construct K̂. The interface matrix K̂, being

a Schur complement, is significantly denser than the original matrix K; for example, any

two nodal variables on the interface of the same macroblock would be coupled together.

Fortunately, the Conjugate Gradients method does not need this matrix to be explicitly

constructed. Instead, the only requirement is to be able to compute matrix-vector products

of the form

sΓ = K̂pΓ =
(
KΓΓ − KΓ IK−1

II KIΓ
)

pΓ

for any given input vector pΓ . In fact, we can compute such products on a per-macroblock

basis. We start by computing the restriction of pΓ to the boundary Γi of each macroblock Bi,

which we denote by pΓi . Subsequently, we compute a partial contribution to the matrix-vector

product as

sΓi = K̂ipΓi =
(
KΓiΓi − KΓiIiK−1

IiIiKIiΓi
)

pΓi (7.7)

The highly efficient evaluation of the expression in equation (7.7) is precisely the focus of

section 7.2. We compute the contributions of all macroblocks sΓi in parallel, via multithreading,

and reduce them all together in a final summation to produce the global result sΓ .

Finally, we point out a significant intuition behind the nature of the macroblock-local

Schur complement K̂i, defined via equation (7.7). Similar to how an elemental stiffness matrix

maps nodal displacements to nodal force differentials for a tetrahedral or hexahedral element,

117

(a)

(b)

(c)

(d)

(e)

(f)

Figure 7.4: Illustration of the internal macroblock divisions and structure
The 15×7×7 macroblock interior nodes are hierarchically subdivided, yielding (a) sixteen
3×3×3 “subdomains” and (b,c,d,e) four “interface” layers. The first subdomain is reordered

to maximize sparsity, and this ordering is mirrored (f) to the other 15 subdomains.

the macroblock stiffness matrix K̂i directly maps displacements on the boundary to forces

on the same boundary nodes, under the assumption that all interior nodes are functionally

constrained to their exact solution subject to the boundary displacement values. We note

the similarity of this concept to the work of Gao et al. [2014], although they used a Schur

complement to abstract away the interior nodes of an entire model, rather than assembling

an elastic solid from macroscopic cell blocks.

118

7.2 An optimized direct solver for macroblocks

As outlined in section 7.1, inverting KIiIi within each macroblock is the most performance-

sensitive part of our numerical approach. In this section we explain how this operation can be

performed with high efficiency, by reducing its memory footprint and aggressively leveraging

instruction-level (SIMD) parallelism. We have designed a numerical data structure containing

the appropriate metadata and computational routines to compute the matrix-vector product

sΓi of equation (7.7), given the boundary values pΓi as input. This structure stores matrices

KΓiΓi , KΓiIi and KIiΓi explicitly in compressed sparse format (with slight modifications to

facilitate SIMD parallelism, as explained in section 7.2), as those are relatively compact and

inexpensive to multiply with. In addition, we store just enough information to be able to

multiply the interior inverse K−1
IiIi with input vectors, without storing this matrix explicitly.

As this section focuses on a single macroblock Bi, we omit the macroblock index i, using the

symbols I and Γ to denote its interior and interface nodes.

Given the sparsity and definiteness of KII, one straightforward approach would be to

compute its (exact) Cholesky factorization, under a sparsity optimizing variable reordering.

This factorization would take place once per Newton iteration, while forward and backward

substitution passes would be used to apply the inverse in every subsequent CG iteration based

on equation (7.7). We do, in fact, compute exactly such a reordered Cholesky factorization;

however, instead of forward/backward substitution, we leverage a hierarchical alternative

(derived from the coefficients of the computed factorization) that achieves the same result in

significantly less time, by reducing the required memory footprint.

Reordering

We utilize a custom reordering of the 15× 7× 7 interior nodes of the macroblock, in order to

optimize the sparsity of Cholesky factorization and expose repetitive regular patterns that

can be matched with SIMD calculations. We define this reordering by means of a hierarchical

119

subdivision, as illustrated in figure 7.4. First, we subdivide the 15× 7× 7 interior region into

two 7× 7× 7 subregions, separated by a 1× 7× 7 interface layer, illustrated in blue color

in figure 7.4(e). Each of these two regions is further subdivided into two 3 × 7 × 7 parts,

separated by 1 × 7 × 7 interface layers, shown in orange in figure 7.4(d). Those 3 × 7 × 7

regions are then split into two 3× 3× 7 parts, separated by 3× 1× 7 interfaces, shown in

green in figure 7.4(c). A last subdivision results in two 3× 3× 3 subdomains, on either side of

a 3× 3× 1 connector, drawn in magenta in figure 7.4(b). We refer to the resulting 3× 3× 3

blocks as subdomains, and the connective regions in figures 7.4(b) through 7.4(e) as Level-1

through Level-4 interfaces. We then proceed to compute a minimum-degree reordering for one

of the 16 resulting 3× 3× 3 subdomains, and mirror this reordering across their hierarchical

interfaces to enumerate the nodes of all remaining subdomains. This mirroring is essential

in creating repetitive patterns in the Cholesky factors, on which SIMD optimizations are

crucially dependent. The final overall reordering is formed by assembling a tree of this

hierarchical subdivision (with interfaces on parent nodes, and the regions they separate as

their children), and computing a reverse breadth-first tree traversal.

We have found this reordering to be optimal; it matches or outperforms any heuristics (e.g.,

minimum-degree reordering in Matlab) in the sparsity of the Cholesky factors. The resulting

sparsity pattern is illustrated in figure 7.5. Matrix entries colored red are a subset (but not

all) of the entries that were filled-in during the Cholesky process. As expected, forward and

backward substitution on this matrix is a pronouncedly memory-bound operation; hence we

propose a further algorithmic modification that produces the same result with approximately

one-seventh of the memory footprint. This alternative approach will only need to store the

number of coefficients corresponding to the black-colored entries in figure 7.5. The metadata

for this alternative approach, detailed next, will be harvested from the Cholesky factorization

just computed.

120

Hierarchical factorization

Consider the first hierarchical subdivision, illustrated in 7.4(e), which separated the 15×7×7

block of interior nodes into two 7× 7× 7 subregions, which we denote by I1 and I2, along

with a 7× 7× 1 connective region, denoted Ic (drawn blue in the figure above). If we reorder

the matrix KII to expose this partitioning, it assumes the following block form:


K11 K1c

K22 K2c

Kc1 Kc2 Kcc


It can be easily verified that the inverse of this matrix can be written in the following

Block-LDL form:
I −K−1

11 K1c

I −K−1
22 K2c

I




K−1
11

K−1
22

C−1




I

I

−Kc1K−1
11 −Kc2K−1

22 I


where C = Kcc − Kc1K−1

11 K1c − Kc2K−1
22 K2c is the Schur complement of Kcc. With this

formulation, solving a problem KIIxI = fI is equivalent to multiplying with the factorized

version of K−1
II in the equation above. We make the following significant observations:

• Other than the (seemingly elusive) inverses K−1
11 , K−1

22 and C−1, the factorization above

does not incur any fill-in; factors such as K1c, etc. have the original sparsity found in

sub-blocks of KII.

• We can prove that the lower-triangular Cholesky factor of the Schur complement C is

exactly the bottom-rightmost (dense) diagonal block of the matrix shown in figure 7.5

(also more prominently colored blue in figure 7.6). Thus, multiplication with C−1 can

be performed simply via forward and backward substitution.

• The inverses of the two subregions, K−1
11 and K−1

22 can be applied recursively using the

121

exact same decomposition and block-LDL factorization described here, by splitting

each 7× 7× 7 into two 7× 7× 3 subregions and a 7× 7× 1 connector as before. This

recurrence can be unfolded until we arrive at the (sixteen) 3× 3× 3 subdomains shown

in figure 7.4. The Cholesky factors of those sixteen blocks are exactly the top-sixteen

(sparse) diagonal blocks on the top-left of the Cholesky factorization in figure 7.5; thus

those submatrices can be readily inverted without recursion.

Figure 7.5: Illustration of macroblock sparsity patterns
Sparsity of Cholesky factorization (with our optimal reordering), shown with red and black

colors. The memory footprint of our proposed solver only includes the black-colored
coefficients.

122

We note that the Cholesky factors of the Schur complement matrices (C) that appear

in deeper levels of this hierarchical solution scheme are similarly harvested from the (dense)

diagonal blocks of the overall Cholesky factorization (highlighted in purple, green and orange

color in figure 7.6, immediately above the blue block at the bottom-rightmost part which

corresponds to the first hierarchical subdivision). At the final level of this hierarchical

solution process, we need the inverses of the matrix blocks corresponding to the sixteen

3× 3× 3 subdomains themselves. For those blocks, we employ directly their sparse Cholesky

factorization, as seen in the top-sixteen (dark blue colored) diagonal blocks in figure 7.6, and

solve using standard forward and backward substitution.

It would appear that the additional computation that this recursive solution entails

would render it prohibitively expensive. However, the stock Cholesky forward and backward

substitution are memory-bound by such a wide margin that our optimized recursive solution

can afford to execute a significantly larger amount of arithmetic operations, while still being

(barely, this time) bound by the time required to stream the requisite matrix coefficients

from memory into cache. The not so obvious, but very significant, benefit is that the entire

working set of this solver is less than 800KB per macroblock, allowing all subsequent memory

accesses to occur exclusively in cache for every CPU core handling an individual macroblock.

Note that, although the original reordered Cholesky factorization produces additional fill-in

on the matrix entries colored red in figure 7.5, our recursive substitution process only touches

a significantly sparser subset of entries (colored black), requiring about 27% of the entries and

15% of the storage footprint of the full, filled-in Cholesky (accounting for row/column indices

of structurally sparse blocks). In section 7.4 we provide the effective memory bandwidth

achieved by our macroblock solver, averaging between 13-18GB/s on a 10-core Haswell-EP

Xeon processor.

123

Figure 7.6: Illustration of SIMD-instruction groupings of a macroblock matrix
Our method reveals regular structures in the matrix sparsity pattern, exploiting them for
vectorization. Same-color entries in the off-diagonal blocks can be processed with SIMD

instructions.

Vectorization

The sparse matrix data used in our method, as seen in figure 7.6, is characterized by

extensive regular and repetitive sparsity patterns that can facilitate computation using SIMD

instructions. We have used color coding to indicate data used within a level of our hierarchical

solution scheme, and to highlight such patterns of regularity. Those include the sixteen

124

Figure 7.7: Macroblock collision scenario unsuitable for multigrid techniques
An array of 9 kinematic spheres, arranged in an alternating pattern across a thin volumetric
sheet, are pressed against it. The limited thickness of this model would hinder applicability
of stock geometric multigrid, in the absence of nonstandard coarsening strategies.

Figure 7.8: Skinning simulation example with spring-attached bones
An additional demonstration of a skinning simulation, driven by kinematic bones attached to
the flesh via spring constraints.

sparse Cholesky factors corresponding to the interiors of the 3× 3× 3 subdomains (colored

as dark blue blocks, along the top-leftmost part of the matrix diagonal), the dense Cholesky

factors of Schur complements at deeper levels (eight magenta, four green, two orange, and

one cyan dense block, spanning the rest of the block-diagonal region of the matrix), and

sparse submatrices on the block lower-triangular part of the matrix, corresponding to entries

of the original stiffness matrix that touch an interface layer at a given level of the hierarchy

and nodes on the two subregions that the interface layer separates.

Opportunities for aggressive vectorization directly emerge from such data regularities. For

example, sparse forward and backward substitution on all sixteen 3× 3× 3 subdomains can

be done in tandem, with 16-way SIMD parallelism (e.g., using two 8-wide AVX instructions).

125

Repetitive sparsity patterns in the lower-triangular part of the matrix of figure 7.6 are used

in vectorized matrix-vector multiplication operations. The dense nature of the blocks along

the lower part of the block-diagonal allows fine-grain vectorization via standard practices.

Furthermore, even matrix operations that connect the 15 × 7 × 7 interior node set with

the boundary of the macroblock, as the multiplication with matrices KΓiΓi , KΓiIi and KIiΓi

defined in the beginning of this section, can be vectorized by splitting up such matrices in

parts that correspond to the sixteen 3× 3× 3 macroblocks at the interior of the macroblock

boundary. Ultimately, about 96% of the requisite computations can accommodate 16-wide

SIMD parallelism, and the majority of the remaining operations offer at least 8-wide SIMD

parallelism potential. We have extensively leveraged these vectorization opportunities in our

optimized implementation based on AVX compiler intrinsics.

7.3 Justification of macroblock size choice

Our choice for utilizing macroblocks of dimension 16 × 8 × 8 was motivated by a number

of factors. First, we wanted to provide the opportunity for at least 16-way SIMD-based

parallelism, which is a future-safe choice given the upcoming availability of CPUs with

the AVX-512 instruction set. The working set size associated with macroblocks of that

size is conveniently approximately 800KB, which allows the entire macroblock solver to

fit entirely in cache, even if all cores of a typical modern Xeon processor are processing

independent macroblocks, in parallel. Using an even larger macroblock size would allow

the dimensionality of the interface to be further reduced, but the increment in the working

set would be disproportionately large, due to the size of the next-level interface (would be

15× 1× 7) which would, at that point, yield an unattractively large dense Schur complement

matrix for that interface level.

126

7.4 Examples and performance evaluation

We visually demonstrate the applicability of our solver to a number of simulation scenarios

including constraint-driven deformations, skinning animations and elastic models colliding

with kinematic rigid objects. We used a hexahedral finite element discretization of corotated

linear elasticity, with the standard adjustments for robust simulation in the presence of

inverted elements [Irving et al., 2004]. Given that our method uses a direct solver at the

macroblock level, we opted to integrate the strain energy using the eight Gauss quadrature

points for each hexahedron, as opposed to the one-point quadrature scheme that is often

used [McAdams et al., 2011, Patterson et al., 2012]. This more accurate quadrature scheme

does not require explicit stabilization, and adds no extra algorithmic effort in our solver other

than a modest increase in the matrix construction cost.

In figure 7.3, we demonstrate an armadillo model being deformed as a result of specific

lattice nodes animated as kinematic Dirichlet boundary conditions. In order to incorporate

Dirichlet boundary conditions in the interior of a macroblock, we replace the equation

associated with any such node with an explicit Dirichlet condition δxi = 0 (the value can be

set to zero without loss of generality, since equation (7.1) is solved for position corrections,

which are zero for constraint nodes that have been already moved to their target locations).

We restore symmetry of the overall matrix by zeroing out entries involving the Dirichlet node

in the stencil of the elasticity operator of any neighboring node (again, a safe operation as

the Dirichlet value is zero for the correction δxi). Similarly, any nodes in a macroblock that

are exterior to the simulated model are treated as zero-Dirichlet conditions, to maintain a

constant matrix structure for all macroblocks.

In figures 7.2 and 7.7, we demonstrate the compatibility of our method with penalty-based

collisions with kinematic objects. We use an implicit representation for the colliding bodies to

enable fast detection of collision events between such bodies and embedded collision proxies

on the surface of our model. When such an event occurs, a zero rest length penalty spring

constraint is instantiated connecting the offending point on the embedded surface to the

127

nearest point on the surface of the collision object. Finally, figures 7.1 and 7.8 show two

examples of a human character animated using embedded kinematic bone constraints. Skeletal

motion data was drawn from the CMU motion capture database (http://mocap.cs.cmu.edu).

Performance benchmarks - Comparison to CG

Table 7.1 provides runtime details for individual solver components. The first two columns

correspond to the models of figures 7.1 and 7.3, and have been processed with our proposed

macroblock solver. In addition, we repeat the skinning simulation of figure 7.1 using this

time a highly optimized and parallelized matrix-free implementation of unpreconditioned

Conjugate Gradients, borrowed from the work of Mitchell et al. [2015]. While using this

matrix-free CG solver, we consider two discretization alternatives: (a) a one-point quadrature

scheme, with explicit stabilization [McAdams et al., 2011, Patterson et al., 2012], listed in

the third column and (b) a more accurate 8-point quadrature scheme matching the one in

our macroblock solver (fourth column). As mentioned, the quadrature scheme does not affect

Table 7.1: Performance results for the macroblock solver across several examples

Runtime details on a 10-core Xeon E5-2687W CPU. The benchmark in the first column is
repeated in the last two columns using stock CG, with one and eight quadrature points

respectively. Interface-Multiply is the multiplication with the Schur complement.
Human Armadillo Human Human

Solver Macroblock Macroblock CG (1-QP) CG (8-QP)
Active Cells 286K 24K 286K 286K
Macroblocks 642 95 N/A N/A
Interface Multiply 27.6 ms (17 GB/s) 4.36 ms (16 GB/s) N/A N/A
CG Iteration 33.3 ms 5.22 ms 18.8 ms 88.3 ms
Factorization 291 ms 88.0 ms N/A N/A
Newton
Iteration

10 CG 791 ms 166 ms 269 ms 958 ms
20 CG 1.29 s 244 ms 462 ms 1.84 s
50 CG 2.79 s 479 ms 1.07s 4.47 s

128

the solve times of our method, once the matrix has been constructed; the construction cost

is included in the Newton iteration runtimes, and was less than 10% of the overall runtime

in all our experiments. We observe that, in spite of the up-front factorization cost that our

method incurs, it typically stays within a factor of 2-3x of the cost of the single quadrature

point CG scheme, for the same number of iterations. Further experiments have shown that

the effect of as few as ten iterations of our macroblock scheme is commensurate with 5-10x

more iterations of the stock CG method. Note that if the more accurate quadrature scheme

is employed, our method outperforms the CG option even on a per-iteration basis.

Additional solver comparisons

We report some additional comparisons with other established numerical algorithms or

software packages. All our comparisons are relative to the skinning example in the first

column of Table 7.1.

Macroblock inversion via Cholesky/PARDISO As an alternative to our optimized mac-

roblock solver of section 7.2, one could choose to directly compute and apply a stock Cholesky

factorization per macroblock. We tested this using the PARDISO library, which yielded a

factorization cost of 748ms (ours: 291ms) and a solve time of 93ms via forward/backward

substitution (ours: 20.9ms; part of the Interface-Multiply cost). Solve time savings are due to

our reduced memory demands. Faster factorization time is attributed to intrinsic knowledge

about the constant sparsity pattern of each block, allowing us to optimally vectorize over

multiple blocks without duplicating the data that captures their sparsity patterns.

Different solvers for Newton Step Three options were investigated (a) Full Cholesky –

We experimented with using a direct (complete) Cholesky solve at each Newton step, via

PARDISO. The resulting Newton iteration cost was 31.8s, more than three times the cost our

method would require for 250CG iterations (9.36s) and near-perfect convergence. However,

our method hardly needs that many CG iterations to achieve excellent Newton convergence,

and in the long run easily outperformed full Cholesky by more than an order of magnitude.

129

(b) Incomplete Cholesky PCG – ICPCG performed very well in our examples, often requiring

half (or less) of our CG iterations for comparable convergence. It is, however, in principle a

serial algorithm. Our adequately optimized (albeit serial) implementation required 7.23s to

factorize the preconditioner (ours: 291ms) and 422ms (ours: 33.3ms) for each CG iteration.

(c) Block Jacobi PCG – A parallelism-friendly alternative to ICPCG was to compute a Block

Jacobi Preconditioner, with block sizes comparable to our own macroblocks. Matrix entries

that straddle blocks were discarded, and a standard Cholesky factorization of the resulting

block-diagonal matrix computed via PARDISO. Convergence of this option was generally

comparable, and at times slightly better than our solver. This parallel method required 1.24s

for factorization (ours: 291ms) and yielded a CG iteration cost of 183ms (ours: 33.3ms).

130

8 practical deployment for interactive

simulations

This final technical chapter focuses on the issues surrounding the deployment of Simulation

Assisted Visual Systems (SAVS). The organization of this chapter is divided into two main

parts. First, there will be a short review of the high level technical concerns regarding

deployment. Second, the developmental history of our benchmark surgical application will be

described, highlighting the choices, and their rationals, made along the way.

8.1 Deployment Issues

At a high level, there are many decisions involving technology that need to be addressed

when deploying large systems. In this section, we’ll briefly look at three of the most critical

for our benchmark application: Remote architectures, Platforms, and Maintenance.

Network Architectures One of the largest architectural questions we need to answer is

whether we want a wholly local application or a networked application. The advantages of a

local application include decreased complexity, potentially better access to client resources,

and more control over data. Unfortunately, local applications are also completely dependent

on local resources. For simulations, which are computationally intensive, a purely local

application might be difficult to deploy at scale due to hardware costs. The addition of

networking allows us to break many of these issues apart and distribute them more fairly

across multiple machines. In such an architecture, servers capable of large computations could

service multiple clients, enabling larger deployments with less capital investment. On the

other hand, network designs become dependent on another system: The network itself. For

locations with poor network connectivity, such as in the developing world, local installations

might be more valuable, despite the up front costs.

131

Platforms Platform support is another important concern. Currently there are many

popular consumer facing application platforms. The application platform, which is often

simply the computer’s operating system, defines what features and services are available to

the application. We have many choices in choosing these platforms, depending on the device

we which to run our simulation system on. For the personal computer, operating systems

such as Microsoft’s Windows, Apple’s OSX, and multiple distributions of Linux, can fulfill

the role of the application platform. On smaller devices, such as phones and tablets, Apple’s

iOS and Google’s Android are extremely popular choices. Finally, the Internet itself, through

the combination of HTML and Javascript on web browsers has become a de facto operating

system for many people.

Interestingly, all of these platforms, despite their differences, support the user interface

technologies (user input, 2D and 3D rendering) required for surgical simulation applications.

Unfortunately, not all of these platforms (when considering the operating system and device

combined) can support the computational requirements we require. This presents a curious

situation where it is possible to develop cross platform user interfaces, but not necessarily

cross platform simulations. As we’ll see later, dividing these responsibilities allows for more

flexible architectural solutions.

Maintenance One final technical issue is the concept of updating and maintenance.

Despite the focus of deployment in this chapter, it is important to remember that there are

plenty of ongoing research questions regarding simulation, surgical or otherwise. Investigations

of these questions might result in new requirements for hardware or software environments.

Inevitably, the simulation system we are attempting to deploy, and possibly the underlying

platform itself, will need to be updated - whether to support a new simulation technique or to

fix more mundane bugs. When this situation occurs, the method of deployment can greatly

affect the ease of this process. Local applications can be the hardest to manage under these

circumstances, since they are by nature decentralized and might require wide scale hardware

132

upgrades. Network based deployments, where the simulation is run on remote servers, offer

more opportunities for more centralized upgrades.

8.2 System Architecture Comparisons

Over the several years of research leading up to this dissertation, multiple system designs

for a surgical SAVS were developed and tested. In this section, each design will be covered

in detail along with its particular benefits and problems. The goal of this section is to

demonstrate how different system designs fit with different deployment concerns and how

emerging technologies can support simulation deployments more easily than in the past.

The core feature set for all implementations, which was defined through conversations

with our domain collaborators including Dr. Court Cutting, is described below.

1. Real-time physics simulation 3D models of tissue were simulated via an embedding

lattice deformer design, allowing users interactive visualizations of physical responses.

Multiple models were made available for simulation, ranging from more academic shapes

designed to illustrate particular principles to a more realistic model of the human scalp.

2. Keyboard and Mouse Interface Users were presented with an open 3D space which

contained the actively simulated model. They were allowed to move the virtual camera

through the space using their keyboard and mouse. Additionally, tools (such as a

virtual scalpel and virtual sutures) were made available via a simple “click and place”

interface.

3. Local Flap Operations All models represented a 2.5D (generally a thin, possibly

curved, sheet) region of tissue with a defined top and bottom side. Intended operations

were “local flaps”, where simulated tissue was cut and moved around in a local region

for the purposes of closing holes or relieving stress patterns.

133

4. Free Form Cutting Incisions were placed into tissue via line segments drawn on

the top surface of models. Cuts were allowed to be defined with arbitrary complexity,

including the isolation and removal of regions, with the only restriction that they all be

performed all at once, before simulation began.

5. User Interactions Users were allowed to interact with the running simulation via

force constraints. These constraints took the form of “hooks”, positional constraints

that pulled simulated material towards a point in space, and “sutures” double ended

constraints that pulled one region of simulated tissue towards another region.

6. Operation Recording/Playback Users were allowed to record sequences of oper-

ations and then play them back on subsequent run throughs. This functionality

was designed to replace the more traditional approach of drawing operation steps in

textbooks.

The tool’s user interface was proscribed and prototyped by our primary domain collabo-

rator, Dr. Court Cutting. The choices made in the process of designing the interface were

made in response to the background and familiarity to three dimensional modeling tools of

our expected user base, plastic surgeons.

Traditional Desktop Application: Building the Monolith

The first design approach followed that of many traditional native desktop applications. All

components of the application were compiled together as a single binary executable which

ran on a single machine. This initial design used C++ as the development language, both for

the underlying simulation engine and for the graphical user interface. This approach had

many positive aspects:

1. Single Development Language By using one language for all components, building

APIs was made considerably easier, which facilitated faster development.

134

2. Integrated Application Since the entire application was linked as a self-contained

binary, it was easy to setup and run. External dependencies amounted to several

libraries required for the graphical interface and OpenGL graphics.

3. Accelerator Access By running entirely on a single machine, the simulation engine

had access to all computational resources on the client, including all CPU cores and

available accelerator cards. In the latter case, MPI was used to communicate with

installed Intel Phi accelerators1.

4. Fully Featured Graphics Stack Running as a native application, this design had

access to the full OpenGL 4.0 specification. This allowed it to be developed with

modern OpenGL techniques.

5. Platform Control Since everything was designed by hand, all aspects of the application

could be tuned to desired functionality. While certain choices were constrained by

selection of a GUI toolkit library [wxWidgets, 2017], the choice of the library itself

was made freely.

In total, these aspects made for a well-performing client, capable of running optimized

simulation code and displaying a functional visual interface for the surgical simulation.

Unfortunately, it had several drawbacks that ultimately made it a poor choice for future

development:

1. Lack of Cross Platform Due to it being designed purely with native C++ code,

moving to new platforms was exceedingly difficult. For desktop operating systems,

such as Windows and OSX, switching was a matter of recompiling and working out

platform incompatibilities. The choice of wxWidgets as a GUI toolkit library helped in

this regard, but for more mobile platforms, like iOS, Android, or HTML, there were no

options.
1This unfortunately broke the “self-contained binary” aspect of this design, as the MPI routines required

multiple processes running on different physical nodes. However, since the MPI enabled application could be
launched via the standard “mpirun” command, it still resembled a self contained application.

135

2. Complex GUI Development While the GUI library, wxWidgets, was chosen for its

cross platform capabilities, it was not especially friendly towards rapid development of

useful user interfaces. As such, the GUI was rather difficult to use and hard to modify.

3. Scalability Concerns The design’s primary strength - a self contained application,

was also its largest drawback for deployment. By executing on a single workstation, it

required an entire workstation per instance. This was unpalatable for larger installations,

such as a classroom setting, where few institutions could or would be willing to buy

high end workstations for each student.

It was this last drawback that pushed our development of the system in a new direction:

network based simulation.

Network Simulation: A Three-Tiered Architecture

Unlike the previous design, the next iteration explored the potential of network, or cloud,

based simulation. The idea was straightforward: it would be an architecture where simulation

would be performed on a remote machine and its results displayed on a local client. These

initial forays into this idea were built on top of the previous client and used an network

interchange library from the Apache Project called Thrift [Apache Software Foundation,

2014]. Thrift allowed the creation of multi-language bindings to be delivered over network

as RPC (Remote Procedure Call) APIs. Initial experiments involved splitting the former

unified application into two parts: a visual frontend and a simulation backend. These parts

were be joined together via Thrift, allowing them to communicate over the network.

Once this new organization was working, the frontend was rewritten as a web client, which

used HTML, Javascript, and WebGL [Khronos Group, 2017] to replicate the functionality

of the older C++ GUI. Further experimentation with this arrangement eventually showed

a significant problem with Thrift: it made developing smooth, lag-free user interfaces

somewhat tricky. The fault primarily laid with Thrift’s RPC style conventions. Under this

136

communication style, a client would continuously poll the server for new information. Under

a multiple client scenario, this method broke down, causing unnecessary network traffic and

lag. This issue caused us to seek a new communication method, one that could support a

“push” style communication. We finally settled on a newer Web standard: Websockets.

The Websocket standard [Fette and Melnikov, 2011] is a full-duplex communication

protocol available in HTML5. The standard defines a custom protocol over TCP, where

messages can be sent from either end and are guaranteed to arrive in order on the other side.

The primary benefits of the protocol are easy bidirectional communication and low overhead.

Since the protocol uses a custom TCP-based protocol instead of HTTP, it can operate without

unnecessary headers and transmit data as byte streams. Replacing Thrift with Websockets

was the final piece of what was later referred to as our Three-Tiered Architecture.

The three-tier design consisted of the following components: a web-based client (Tier

1), an SMP server for modeling (Tier 2), and a many-core accelerator for numerics (Tier 3).

The front-end client served primarily as the user interface to the system. The client was

responsible for acquiring user input and visualizing the simulation results. Communication is

performed via the WebSockets standard, which allows the client to operate under a push data

model. Thus, the remote server could send updates to clients when they become available

instead of requiring clients to poll for updates.

We refer to the second-tier platform as the CPU host. Its primary task was to perform all

non-simulation computation that can be offloaded from the client level. The host manages

user sessions, stores and loads scene data from disk, performs geometric manipulations

(non-manifold meshing and incision modeling) as a result of user actions and runs collision

detection. This tier requires large amounts of memory, beyond what is natively offered on a

GPU or Many-Core accelerator. The third tier is the numerical solver, which executes all

low-level compute intensive kernels (but not combinatorial tasks such as mesh generation).

We have implementations that allow this layer to either run on the same CPU platform as the

2nd-tier code or run natively on a Xeon Phi accelerator, interfacing with the host over MPI.

137

This later functionality is similar to how the initial monolithic system design functioned.

The specific benefits from this design approach were:

1. Fast GUI Development As the final implementation of the frontend was written in

HTML and Javascript, iteration on the GUI was much faster due to visual debugging

tools and more mature support libraries for web application development.

2. Native Support for Network Simulation Since the frontend was designed as

a web application, by nessessity it needed to connect to the simulation engine via

network protocols. By using Websockets, we were able to construct a server side

implementation that could broadcast the current simulation state to multiple connected

clients simultaneously. This allowed for centralized simulation and more scalable

deployments.

3. Cross Platform Support While the simulation engine was still using native code,

and required additional effort to port to other platforms, the HTML frontend was able

to run on multiple platforms and form factors with minimal development effort. We

were able to successfully deploy the client on desktops, tablets, and smartphones. Since

the client’s computational responsibilities were limited, it could be run a wide range of

hardware as long as it had a reasonably moderate graphics accelerator.

4. Service Integration Finally, a side benefit of the Web application frontend was the

possibility of integration with other web services. For production deployment, this

would allow easier connection with existing web authentication platforms and online

help desk services.

However, no design is perfect. Like the previous monolithic design, the three-tiered design

had several drawbacks:

1. Complex Infrastructure While it was praised earlier, there is no denying there

exists added difficultly when deploying and running a network application that must

138

coordinate between multiple independent nodes. This is the unfortunate double edged

sword aspect of any network or cloud service.

2. Network Bandwidth Dependency Unlike video games, where visual assets are

typically cached on clients and then modified according to predetermined scripts, the

geometry of deformable simulations is inherently unpredictable by the client. As such,

every frame of the simulation requires transmitting all of the deformation data down to

the client. For low polygon models this is manageable, but highly detailed biological

scenes can require significant amounts of network bandwidth, or they risk causing

unacceptable lag for clients.

3. Loss of Platform Control While using a web client provides a large amount of

cross platform support, it places the client at the mercy of the web browsers that are

running it. One of the primary challenges facing web developers is the number of small

differences between browsers (and versions) that can sometimes mean the difference

between a working client and a failing one.

4. WebGL Only While the WebGL standard contains most of the features that the

modern OpenGL standards support, there are gaps and differences in functionality.

However, as more and more 3D applications find their way onto the Web, these standards

are becoming more and more robust.

While this approach proved successful and provided many nice benefits for developers, it

did so at the cost of added complexity nearly all cloud based systems create. The difficulties

of managing a distributed system, both in development and for the potential to be deployed

in areas with unreliable networks, inspired the third design approach, which attempted to

combine the benefits of the two prior architectures.

139

Monolithic Web Design: Electron

The third design made use of a relatively recent framework called Electron. Electron [GitHub,

Inc, 2016] is a framework for building traditional desktop applications by using web application

development tools. It does so by combining Google’s open source browser Chromium and

NodeJS [Node.js Foundation, 2017], an interpreter and set of standard libraries for Javascript

which allow more traditional system level calls, such as file access and process management.

This framework provides developers access to a familiar web development environment, along

with access to the underlying operating system, functionality normally inaccessible in the

browser. Using this framework, it was possible to build the third design architecture: the

monolithic web application.

The primary concern with using Electron as a the application framework is performance.

With the original design, everything was written with native code, which allowed for optimized

code to implemented with appropriate care. The second design ran a native code simulation

server, providing effectively the same benefits over the network. For the Electron based

design, a different approach was required. In order to maintain native performance where

it was most needed, the simulation engine was repackaged into a native NodeJS extension.

Using the API provided by V8, the underlying Javascript interpreter for both Chromium and

NodeJS, the native C++ code was exposed to the higher level Javascript code. From the

Javascript environment, the C++ code could be called just like other Javascript routines,

except with native performance - they were able to use all of the multithreading and SIMD

optimizations described in previous chapters.

With this native wrapping completed, the rest of the application could be ported over

from the second architecture design in a straightforward fashion. The web client code required

minimal changes, since it was still running in a web browser like before. The only new code

required was a re-implementation of the connection between the client and the simulation

engine. This was again done with Websockets, only this time as connections entirely internal

to the application. This was a conscious choice - allowing for a potential client-server mode

140

Figure 8.1: Pilot deployment of web-based simulator
Pilot deployment of our interactive web-based simulator with 14 Plastic & Reconstructive
Surgery medical residents at the University of Wisconsin-Madison. This demo used the
second architecture, the three-tiered design.

in the future. This design successfully merged the major positive characteristics from the

previous two designs: an integrated desktop application, access to local computational

resources, faster user interface development, and easy access to network simulation. The

major drawbacks of this design were the added complexity of the multi-language bindings

and a dependency on the Electron framework2.

141

8.3 Deployment Study

Seeking to evaluate our system, we conducted a pilot deployment for the medical residents

in the University of Wisconsin-Madison Plastic & Reconstructive Surgery program, as part

of a workshop on craniofacial reconstruction techniques. This deployment used the second

architecture described in Section 8.2, the three-tiered design. We set up a local switched

network at the location of the workshop, with a portable desktop-grade computer (with a

4-core Intel 4770R processor and 16GB RAM) acting as the Tier 2/3 simulation server, and

a collection of eight Chromebox web-based thin clients as the user stations (our setup can

be seen in Figure 8.1). Although our modest portable server did not have the computing

power available to our many-core accelerated server systems which we used for our large-scale

offline simulations, its (AVX-accelerated) performance was more than adequate to deliver an

interactive user experience. Total cost of the entire deployment, including server, networking

and client stations was $4,000.

The primary goals of the test were twofold. First, we were interested in determining the

technical feasibility of the system under active, real-world conditions. Second, we wanted to

gather initial impressions from likely users in order to help guide future research. Participants

were initially given an extremely brief orientation on visual navigation within the application

and its interface. In first part of the deployment exercise, the workshop instructor (a seasoned

user of the system) authored several different reconstructive procedures on different anatomical

models, while the participants were invited to follow the manipulations as they were taking

place (without affecting them) by adjusting the view of the dynamic model on their own

station. Subsequently, individual participants who had no prior exposure to the system were

invited to drive the authoring process, which their colleagues would virtually follow. The

workshop instructor provided guidance on clinical aspects of the repair being authored, while

questions about the user interface would be recorded and addressed by the system developers.
2However, since we are now only targeting a single web browser, the one bundled with Electron, we are

freed from worrying about supporting multiple browser versions.

142

At the conclusion of the exercise, the participants were debriefed and given the opportunity

to evaluate their experience and propose improvements.

We found that our participants who used our benchmark tool were extremely comfortable

with aspects of 3D visual navigation, even with the very rudimentary orientation that was

provided. Most participants found the visual examples of procedures demonstrated to be

very enlightening, with many of them commenting that this visual illustration was the most

informative exposure they had for procedures they only knew from reference literature (most

of them had not witnessed these procedures in the operating room). Almost no participant

volunteered the lack of self-collision processing as an observed omission, until the interviewer

explicitly asked them about this aspect (all demonstrations in our workshop entailed full

suturing of wound closure). On the contrary, several participants identified inaccuracies

in the elastic behavior of the virtual tissues, finding that our models appeared to be more

“permissive” to manipulation than real flesh tissue. An interface feature that was pointed out

as lacking was the inability to appreciate (simply by looking at the final sutured result) the

deformation patterns that have resulted from a certain repair; it was suggested that adding

a texture (grid lines or checkerboard patterns) on the skin surface would be much more

useful in evaluating tissue strain and deformation. We also received requests for biologically

inspired aids - in particular a visualization of anatomical elements such as blood vessels

in the tissue being cut. These additions were requested for practical reasons - sub-dermal

blood vessels and nerves are important to preserve during operations. Several users requested

more traditional animation features, such as timeline scrubbing and history undo, as well as

side-by-side views of different repair approaches for visual comparison.

143

9 discussion

The conclusion of this document, presented in this chapter, will attempt to draw together

concepts and lessons from previous chapters. Included among them are salient ideas that derive

from the accumulated knowledge picked up from the experiences and research that produced

this document, known and discovered limitations of the methods previously described, and

potential avenues for future work. The structure of this chapter is as follows: the next several

sections will touch on themes and concepts that precipitate from the earlier technical chapters,

highlighting several important lessons learned. This will be followed by a section describing

currently understood technical limitations of the techniques presented thus far, along with

directions for future research.

9.1 Themes

Comments on Vectorization

Despite support for vector instructions existing in consumer grade hardware since the late

1990’s, developing applications that successfully and efficiently use this computation model

can still present serious complications. This difficulty arises from multiple directions, which

is perhaps a reason for its continual presence. The major challenges encountered during

the work that led up to this dissertation can be grouped into several categories: design,

abstractions, and debugging.

Design Our experience with designing data structures and algorithms for use with vector

instructions was centered primarily around need. While we would have preferred using

existing automatic tools and middleware that could have abstracted away the challenges of

directly writing vector-aware code, our experiences showed us that existing solutions were

unsuitable for the strict optimization and performance requirements we operated under. We

144

were required to significantly restructure data structures and algorithms in order to extract

vector friendly parallelism. At present, it seems clear to us that it remains a developer’s

responsibility to organize algorithms and data structures in vector-friendly ways, such as the

blocking designs demonstrated in Chapter 6. And even with these invasive restructurings,

modern compilers struggle to produce optimal vector code: minimizing the amount of register

spills into main memory, inserting appropriate prefetching instructions, and other such

optimizations can often must be completed by hand.

Abstractions At a level higher than designing a appropriate algorithm or data structure

for vectorization, we also were faced with the challenge of making such designs portable

to different vector architectures. Our desire to have our software be portable to multiple

platforms required us to focus on a variety of situations, including closely related architectures,

such as the multiple vector instruction sets in the x86 family of processors, and between

architectures, such as between Intel Phi accelerator cards and GPUs. The work demonstrated

in Chapter 6 on the vector library class was designed to assist with this problem, making it

easier to port code between multiple vector instruction sets in the x86 architecture family.

Other related work involving heterogeneous simulation of fluids [Liu et al., 2016] presents an

example of the other problem, where an abstraction layer needed to be created to communicate

with Intel Phi accelerators, GPUs, and standard CPUs on an equal basis, along with multiple

implementations of the same algorithm tailored for each architecture. It remains an open

question on how to best support such a heterogeneous architecture environment, especially

when high level abstractions can easily prevent exploiting architecture specific properties

required for optimal performance.

Debugging The last major issue that arose during our development process was how to

successfully debug the vectorized code we were writing. This step proved more challenging

than initially anticipated for several, not immediately obvious, reasons. Some of the problems

were due to the structure of the code itself: By using vector instructions we are generally

145

breaking two commonly depended upon aspects of code. First, a vector instruction acts upon

multiple, independent items of data at once. Because of this, identifying issues often required

tracing multiple concurrent computations at the same time, as they are impossible to separate

during execution. Second, due to the fact that vector code is typically branch-free (or close to

it), we could not depend on tracing different code paths as a indication of problems. Instead

of being able to compartmentalize the process along isolated branches, we were forced to look

at the entire algorithm as one continuous flow when diagnosing issues. All of these problems

would be challenging enough, but vector instructions provide one last lingering complication

during debugging. Discovered during the creation of the vector kernels in Chapter 6, not

all vector instruction sets, despite providing the same semantic instructions, will the same

produce bit-identical output as each other for certain instructions. The error is generally low,

small enough to not matter in most practical scenarios, but its existence makes checking

numerical correctness difficult when exact answers cannot be relied upon.

Intuition: A Double Edged Sword

One of the big themes in this dissertation has been the use of data structures for non-manifold

geometry. Our reasons for choosing this family of geometry representations were primarily

based on our intuition that they would maintain many of the regularity features we enjoyed

from more strict grid-based data structures, while improving upon the topological flexibility

of those designs. For the most part, we were satisfied in this regard - somewhat ironically, one

the biggest challenges we faced with this approach was not technical, but our own geometric

intuitions. The major problem we discovered with non-manifold representations is that there

are no real world analogs with which we could relate to. Real objects, unlike non-manifold

geometry, can not self intersect - this is a purely non-physical concept that makes certain

algorithms easier to develop. As a result, we struggled with these approaches as, unlike with

many other topics in visual computing, they proved to be very difficult to visualize mentally.

An example of this problem occurred during the development of the backtracing algorithm

146

for non-manifold level sets. Initially, due to our intuitions at the time, we focused most of

our effort on defining the surface of the geometry and how the data structure would capture

this information. In the end, we realized that this line of thinking, while it made sense from

the perspective of visualizing our virtual object, did not actually help us answer the real

question: where was the closest surface point. Refocused around this more narrowly scoped

goal, the backtracing algorithm described in Section 5.3 came together much more naturally.

This problem with intuition is especially present as one transitions from two dimensional

domains into three dimensional domains. Unlike other properties, such as those based on

volume, whose complexity might only change from a quadratic scaling to a cubic scaling,

topology is much more complex. As an example, consider the number of ways material can

be connected in a non-manifold fashion across a hexahedral cell in two dimensions, if we

think back to the idea of material continuity described in Chapter 5. To begin, at least one of

the two shared nodes across the edge must share a material connection - which immediately

leaves the other node to either be connected or not. If we restrict the question to representing

non-overlapping geometry and simply those objects with bifurcations not resolvable by the

grid, this leaves us with a total of two patterns: two cells attached across an edge to a

third, each containing material on only one node, and its symmetric opposite. However, by

introducing just one more dimension, changing edges to faces, the number of possible material

patterns jumps to twenty nine symmetric pairs. The true danger is not that the potential

patterns are hard to incorporate into an algorithm, but that a developer might miss them.

The nature of these non-manifold geometric data structures, and associated algorithms, is

that they are difficult to imagine. And what cannot be imagined is all too easy to overlook.

Software Engineering Lessons

A large amount of work completed in pursuit of this dissertation was dependent on good

software engineering practices. From these experiences, we have distilled several important

ideas that are worth further discussion. The first is a general statement on optimization

147

strategy. Often algorithmic optimization is judged by comparison: by what percentage does

implementation A outperform implementation B? Instead, we find that a more absolute

approach is preferable, allowing us to have a better sense of how well our algorithms perform

and, often equally important, how much performance is being underutilized. Our approach,

given the general problem of operating over large discrete domains, has been to consider

the reading and writing of data as the primary limiting factor in algorithmic performance.

This is justified on the following ideas: first, no work can be completed before all the inputs

have been read and all the outputs have been written, and second, we recognize that in

most modern systems have a imbalance of memory bandwidth and computational bandwidth

(one of the motivating factors in Chapter 7), making data transfer generally the slowest

component of any computation. By comparing the performance of an implementation to the

theoretical time required to move its data set into and out of main memory1, we can derive

a measure of algorithmic efficiency. We find this method more useful, practically, than the

common approach of comparing against existing implementations (either ours or someone

else’s). By comparing against an absolute reference point instead of a relative one, for a

particular platform at least, we had confidence that we could not do better than we had done.

This proved especially important when considering whether or not a particular intervention

was successful enough.

Related to this approach, the next software engineering advice we have found valuable

during our work is that memory bandwidth is extremely important and generally becomes a

major consideration sooner than people expect. This is somewhat at odds with conventional

knowledge that faster processors (i.e. improved computational bandwidth) is the primary

route to improved performance. Instead, our experiences have shown that it is very easy to

run into bottlenecks in terms of memory transfers, even when not using vector instructions.

For instance, since memory is loaded by cache line, runs of sixty four bytes, even scalar
1We assume, during this computation, that we have perfect caching of all information read, prefetching

and other memory access optimizations. We are purely interested in the amount of bytes read and written,
divided by the amount of memory bandwidth provided by the hardware platform in question.

148

algorithms that load memory in unstructured ways can suffer from poor memory bandwidth

utilization. Worse, these problems can be difficult to see - while analysis tools can report

general issues, the causes are often subtle and structural in an implementation.

A final concept that we espouse is that understanding the particular nature of a problem

can lead to more effective solutions than existing powerful, but generic, solutions. Our

macroblock solver detailed in Chapter 7 is a great example of this philosophy. Existing

algorithms for matrix reordering (which is recognized as NP-complete), such as Minimum

Degree Ordering, designed for reducing fill-in, could not compete with our own reordering

scheme because it was tailored for the specific sparsity pattern of our macroblocks. Similarly,

despite attempting to use generic vectorization tools and libraries initially, we found that

developing our own library, tailored for the kinds of computations we were performing,

provided more control over the final generated machine instructions. While it might have

been more expedient to use generic solutions, our benchmark application goals required more

than these methods could provide. The trade-off between performance and development time

was judged to be worth taking.

Domain Experiences

The experiences of working with domain experts during the research and development that

went into the surgical simulation benchmark has left a lasting impression and driven home

several important ideas. The most important among them is the sense that maintaining a

broad attitude when approaching new projects is beneficial and in many cases necessary for

their success. Commonly, researchers focus on narrowly defined problems, only reluctantly

moving into higher or lower levels of abstraction. And while this focus can be desirable,

potentially leading to great advances, had we restricted our research questions to simply

pursuing theoretical improvements or algorithmic designs, we would never have arrived at

a successful tool that was both usable and high performance. In the quest to support the

needs of our domain experts, we saw no choice but to move down the levels of abstraction

149

to acquire additional performance by tackling questions all the way down to the hardware

level. Likewise, as we wanted a system that was flexible to be used in a number of real-world

scenarios, we moved up from pure simulation goals and looked at challenges in user interfaces

and network service design. Being willing to move in this space did mean that less depth was

covered, but it came at the benefit of seeing the system from a complete perspective, allowing

for cross-cutting interventions that required a broad take on the situation. Moreover, it was

important to step outside of the field of computer science to learn about the concepts and

problems that were important in the field of plastic surgery in order to effectively converse

with our colleagues in this domain. What resulted was a broad covering of many areas, with

perhaps less depth in any one area, which produced a successful end product, filled with both

compelling research results and solid engineering accomplishments.

9.2 Broader Applications

Before discussing specific limitations and future work, it is worth considering the broader

applicability of the techniques described in this dissertation to areas outside of plastic surgery

simulation. While the benchmark application discussed throughout this document was chosen

for its intrinsic challenges and potential impact in the field of surgery, it also served as an

exemplar of challenging problems in other domains. In this section, we will look at the major

technical contributions covered in this document and how they apply to other tasks.

The first contribution area, non-manifold embedding and level sets, has a strong applica-

bility elsewhere in computer graphics, including general simulation and geometric processing.

Even with nothing else added, the ability to embed, simulate, and handle collisions between

objects in a relatively coarse grid while maintaining topological separation of thin features

is desirable. While we used these capabilities to embed thin incisions, classic simulation

problems such as character animation and fracture modeling would all benefit from being

able to embed sub-voxel resolution material, such as fingers and shards of a model, respec-

150

tively. Another interesting area is geometric model cleanup, where being able to construct a

level set of a self-intersecting mesh could enable mesh detangling algorithms. Other areas

where non-manifold embedding and non-manifold level sets could be very valuable would

be multiphase liquid simulations. In these situations, multiple types of liquid need to be in

very close contact with one another. Non-manifold level sets could be used to capture their

interfaces, while still allowing multiple liquid interfaces to exist in extremely close contact.

The next contribution, the vectorization library and related performance optimizations,

also has general applicability - here beyond just computer graphics. While the contributions

of data layout for improving simulation performance are certainly transferable to other

deformable solid simulation tasks, such as character animation, the core vectorization library

could be applied much more broadly. The ability to easily write and maintain vectorized

numerical kernels is valuable in any scientific or engineering effort where performance on

modern computational hardware is critical. Moreover, the work presented in this document

provides a roadmap and a list of hazards for future developers to use when developing their

own multi-threaded and vectorized solutions. This last point should not be understated, as

we found such guidelines often absent during the development of our solutions. Having them

available to the general community is a contribution in its own right.

Likewise, the macroblock concept and associated solver also has applicability to general

problems. These ideas were originally designed to solve issues we were experiencing with

convergence in regions too thin (such as the scalp area) to handle with existing solutions like

multigrid solvers. However, as we investigated the idea further, it became clear that the hybrid

iterative-direct macroblock solver could be used successfully on a broad collection of linear

algebra problems defined over a grid discretized domain. The type of connectivity pattern

the technique depends on is fairly common, as grid discretized simulation and optimization

problems are present in computer graphics, mechanical engineering, additive manufacturing

(3D printing) research, and many other areas. One idea we are currently exploring is how

a macroblock style solver could be used as a drop in replacement for existing numerical

151

packages such as PARDISO [Petra et al., 2014b,a], as long as the problem is defined over a

grid.

Finally, the deployment investigation has revealed several important findings that could

apply outside the scope of surgical simulation. The major points here are the practicality

of remote simulation and the rise of web technologies as front ends for computationally

intensive tasks. While there exist open questions concerning network bandwidth and lag,

remote simulation for interactive applications is possible - which opens up a broad range

of applications, including animation tools for the graphics professionals, to more consumer

oriented applications such as video games and simulation assisted activities, like shopping for

clothing virtually. Building tools for these tasks can be assisted by the use of web technologies

for user interfaces and connectivity. These frameworks, including Electron, have shown

themselves to be ready to handle complex graphics applications, including simulation, during

the trials completed as a part of this document.

In the end, we feel strongly that using a surgical simulation as the benchmark to develop

the contributions of this document was the correct choice. It presented numerous challenges

that resulted in solutions that not only addressed the direct needs of our application, but

also applied to a broader collection of problems in computer graphics, scientific computing,

mechanical engineering, and more consumer focused fields. Far from being limiting or

restricting our vision to a narrow problem, surgical simulation was a true springboard to an

even larger world of challenges.

9.3 Limitations and Future Work

In the remainder of this chapter, we will explore some known limitations of the techniques

presented in this document, along with some potential places where future work could provide

improvements.

152

Non-manifold Level sets

Our pipeline for non-manifold level sets in Chapter 5 was been specifically created for self-

collision processing in deformable body simulations. There are several diverse applications of

the standard (manifold) level set concept such as representing geometry, tracking dynamically

evolving interfaces, as a geometric query structure, etc. However, we believe that the current

methodology may require application-specific embellishments to cater to broader tasks in

modeling and simulation, beyond what was needed for our collision-oriented proof of concept.

For example, when two dynamically evolving interfaces are brought together, they may either

be allowed to merge (as is typical in fluid simulations) or overtake one another (e.g. the two

separate branches of the lips during self-collision). Thus, application-specific semantics might

be needed to use non-manifold level sets for dynamic interfaces. Finally, we showed two

examples (Figures 5.11 and 5.9) where the simulated elastic model resulted from conceptual

“cutting” operations; in both cases we simply generated the non-manifold level set from the

final, cut geometry. If such cuts were progressively enacted during simulation, our present

implementation would sustain a significant recompuation cost to rebuild the non-manifold

implicit representation. Incremental update following localized topology change will be a

significant direction of future investigation.

Currently, we do not extend the non-manifold level set values into a narrow band outside

the interface because we used the same grid both for simulation and for storing level set values.

If the extent is predetermined, then we could generate a coarse non-manifold level set mesh

first and refine it as a post-process. Alternatively, one could also “grow” the non-manifold

level set by following characteristics, but as mentioned above, one may or may not wish to

merge overlapping characteristics depending on the context. This issue is also related to the

question of “evolving” a non-manifold level set. In future work, we wish to address these

questions targeting the specific applications of multiphase flow and crack propagation. For

standard Cartesian grid-based level sets, there exists an established theoretical foundation

for accurately computing high order gradients even in the vicinity of singularities. For

153

non-manifold level sets, an extra level of complexity is introduced because there can be a

topological bifurcation in addition to a singularity. To obtain valid values in such complex

situations, our current scheme reverts to first order element-wise trilinear interpolation. It

would be interesting to explore in future work if there can be a more accurate representation

for the interface in these cases. In all of our examples we generated the non-manifold level

set at the same resolution as the underlying lattice-based elasticity discretization. This was

motivated by the fact that the ability of the elastic model to respond to collision events

is restricted by the resolution of the elastic model, limiting the hazards of interpolation

errors near high-curvature areas. Although this has been a successful heuristic for our test

cases, there is no guarantee that such resolution will always be accurate for proper collision

detection and response. A higher resolution can be used for the level set, if desired; doubling

the linear resolution, for example, would incur an 8x increase in level set construction, but no

worse than a two-fold increase of the backtrace cost, in practice (assuming collisions remain

relatively shallow).

Finally, the current implementation used Cartesian grids as template meshes for generating

the non-manifold level set. In future work, an exploration of different representations such as

octrees [Losasso et al., 2004], RLE representations [Houston et al., 2006, Irving et al., 2006,

Chentanez and Müller, 2011], the VDB data structure [Museth, 2013] and SPGrid [Setaluri

et al., 2014a] would be warranted.

Performance Optimization and Macroblocks

In Chapters 6 and 7, we looked at two different approaches for improving the performance

of computing forces and solving elastic deformation problems. To some extent, the two

approaches are the result of sequential development. While the blocking organization allowed

us to compute forces for elasticity problems very efficiently, we found that the addition of large

numbers of force constraints and complex materials, like muscle fibers, negatively impacted

our ability to achieve reasonable convergence with Conjugate Gradients, the iterative solver

154

we used for the surgery simulation prototype. At the time, this was not a large problem, as

we used the partially converged steps of the simulation as an approximation of dynamics.

Moreover, the relatively rapid CG iterations allowed us to present more visual updates to

users, giving the platform a more responsive feel. Nevertheless, we were hoping to improve

upon the poor convergence we were seeing, a quest which ultimately led us to the macroblock

idea. Unfortunately, despite achieving the goal of better convergence and a better ratio of

memory to computational resources, this technique fell short in several important areas.

The most important limitations of our macroblock formulation are (a) the restriction of

our scheme to Cartesian lattice-based discretizations of elasticity, and (b) the explicit lack

of support for self collisions or other elastic interactions that would couple together disjoint

parts of the mesh. We consciously limited our preliminary exploration to applications of

macroblocks within a Newton-Raphson iterative solution scheme. In principle, there would

have been an opportunity to also consider using macroblocks in the design of a highly efficient

box smoother for multigrid, or as a replacement of the local optimization step in projective

dynamics; we defer exploration of those interesting threads to future work. In terms of

practical performance, the macroblock technique also includes an expensive factorization

step. While this process should be vectorizable, and thereby mitigating this cost somewhat,

it remains a significant bottleneck for interactive use cases at the moment. It is this issue,

along with the lack of self collision support, which has prevented it from being included in

the current iterations of the plastic surgery simulation tool.

Surgery Simulation Platform

As was mentioned in Chapter 8, the feature set of the surgical tool was relatively modest.

These limitations were a conscious choice to allow us to focus on the platform itself, balancing

performance and extensibility. From a research standpoint, our biggest perceived challenge is

improving the accuracy of the constitutive models for the biomaterials involved. At the time

of the pilot deployment described in Section 8.3, full self-collision support as per the work

155

described in Chapter 5 had not been integrated into the benchmark, but this support will be

essential for extending our work to procedures that rely on contact, in addition to sutures, to

model properly. Finally, a large class of reconstructive procedures cannot be modeled with

all incisions performed at the beginning of time; a flexible topology change modeling system

would be necessary to incorporate a seamless ability for topology change, concurrent with

deformation.

In terms of technical feasibility, while we did not experience any major technical difficulties

during the pilot deployment, the setup environment used was near optimal. Future testing

and development will need to focus on robustness to less ideal settings. Some issues that will

need to be addressed are improved handling of networks with variable latency and packet

loss, protocol bandwidth usage, and general scalability beyond the eight stations used in the

pilot deployment. While these are certainly major challenges, we feel they are well within our

grasp as they have similarities with other fields such as multiplayer video games and media

streaming.

A final note concerns an issue surrounding deployment: maintaining medical privacy.

While supporting a surgical simulation tool that allows for remote collaboration might

be extremely helpful, it is important to keep in mind the implication of medical privacy

regulations, such as the HIPPA (Health Insurance Portability and Accountability Act) laws

in the United States. Maintaining compliance with these regulations while still being able to

transmit potentially patient specific pathology data to remote servers will be challenging to

reconcile. There are interesting open questions about how this might be performed, given

that the simulation requires access to the geometry of the model being simulated. One saving

grace of our system is that the simulations are executed on an embedding lattice, which is

only an approximation of a patient’s tissue geometry. One might imagine a protocol that

kept the actual geometry being manipulated local and transmitted some kind of obfuscated

representation for remote computation. Or with potentially a dual simulation design, where

the remote server would compute bulk updates on a generic tissue model and the local client

156

would use these updates as a highly effective preconditioner for a higher detail, patient specific

model. These are questions than should receive more attention before these systems are ready

for production use.

157

bibliography

D. Adalsteinsson and J. A. Sethian. A Fast Level Set Method for Propagating Interfaces.

JCP, 118:269–277, 1994.

J. Allard, S. Cotin, F. Faure, P.-J. Bensoussan, F. Poyer, C. Duriez, H. Delingette, L. Grisoni,

et al. SOFA - an Open Source Framework for Medical Simulation. In MMVR 15. IOS

Press, 2007.

Apache Software Foundation. Apache Thrift. http://thrift.apache.org/, 2014.

S. R. Baker. Local Flaps in Facial Reconstruction (3rd ed.). Saunders, 2014.

D. Baraff, A. Witkin, and M. Kass. Untangling Cloth. ACM Trans. Graph., 22(3):862–870,

2003.

J. Bloomenthal and K. Ferguson. Polygonization of Non-manifold Implicit Surfaces. SIG-

GRAPH ’95, pages 309–316, 1995.

S. Bouaziz, S. Martin, T. Liu, L. Kavan, and M. Pauly. Projective Dynamics: Fusing

Constraint Projections for Fast Simulation. ACM Trans. Graph., 33(4):154:1–154:11,

July 2014. ISSN 0730-0301. doi: 10.1145/2601097.2601116.

R. Bridson, R. Fedkiw, and J. Anderson. Robust Treatment of Collisions, Contact and

Friction for Cloth Animation. ACM Trans. Graph., 21(3):594–603, 2002.

R. Bridson, S. Marino, and R. Fedkiw. Simulation of Clothing with Folds and Wrinkles. SCA

’03, pages 28–36, 2003.

M. Bro-nielsen and S. Cotin. Real-time Volumetric Deformable Models for Surgery Simulation

using Finite Elements and Condensation. In Computer Graphics Forum, pages 57–66,

1996.

http://thrift.apache.org/

158

M. C. Cavusoglu, T. G. Goktekin, and F. Tendick. GiPSi: A Framework for Open Source/Open

Architecture Software Development for Organ-Level Surgical Simulation. Information

Technology in Biomedicine, IEEE Transactions on, 10(2):312–322, 2006.

D. T. Chen and D. Zeltzer. Pump It Up: Computer Animation of a Biomechanically Based

Model of Muscle Using the Finite Element Method. SIGGRAPH Comput. Graph., 26(2):

89–98, July 1992. ISSN 0097-8930. doi: 10.1145/142920.134016.

N. Chentanez and M. Müller. Real-time Eulerian Water Simulation Using a Restricted Tall

Cell Grid. SIGGRAPH ’11, pages 82:1–82:10, 2011.

N. Chentanez, R. Alterovitz, D. Ritchie, L. Cho, K. K. Hauser, K. Goldberg, J. R. Shewchuk,

and J. F. O’Brien. Interactive Simulation of Surgical Needle Insertion and Steering.

ACM Trans. Graph., 28(3):88:1–88:10, July 2009. ISSN 0730-0301. doi: 10.1145/1531326.

1531394.

M. Corsini, P. Cignoni, and R. Scopigno. Efficient and Flexible Sampling with Blue Noise

Properties of Triangular Meshes. IEEE Transactions on Visualization and Computer

Graphics, 18(6):914–924, June 2012. ISSN 1077-2626.

H. Courtecuisse and J. Allard. Parallel Dense Gauss-Seidel Algorithm on Many-Core Proces-

sors. HPCC ’09, pages 139–147. IEEE CS Press, June 2009. doi: 10.1109/HPCC.2009.51.

S. De and K. Bathe. The method of finite spheres. Computational Mechanics, 25:329–345,

2000.

S. De, J. Kim, Y.-J. Lim, and M. A. Srinivasan. The point collocation-based method of finite

spheres (PCMFS) for real time surgery simulation. Computers & Structures, 83(17 - 18):

1515–1525, 2005. ISSN 0045-7949. doi: 10.1016/j.compstruc.2004.12.003.

L. Devroye. Non-Uniform Random Variate Generation. Springer-Verlag, 1986.

159

C. Dick, J. Georgii, and R. Westermann. A Hexahedral Multigrid Approach for Simulating

Cuts in Deformable Objects. IEEE Transactions on Visualization and Computer Graphics,

17(11):1663–1675, 2011. doi: 10.1109/TVCG.2010.268.

D. Enright, S. Marschner, and R. Fedkiw. Animation and Rendering of Complex Water

Surfaces. ACM Trans. Graph., 21(3):736–744, 2002.

Y. Fan, J. Litven, and D. K. Pai. Active Volumetric Musculoskeletal Systems. ACM Trans.

Graph., 33(4):152:1–152:9, July 2014. ISSN 0730-0301. doi: 10.1145/2601097.2601215.

F. Faure, S. Barbier, J. Allard, and F. Falipou. Image-based Collision Detection and Response

Between Arbitrary Volume Objects. SCA ’08, pages 155–162, 2008.

F. Ferstl, R. Westermann, and C. Dick. Large-Scale Liquid Simulation on Adaptive Hexahedral

Grids. IEEE Trans. Visualization & Computer Graphics, 20(10):1405–1417, Oct 2014.

doi: 10.1109/TVCG.2014.2307873.

I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455 (Proposed Standard), Dec. 2011.

ISSN 2070-1721. URL https://www.rfc-editor.org/rfc/rfc6455.txt. Updated by

RFC 7936.

A. G. Gallagher, E. M. Ritter, H. Champion, G. Higgins, M. P. Fried, G. Moses, C. D. Smith,

and R. M. Satava. Virtual Reality Simulation for the Operating Room: Proficiency-Based

Training as a Paradigm Shift in Surgical Skills Training. Annals of Surgery, 241(2), 2005.

ISSN 0003-4932. URL http://journals.lww.com/annalsofsurgery/Fulltext/2005/

02000/Virtual_Reality_Simulation_for_the_Operating_Room_.24.aspx.

M. Gao, N. Mitchell, and E. Sifakis. Steklov-Poincarè Skinning. In V. Koltun and E. Sifakis,

editors, Eurographics/ ACM SIGGRAPH Symposium on Computer Animation. The

Eurographics Association, 2014. ISBN 978-3-905674-61-3. doi: 10.2312/sca.20141132.

M.-P. Gascuel. An implicit formulation for precise contact modeling between flexible solids.

In SIGGRAPH ’93, pages 313–320, 1993.

https://www.rfc-editor.org/rfc/rfc6455.txt
http://journals.lww.com/annalsofsurgery/Fulltext/2005/02000/Virtual_Reality_Simulation_for_the_Operating_Room_.24.aspx
http://journals.lww.com/annalsofsurgery/Fulltext/2005/02000/Virtual_Reality_Simulation_for_the_Operating_Room_.24.aspx

160

J. Georgii and R. Westermann. Corotated Finite Elements Made Fast and Stable. VRIPHYS

’08. The Eurographics Association, 2008. ISBN 978-3-905673-70-8. doi: 10.2312/PE/

vriphys/vriphys08/011-019.

GitHub, Inc. Electron. http://electron.atom.io/, 2016.

T. G. Goktekin, A. W. Bargteil, and J. F. O’Brien. A Method for Animating Viscoelastic

Fluids. ACM Trans. Graph., 23(3):463–468, Aug. 2004. ISSN 0730-0301. doi: 10.1145/

1015706.1015746.

E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex Rigid Bodies with Stacking. ACM

TOG, 22(3):871–878, 2003.

F. Hecht, Y. J. Lee, J. R. Shewchuk, and J. F. O’Brien. Updated Sparse Cholesky Factors

for Corotational Elastodynamics. ACM Trans. Graph., 31(5):123:1–123:13, 2012.

J. Hellrung, A. Selle, A. Shek, E. Sifakis, and J. Teran. Geometric Fracture Modeling in Bolt.

In SIGGRAPH 2009: Talks, SIGGRAPH ’09, pages 7:1–7:1, 2009.

E. Hermann, B. Raffin, and F. Faure. Interactive Physical Simulation on Multicore Architec-

tures. EG PGV’09, pages 1–8. Eurographics Association, 2009. ISBN 978-3-905674-15-6.

doi: 10.2312/EGPGV/EGPGV09/001-008.

B. Houston, M. B. Nielsen, C. Batty, O. Nilsson, and K. Museth. Hierarchical RLE Level

Set: A Compact and Versatile Deformable Surface Representation. ACM Trans. Graph.,

25(1):151–175, 2006. ISSN 0730-0301. doi: 10.1145/1122501.1122508. URL http:

//doi.acm.org/10.1145/1122501.1122508.

G. Irving, J. Teran, and R. Fedkiw. Invertible Finite Elements for Robust Simulation of

Large Deformation. SCA ’04, pages 131–140. Eurographics Association, 2004. ISBN

3-905673-14-2. doi: 10.1145/1028523.1028541.

http://electron.atom.io/
http://doi.acm.org/10.1145/1122501.1122508
http://doi.acm.org/10.1145/1122501.1122508

161

G. Irving, E. Guendelman, F. Losasso, and R. Fedkiw. Efficient simulation of large bodies of

water by coupling two and three dimensional techniques. ACM Trans. Graph., 25(3):

805–811, 2006. ISSN 0730-0301. doi: 10.1145/1141911.1141959.

G. Irving, C. Schroeder, and R. Fedkiw. Volume Conserving Finite Element Simulations of

Deformable Models. ACM Transactions on Graphics (SIGGRAPH Proc.), 26(3), 2007.

D. James and D. Pai. ArtDefo: accurate real time deformable objects. In Proceedings of

SIGGRAPH 99, pages 65–72, 1999. doi: 10.1145/311535.311542.

L. Jerabkova, G. Bousquet, S. Barbier, F. Faure, and J. Allard. Volumetric modeling and

interactive cutting of deformable bodies. Progress in Biophysics and Molecular Biology,

103(2-3):217–224, Dec. 2010. doi: 10.1016/j.pbiomolbio.2010.09.012. Special Issue on

Biomechanical Modelling of Soft Tissue Motion.

L. Jeřábková and T. Kuhlen. Stable Cutting of Deformable Objects in Virtual Environments

Using XFEM. IEEE Comput. Graph. Appl., 29(2):61–71, 2009. ISSN 0272-1716. doi:

10.1109/MCG.2009.32.

P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki. Harmonic Coordinates for

Character Articulation. ACM Trans. Graph., 26(3), July 2007. ISSN 0730-0301. doi:

10.1145/1276377.1276466.

P. Kaufmann, S. Martin, M. Botsch, E. Grinspun, and M. Gross. Enrichment Textures for

Detailed Cutting of Shells. ACM Trans. Graph., 28(3):50:1–50:10, 2009a.

P. Kaufmann, S. Martin, M. Botsch, and M. Gross. Flexible Simulation of Deformable Models

Using Discontinuous Galerkin FEM. Graph. Models, 71(4):153–167, July 2009b. ISSN

1524-0703. doi: 10.1016/j.gmod.2009.02.002.

L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. Geometric Skinning with Approximate

Dual Quaternion Blending. ACM Trans. Graph., 27(4):105:1–105:23, Nov. 2008. ISSN

0730-0301. doi: 10.1145/1409625.1409627.

162

L. Kharevych, P. Mullen, H. Owhadi, and M. Desbrun. Numerical Coarsening of Inho-

mogeneous Elastic Materials. ACM Trans. Graph., 28(3):51:1–51:8, July 2009. ISSN

0730-0301. doi: 10.1145/1531326.1531357.

Khronos Group, 2017. WebGL Specification (Editors Draft). WebGL Specification (Editors

Draft), May 2017. URL https://www.khronos.org/registry/webgl/specs/latest/

1.0.

J. Kim and N. Pollard. Fast simulation of skeleton-driven deformable body characters. ACM

Transactions on Graphics (TOG), 30(5):121, 2011.

J. Kim, C. Choi, S. De, and M. A. Srinivasan. Virtual surgery simulation for medical training

using multi-resolution organ models. The International Journal of Medical Robotics and

Computer Assisted Surgery, 3(2):149–158, 2007. ISSN 1478-596X. doi: 10.1002/rcs.140.

L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. Feature Sensitive Surface

Extraction from Volume Data. SIGGRAPH ’01, pages 57–66, 2001.

F. Labelle and J. Shewchuk. Isosurface Stuffing: Fast Tetrahedral Meshes with Good Dihedral

Angles. ACM TOG, 26(3), 2007.

D. Li, S. Sueda, D. R. Neog, and D. K. Pai. Thin Skin Elastodynamics. ACM Trans. Graph.,

32(4):49:1–49:10, July 2013. ISSN 0730-0301. doi: 10.1145/2461912.2462008.

A. Lindblad and G. Turkiyyah. A Physically-based Framework for Real-time Haptic Cutting

and Interaction with 3D Continuum Models. SPM ’07, pages 421–429. ACM, 2007. ISBN

978-1-59593-666-0. doi: 10.1145/1236246.1236307.

H. Liu, N. Mitchell, M. Aanjaneya, and E. Sifakis. A scalable schur-complement fluids solver for

heterogeneous compute platforms. ACM Transactions on Graphics, 35(6):1–12, nov 2016.

doi: 10.1145/2980179.2982430. URL https://doi.org/10.1145/2980179.2982430.

https://www.khronos.org/registry/webgl/specs/latest/1.0
https://www.khronos.org/registry/webgl/specs/latest/1.0
https://doi.org/10.1145/2980179.2982430

163

F. Losasso, F. Gibou, and R. Fedkiw. Simulating water and smoke with an octree data

structure. In SIGGRAPH ’04: ACM SIGGRAPH 2004 Papers, pages 457–462, New

York, NY, USA, 2004. ACM. doi: 10.1145/1186562.1015745.

F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. Multiple interacting liquids. ACM Trans.

Graph., 25(3):812–819, 2006. ISSN 0730-0301. doi: 10.1145/1141911.1141960.

M. Marchal, J. Allard, C. Duriez, and S. Cotin. Towards a Framework for Assessing

Deformable Models in Medical Simulation. In P. J. E. Fernando Bello, editor, ISBMS

’08, volume 5104 of Lecture Notes in Computer Science, pages 176–184. Springer Berlin

Heidelberg, 2008. ISBN 978-3-540-70521-5. doi: 10.1007/978-3-540-70521-5_19.

A. McAdams, E. Sifakis, and J. Teran. A parallel multigrid Poisson solver for fluids simulation

on large grids. In Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium

on Computer Animation, pages 65–74, 2010.

A. McAdams, Y. Zhu, A. Selle, M. Empey, R. Tamstorf, J. Teran, and E. Sifakis. Efficient

Elasticity for Character Skinning with Contact and Collisions. ACM Trans. Graph., 30

(4):37:1–37:12, July 2011. ISSN 0730-0301. doi: 10.1145/2010324.1964932.

J. McCarthy. Plastic Surgery General Principles. Plastic Surgery: General Principles.

Saunders, 1990. ISBN 9780721625423.

C. Mendoza and C. Laugier. Simulating Soft Tissue Cutting using Finite Element Models.

volume 1 of ICRA ’03, pages 1109–1114. IEEE, 2003.

N. Mitchell, C. Cutting, and E. Sifakis. GRIDiron: An Interactive Authoring and Cognitive

Training Foundation for Reconstructive Plastic Surgery Procedures. ACM Trans. Graph.,

July 2015. doi: 10.1145/2766918.

N. Moës, J. Dolbow, and T. Belytschko. A finite element method for crack growth without

remeshing. IJNME, 46:131–150, 1999.

164

N. Molino, Z. Bao, and R. Fedkiw. A Virtual Node Algorithm for Changing Mesh Topology

During Simulation. ACM Trans. Graph., 23(3):385–392, Aug. 2004. ISSN 0730-0301.

doi: 10.1145/1015706.1015734.

M. Müller, M. Teschner, and M. Gross. Physically-Based simulation of Objects Represented

by Surface Meshes. In Proc. Computer Graphics International, pages 156–165, June

2004.

M. Muller, M. Teschner, and M. Gross. Physically-Based Simulation of Objects Represented

by Surface Meshes. CGI ’04, pages 26–33, 2004.

M. Müller, B. Heidelberger, M. Hennix, and J. Ratcliff. Position based dynamics. Journal of

Visual Communication and Image Representation, 18(2):109–118, 2007. doi: 10.1016/j.

jvcir.2007.01.005.

K. Museth. DB+Grid: A Novel Dynamic Blocked Grid for Sparse High-resolution Volumes

and Level Sets. SIGGRAPH ’11, 2011. ISBN 978-1-4503-0974-5. doi: 10.1145/2037826.

2037894. URL http://doi.acm.org/10.1145/2037826.2037894.

K. Museth. VDB: High-resolution Sparse Volumes with Dynamic Topology. ACM Trans.

Graph., 32(3):27:1–27:22, July 2013. ISSN 0730-0301. doi: 10.1145/2487228.2487235.

URL http://doi.acm.org/10.1145/2487228.2487235.

K. Museth, D. Breen, R. Whitaker, and A. Barr. Level Set Surface Editing Operators. In

ACM TOG, pages 330–338, 2002.

M. Nesme, Y. Payan, and F. Faure. Animating Shapes at Arbitrary Resolution with

Non-Uniform Stiffness. In Eurographics Workshop in Virtual Reality Interaction and

Physical Simulation (VRIPHYS), Madrid, nov 2006. URL http://www-evasion.imag.

fr/Publications/2006/NPF06.

http://doi.acm.org/10.1145/2037826.2037894
http://doi.acm.org/10.1145/2487228.2487235
http://www-evasion.imag.fr/Publications/2006/NPF06
http://www-evasion.imag.fr/Publications/2006/NPF06

165

M. Nesme, P. Kry, L. Jeřábková, and F. Faure. Preserving topology and elasticity for embedded

deformable models. In ACM Transactions on Graphics (SIGGRAPH Proceedings),

volume 28, page 52, 2009.

M. B. Nielsen and K. Museth. Dynamic Tubular Grid: An Efficient Data Structure and

Algorithms for High Resolution Level Sets. J. Sci. Comput., 26(3):261–299, Mar. 2006.

ISSN 0885-7474. doi: 10.1007/s10915-005-9062-8. URL http://dx.doi.org/10.1007/

s10915-005-9062-8.

H.-W. Nienhuys and A. F. van der Stappen. A Surgery Simulation Supporting Cuts and

Finite Element Deformation. MICCAI ’01, pages 145–152. Springer, 2001.

Node.js Foundation. NodeJS. http://nodejs.org, 2017.

J. O’Brien and J. Hodgins. Graphical Modeling and Animation of Brittle Fracture. In Proc.

of SIGGRAPH 1999, pages 137–146, 1999. doi: 10.1145/311535.311550.

S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer, 2002.

S. Osher and J. Sethian. Fronts Propagating with Curvature-Dependent Speed: Algorithms

Based on Hamilton-Jacobi Formulations. J. Comput. Phys., 79:12–49, 1988.

E. G. Parker and J. F. O’Brien. Real-Time Deformation and Fracture in a Game Environ-

ment. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer

Animation, pages 156–166, Aug. 2009. URL http://graphics.berkeley.edu/papers/

Parker-RTD-2009-08.

T. Patterson, N. Mitchell, and E. Sifakis. Simulation of Complex Nonlinear Elastic Bodies

Using Lattice Deformers. ACM Trans. Graph., 31(6):197:1–197:10, Nov. 2012. ISSN

0730-0301. doi: 10.1145/2366145.2366216.

http://dx.doi.org/10.1007/s10915-005-9062-8
http://dx.doi.org/10.1007/s10915-005-9062-8
http://nodejs.org
http://graphics.berkeley.edu/papers/Parker-RTD-2009-08
http://graphics.berkeley.edu/papers/Parker-RTD-2009-08

166

C. G. Petra, O. Schenk, and M. Anitescu. Real-time stochastic optimization of complex energy

systems on high-performance computers. IEEE Computing in Science & Engineering, 16

(5):32–42, 2014a.

C. G. Petra, O. Schenk, M. Lubin, and K. Gärtner. An augmented incomplete factorization

approach for computing the schur complement in stochastic optimization. SIAM Journal

on Scientific Computing, 36(2):C139–C162, 2014b.

S. D. Pieper, D. R. Laub Jr, and J. M. Rosen. A Finite-Element Facial Model for Simulating

Plastic Surgery. Plastic and Reconstructive Surgery, 96(5):1100–1105, 1995.

A. Quarteroni and A. Valli. Domain decomposition methods for partial differential equations,

volume 10. Clarendon Press, 1999.

L. Rising, editor. The Patterns Handbook: Techniques, Strategies, and Applications. SIGS,

1998. ISBN 0521648181.

A. Rivers and D. James. FastLSM: Fast lattice shape matching for robust real-time

deformation. ACM Trans. on Graphics (SIGGRAPH Proc.), 26(3), 2007. doi: 10.1145/

1275808.1276480.

R. Setaluri, M. Aanjaneya, S. Bauer, and E. Sifakis. SPGrid: A Sparse Paged Grid Structure

Applied to Adaptive Smoke Simulation. ACM Trans. Graph., 33(6):205:1–205:12, 2014a.

R. Setaluri, Y. Wang, N. Mitchell, L. Kavan, and E. Sifakis. Fast Grid-Based Nonlinear

Elasticity for 2D Deformations. The Eurographics Association, 2014b.

J. A. Sethian. Fast Marching Methods. SIAM Review, 41:199–235, 1998.

E. Sifakis and J. Barbic. FEM Simulation of 3D Deformable Solids: A Practitioner’s Guide to

Theory, Discretization and Model Reduction. In ACM SIG. 2012 Courses, SIGGRAPH

’12, pages 20:1–20:50. ACM, 2012. ISBN 978-1-4503-1678-1. doi: 10.1145/2343483.

2343501.

167

E. Sifakis, K. G. Der, and R. Fedkiw. Arbitrary Cutting of Deformable Tetrahedralized

Objects. SCA ’07, pages 73–80. Eurographics Association, 2007. ISBN 978-1-59593-624-0.

URL http://dl.acm.org/citation.cfm?id=1272690.1272701.

Simbionix USA Corporation. Laparoscopic Simulator - LAP Mentor Simbionix. http:

//simbionix.com/simulators/lap-mentor, 2002–2014a.

Simbionix USA Corporation. Gastrointestinal Simulator - GI Mentor Simbionix. http:

//simbionix.com/simulators/gi-bronch-gi-mentor, 2002–2014b.

F. Sin, D. Schroeder, and J. Barbic. Vega: Non-Linear FEM Deformable Object Simulator.

Comput. Graph. Forum, 32(1):36–48, 2013. doi: 10.1111/j.1467-8659.2012.03230.x.

D. Steinemann, M. Harders, M. Gross, and G. Szekely. Hybrid cutting of deformable

solids. In IEEE Virtual Reality Conference (VR 2006), pages 35–42, March 2006. doi:

10.1109/VR.2006.74.

S. Sueda, A. Kaufman, and D. K. Pai. Musculotendon Simulation for Hand Animation.

ACM Trans. Graph., 27(3):83:1–83:8, Aug. 2008. ISSN 0730-0301. doi: 10.1145/1360612.

1360682.

J. Teran, S. Blemker, V. N. T. Hing, and R. Fedkiw. Finite Volume Methods for the

Simulation of Skeletal Muscle. SCA ’03, pages 68–74, 2003. ISBN 1-58113-659-5. URL

http://dl.acm.org/citation.cfm?id=846276.846285.

J. Teran, E. Sifakis, S. S. Blemker, V. Ng-Thow-Hing, C. Lau, and R. Fedkiw. Creating

and Simulating Skeletal Muscle from the Visible Human Data Set. Visualization and

Computer Graphics, IEEE Transactions on, 11(3):317–328, 2005a.

J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust Quasistatic Finite Elements and Flesh

Simulation. Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.,

pages 181–190, 2005b.

http://dl.acm.org/citation.cfm?id=1272690.1272701
http://simbionix.com/simulators/lap-mentor
http://simbionix.com/simulators/lap-mentor
http://simbionix.com/simulators/gi-bronch-gi-mentor
http://simbionix.com/simulators/gi-bronch-gi-mentor
http://dl.acm.org/citation.cfm?id=846276.846285

168

D. Terzopoulos and K. Fleischer. Deformable models. The Visual Computer, 4(6):306–331,

1988.

D. Terzopoulos, J. Platt, A. Barr, and K. Fleischer. Elastically deformable models. Computer

Graphics (Proc. SIGGRAPH 87), 21(4):205–214, 1987.

R. Vaillant, L. Barthe, G. Guennebaud, M.-P. Cani, D. Rohmer, B. Wyvill, O. Gourmel, and

M. Paulin. Implicit Skinning: Real-time Skin Deformation with Contact Modeling. ACM

Trans. Graph., 32(4):125:1–125:12, July 2013. ISSN 0730-0301. doi: 10.1145/2461912.

2461960.

R. Vaillant, G. Guennebaud, L. Barthe, B. Wyvill, and M.-P. Cani. Robust Iso-surface

Tracking for Interactive Character Skinning. ACM TOG, 33(6):189:1–189:11, 2014.

B. Wang, F. Faure, and D. K. Pai. Adaptive Image-based Intersection Volume. ACM Trans.

Graph., 31(4):97:1–97:9, 2012.

H. Wang. A Chebyshev Semi-iterative Approach for Accelerating Projective and Position-

based Dynamics. ACM Trans. Graph., 34(6):246:1–246:9, Oct. 2015. ISSN 0730-0301.

doi: 10.1145/2816795.2818063.

X. C. Wang and C. Phillips. Multi-weight Enveloping: Least-squares Approximation Tech-

niques for Skin Animation. SCA ’02, pages 129–138. ACM, 2002. ISBN 1-58113-573-4.

doi: 10.1145/545261.545283.

C. Wojtan and G. Turk. Fast Viscoelastic Behavior with Thin Features. ACM Trans. Graph.,

27(3):47:1–47:8, Aug. 2008. ISSN 0730-0301. doi: 10.1145/1360612.1360646.

wxWidgets. wxWidgets - A Cross Platform GUI Library. https://www.wxwidgets.org,

2017.

H. Xu and J. Barbič. Example-Based Damping Design. ACM Trans. on Graphics (SIGGRAPH

2017), 36(4), 2017.

https://www.wxwidgets.org

169

Z. Yuan, Y. Yu, and W. Wang. Object-space Multiphase Implicit Functions. ACM TOG, 31

(4):114:1–114:10, 2012.

H.-K. Zhao, S. Osher, and R. Fedkiw. Fast Surface Reconstruction Using the Level Set

Method. VLSM ’01, pages 194–202, 2001.

Y. Zhao and J. Barbič. Interactive Authoring of Simulation-Ready Plants. ACM Trans. on

Graphics (SIGGRAPH 2013), 32(4):84:1–84:12, 2013.

W. Zheng, J.-H. Yong, and J.-C. Paul. Simulation of Bubbles. SCA ’06, pages 325–333, 2006.

Y. Zhu, E. Sifakis, J. Teran, and A. Brandt. An Efficient Multigrid Method for the Simulation

of High-resolution Elastic Solids. ACM Trans. Graph., 29(2):16:1–16:18, Apr. 2010. ISSN

0730-0301. doi: 10.1145/1731047.1731054.

	Contents
	List of Tables
	List of Figures
	List of Algorithms
	Abstract
	Introduction
	Thesis
	Motivation
	Contributions
	Cartesian Grids as Model Representations
	Parallelism Concerns with Modern Hardware
	Practical Deployment of Surgical Simulations
	Outline

	Motivation
	Medical Simulation: Requirement Specification
	Simulation Assisted Visual Systems

	Engineering Deconstruction
	Background
	Continuous Formulation of Deformation
	Discrete form of Elastic Deformation
	Constraints
	Topology Change
	Engineering A Solid Foundation

	Related Work
	Non-manifold Embedding for Geometry and Contact
	Non-manifold Embedding
	Level Sets & Collision Processing
	Non-manifold Level Sets
	Examples

	Parallelization Techniques for Lattice Deformers
	A hybrid embedding lattice structure
	Parallelization

	Macroblock Technique for Hybrid Solvers
	Macroblock-based discretization and numerical solution
	An optimized direct solver for macroblocks
	Justification of macroblock size choice
	Examples and performance evaluation

	Practical Deployment for Interactive Simulations
	Deployment Issues
	System Architecture Comparisons
	Deployment Study

	Discussion
	Themes
	Broader Applications
	Limitations and Future Work

	Bibliography

