
A scalable Schur-complement fluids solver for heterogeneous compute platforms

Haixiang Liu Nathan Mitchell Mridul Aanjaneya Eftychios Sifakis
University of Wisconsin-Madison

Figure 1: Left: Smoke injected into a model of the bronchi. Color illustrates vorticity magnitude. Simulation contains 1.8 billion active cells,
sparsely occupying a 81922×4096 background grid. Right: Smoke injected from the bottom of a cylinder, and forced through a metal gasket
(rendered semi-transparent) with a twisted bundle of cylindrical holes. Total of 1.2 billion active cells, in a 10242×2048 background grid.

Abstract

We present a scalable parallel solver for the pressure Poisson equa-
tion in fluids simulation which can accommodate complex irregular
domains in the order of a billion degrees of freedom, using a sin-
gle server or workstation fitted with GPU or Many-Core accelera-
tors. The design of our numerical technique is attuned to the sub-
tleties of heterogeneous computing, and allows us to benefit from
the high memory and compute bandwidth of GPU accelerators even
for problems that are too large to fit entirely on GPU memory. This
is achieved via algebraic formulations that adequately increase the
density of the GPU-hosted computation as to hide the overhead of
offloading from the CPU, in exchange for accelerated convergence.
Our solver follows the principles of Domain Decomposition tech-
niques, and is based on the Schur complement method for elliptic
partial differential equations. A large uniform grid is partitioned in
non-overlapping subdomains, and bandwidth-optimized (GPU or
Many-Core) accelerator cards are used to efficiently and concur-
rently solve independent Poisson problems on each resulting subdo-
main. Our novel contributions are centered on the careful steps nec-
essary to assemble an accurate global solver from these constituent
blocks, while avoiding excessive communication or dense linear al-
gebra. We ultimately produce a highly effective Conjugate Gradi-
ents preconditioner, and demonstrate scalable and accurate perfor-
mance on high-resolution simulations of water and smoke flow.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SA ’16 Technical Papers, December 05-08, 2016, Macao
ISBN: 978-1-4503-4514-9/16/12
DOI: http://dx.doi.org/10.1145/2980179.2982430

Keywords: heterogeneous computing, fluid simulation, pressure
projection, domain decomposition, GPU, multigrid, preconditioner

Concepts: •Computing methodologies→ Physical simulation;

1 Introduction

For many years, simulation-based animation of fluids has been an
indispensable component of visual effects pipelines [Geiger et al.
2006; Froemling et al. 2007; Van Opstal et al. 2014]. Although
the ever growing demands of production environments for higher
detail and resolution have prompted some practitioners to use com-
puter clusters for parallel solvers [Irving et al. 2006; Bailey et al.
2015], a number of innovations both in hardware as well as algo-
rithmic foundations have made it possible to scale up the quality
and resolution of fluid simulations that can be hosted on standalone
servers and workstations. This has encouraged researchers to ex-
plore novel data structures [Museth 2013], careful modeling sim-
plifications [Rasmussen et al. 2003], intricate use of GPUs [Hor-
vath and Geiger 2009; Macklin et al. 2014], accelerated numerical
techniques [McAdams et al. 2010; Zhang and Bridson 2014], and
strategic use of adaptivity [Losasso et al. 2004; Ando et al. 2013].

In this paper, we seek to boost the scale and complexity of fluid sim-
ulations that can be effectively accommodated on single-computer
platforms. In particular, we target the pressure Poisson equation
which is almost invariably the computational bottleneck at large
scales, and develop a solver that can support intricately shaped do-
mains (see Fig.1) with more than one billion active degrees of free-
dom on a well-equipped (albeit, not exotic) graphics workstation.
We will aggressively use any number of GPU or Many-Core accel-
erator cards, installed in our target platform, to facilitate this goal.
However, the scale of the problems we target will present a unique
challenge: many of them will be too large to fit in GPU memory,
and although the same problem would fit in the host system mem-
ory, it would be unattractively slow to execute purely on the CPU.

http://dx.doi.org/10.1145/2980179.2982430

fedcba

Figure 2: Illustration of the core concept of our method: (b) We split the computational grid into subdomains, and independently solve them
on the GPU(s), using zero Dirichlet conditions on subdomain boundaries. (c) Fluxes of the subdomain solutions are computed and sent to the
CPU. (d) A specially formulated system is solved on the interface, using the CPU. This produces the exact value of the interface variables. (e)
Those values are sent to the subdomains, and set as Dirichlet conditions. (e) A final subdomain solve on the GPU yields the global solution.

Our technique leverages Domain Decomposition theory and, more
specifically, is rooted in the principles of Schur Complement Meth-
ods [Quarteroni and Valli 1999] for the solution of elliptic Partial
Differential Equations. Intuitively, our solver is designed according
to a divide-and-conquer paradigm. Using independent solvers for
small, artificially decoupled partitions of our domain as algorith-
mic building blocks, we seek to produce an accurate solver for the
aggregate, fully coupled domain. The fundamental theory, which
we review in Section 4, explains that this composition is perfectly
possible from a purely algebraic standpoint. Furthermore, if the
independent partitions of our domain are adequately sized, each
decoupled Poisson problem can be dispatched to a separate GPU
accelerator, and fully solved with an efficient numerical technique
that optimally exploits its bandwidth and compute capability. How-
ever, direct application of this basic principle is utterly impractical,
as the algebraic operations necessary to fuse together the indepen-
dent partition solvers into an accurate global scheme (the “and-
conquer” part of our paradigm) have an absolutely prohibitive cost.
Our core contribution is a novel synergy of CPU-hosted numerical
algorithms that drastically reduces the complexity of re-combining
the independent solvers into a global one, facilitating the design of
a highly efficient heterogeneous global solver. The price we pay for
this dramatic complexity improvement, is that our overall scheme is
no longer an exact solver; nevertheless, we show that it can be used
as an excellent preconditioner for Conjugate Gradients, achieving
rapid convergence in very few iterations even for very large, billion
degree-of-freedom domains. Figure 2 provides a visual summary
of our pipeline, which we elaborate on in later sections.

Our technical contributions are summarized as follows:

• We show a preconditioner design based on Schur Comple-
ment methods. Although the algebraic principles have prece-
dent in scientific computing literature, we believe this is the
first direct application of this theory to a graphics application.

• We present an original numerical technique for the combi-
nation of independent solvers into a coherent global scheme.
This new methodology is hosted on the CPU, has very attrac-
tive complexity, and relies on the synergy of multigrid, adap-
tivity, and assembly-free relaxation methods.

• We analyze the efficacy of our technique in the context of
large-scale smoke and water simulations, providing conver-
gence and runtime comparisons with alternative solvers. Our
tests are conducted on heterogeneous systems accelerated by
multiple GPUs or Many-Core accelerator cards.

2 Background, challenges and scope

Before we venture into the discussion of prior work that inspired
our approach, and the details of our scheme, it is important to pro-
vide some insight into the technological factors that motivated this
work. We further offer some comments on the challenges that our
technique must address, and delineate the scope of our method.

Why target heterogeneity? Heterogeneous platforms, i.e. servers
or workstations equipped with one or more bandwidth-optimized
accelerator cards, are presently the most price-efficient way to pack
aggregate computational power into a single computer system. To-
day, it is very realistic for a simulation workstation (aided by a main
CPU and multiple GPU cards) to combine an aggregate memory
bandwidth of 1.1 TB/sec, peak compute throughput of 23 TFLOPS
and memory capacity of 512 GB (plus any GPU memory) at a
price point below $10K1. However, these aggregate capabilities are
markedly not uniformly available across the platform. Each GPU
card enjoys high bandwidth for internal computation, but needs
to communicate through the PCIe bus to reach data stored in a
different accelerator’s internal memory, or in the memory of the
host CPU. The CPU itself can host large workloads in its memory,
and leverage task-level parallelism even in combinatorial workloads
that lack the regularity that GPUs thrive on, but is limited in mem-
ory bandwidth and peak computational throughput. We note that
this non-uniformity of bandwidth and compute capability is not a
temporary aberration, but rather a persistent trait across generations
of hardware designs. This has manifested in the design of NUMA
(Non-Uniform Memory Access) multi-socket systems, is evident
in GPU-accelerated platforms, and remains fully relevant in the
emerging generation of accelerators that leverage high-bandwidth
stacked memory (in addition to slower, but larger DDR memory).
We believe that investigating numerical techniques that are deeply
cognizant of this heterogeneity is timely and worthwhile, even if
they are more complex than heterogeneity-agnostic alternatives.

When does offloading become a liability? For memory-bound
numerical workloads, the core benefit of a GPU port primarily
stems from the additional bandwidth available, internally, to each
GPU card, which is often 6x-8x the bandwidth available to each
CPU socket. This capability is optimally exploited when the entire
problem fits in GPU memory, in which case a GPU-homogeneous
solver can be used for it. However, problems that are too large to
fit in GPU memory have to be split into smaller partitions, each
of which needs to dispatch (“offload”) its data to the GPU, carry
out an operation, and then transfer the results back to the CPU to
make room for the next partition. This round-trip data transfer takes
place over the PCIe bus, which offers bandwidth two orders of mag-
nitude less than what is internally available on the GPU. Thus, in
order to justify this offloading overhead, it is crucial that the data re-
mains on the GPU while carrying out useful computations for long
enough to hide the PCIe transfer cost. Unfortunately, some of the
best performing solvers (in terms of convergence efficiency) such
as multigrid do not offer this opportunity. The building blocks of
a multigrid solver, namely the smoothing routine and transfer op-
erators, require global synchronization after their execution while
carrying out only a very modest amount of useful computation in
between synchronization points. In particular, a Jacobi or Gauss-
Seidel style smoother requires no more than two passes over the

1Sample platform: SuperMicro 7048A-T, Dual Intel Xeon E5-2650 v4
processors, 512GB DDR4 RAM, 2×NVidia Titan X cards.

Figure 3: Free-surface simulation of water poured in a container with multiple interior walls causing the flow to meander around them. The
frame shown in the right-most illustration corresponds to 114 million active cells, in a 1024×1024×1024 background grid.

data in memory, which completes at a fraction of the time needed
to move its data from/to the GPU. Of course, one could take the op-
portunity to carry out several smoothing iterations per offload op-
eration; however, without synchronization at partition boundaries
this extra effort will hardly translate to worthwhile gains in conver-
gence. As a result, the benefit of the GPU offload is negated, and
such large problems are better off being solved homogeneously on
the CPU. Although there might be room for implementation refine-
ments and adaptation of multigrid paradigms to curb this overhead,
we are not aware of prior work that has demonstrated viability of
a GPU-offload paradigm for multigrid solvers, when the problem
size exceeds the memory capacity of the GPU card(s), compare to
a well-optimized CPU implementation. Our proposed approach di-
rectly addresses this challenge: instead of executing just a few iter-
ations of a smoother routine, we run an entire solver routine on the
GPU for each independent subdomain we offload to it. In our case,
that extra effort does translate to accelerated convergence, and the
GPU computation is long enough to absorb the cost of offloading.

Divide-and-conquer with “nearly” accurate pieces The classi-
cal divide-and-conquer paradigm encountered in combinatorial al-
gorithms often presumes building blocks that accurately solve sub-
sets of the overall problem. In our numerical context, one of the
key opportunities we will exploit is the option to design what is not
an exact solver, but an excellent approximation of one, and subse-
quently use it as a preconditioner. In this context, we will adopt
a slightly different standard which we will design our “inaccurate”
divide-and-conquer scheme to satisfy. Our building block will be an
inexact solver for the Poisson equation on independent partitions of
our domain, which is however of good enough quality to be used as
an excellent Conjugate Gradients preconditioner (i.e. it would lead
to convergence in a small number of iterations, that does not signif-
icantly increase as the subdomain size grows larger). Subsequently,
our objective would be to combine such “nearly accurate” building
blocks into a global approximate solver that meets the same bench-
mark, i.e. it can be an effective preconditioner that allows CG to
converge in a comparably small number of iterations as its individ-
ual constituents. Short of this standard, using divide-and-conquer
with inexact components can easily result in degraded performance.

Scope Our primary objective is to demonstrate an effective, and
hopefully inspiring adaptation to fluids simulation of a class of nu-
merical techniques that has received much more exposure in sci-
entific computing than graphics research. We note, however, that
Schur Complement methods provide a general framework, and not
just a singular algorithm; in fact, similar to multigrid methods, care-
ful variations from the general algebraic theme make all the dif-
ference between a given scheme being highly effective or under-
whelming for a specific application. In this vein, we consciously
restricted the scope of our investigation to just uniform discretiza-
tions of fluids, specifically targeted the Poisson equation (although
our formulations should readily extend to elasticity, or other ellip-
tic problems), and did not emphasize the implications of heteroge-
neous computing to other parts of the fluid simulation pipeline.

3 Related Work

Fluid simulation has been an active area of research within com-
puter graphics since the early work of [Stam 1999; Foster and
Fedkiw 2001]. Since the memory overhead associated with uni-
form grids quickly escalates in three spatial dimensions, several
adaptive techniques have been proposed, including adaptive Carte-
sian grids [Losasso et al. 2004; Zhu et al. 2013; Ferstl et al.
2014; Setaluri et al. 2014], adaptive tetrahedral meshes [Klingner
et al. 2006; Chentanez et al. 2007; Ando et al. 2013], RLE-based
schemes [Houston et al. 2006; Irving et al. 2006; Chentanez and
Müller 2011], adaptive mesh refinement (AMR) and chimera grid
schemes [Dobashi et al. 2008; Tan et al. 2008; Cohen et al. 2010;
English et al. 2013]. Lagrangian methods present an interesting al-
ternative because they avoid many of the numerical dissipation is-
sues characteristic of Eulerian methods. Several methods have been
proposed, including smoothed particle hydrodynamics (SPH) [So-
lenthaler and Gross 2011; Ihmsen et al. 2014; Bender and Koschier
2015], particle-based schemes [Adams et al. 2007; de Goes et al.
2015], position-based fluids [Macklin and Müller 2013], triangle
meshes [Wojtan et al. 2010; Thürey et al. 2010; Da et al. 2015] and
simplicial complexes [Zhu et al. 2014]. However, due to their un-
structured nature, these methods are unable to leverage the regular-
ity and parallelism potential of uniform grids. To circumvent this is-
sue to some extent, hybrid methods have also been proposed [Foster
and Metaxas 1996; Zhu and Bridson 2005; Losasso et al. 2008; Zhu
et al. 2010; Raveendran et al. 2011; Jiang et al. 2015; Chen et al.
2015]. Authors have also investigated the use of Fast Fourier trans-
forms [Stam 2002], which was later extended to handle slip bound-
ary conditions [Long and Reinhard 2009], model reduction [Liu
et al. 2015], and regression forests [Ladický et al. 2015].

The pressure projection step is widely accepted to be the computa-
tionally dominating step in fluid simulations, and researchers have
investigated the design of fast solvers using coarse grids [Lentine
et al. 2010], multigrid methods on either uniform grids [McAdams
et al. 2010; Dick et al. 2016] or adaptive grids [Chentanez and
Müller 2011; Ferstl et al. 2014; Setaluri et al. 2014], iterated or-
thogonal projection [Molemaker et al. 2008], dimension reduc-
tion [Ando et al. 2015b], fast summation methods [Zhang and Brid-
son 2014], and stream functions [Ando et al. 2015a]. Fast matrix
factorization updates were explored [Hecht et al. 2012] by exploit-
ing sparsity patterns in the Cholesky algorithm in ways analogous
to our method, albeit in the context of elasticity simulations. An in-
creasing number of researchers have also adopted the use of GPUs
for better computational performance since efficient solvers such as
multigrid tend to be memory-bound [Ament et al. 2010; Dick et al.
2011; Zhang and Bridson 2014; Chen et al. 2015; Wu et al. 2016].

Unlike previous approaches where the goal was to increase perfor-
mance on homogeneous platforms, we use domain decomposition
techniques to develop an efficient Krylov preconditioner whose de-
sign is tailored towards maximizing performance on heterogeneous
computing platforms. One earlier investigation that does address

Figure 4: Smoke flow in a network of interconnected vessels simulated using a 10242 × 512 background grid and 42 million active cells.
The computational domain was divided into four subdomains. The proper flux is observed both in the inlet and the outlet of the flow.

heterogeneity is [Jung et al. 2013], which proposed a wavelet-based
method that used GPUs for increasing the performance of a multi-
grid solver hosted on the CPU. While researchers have proposed
methods classified as domain decomposition [Golas et al. 2012;
Edwards and Bridson 2015], these are quite different from ours
because we work specifically in the context of Schur complement
methods [Smith et al. 1996]. Methods based on Schur comple-
ments have been used for virtual surgery simulations [Bro-nielsen
and Cotin 1996], skinning [Gao et al. 2014], subspace deformable
body simulations [Teng et al. 2015; Wu et al. 2015], or fluid con-
trol [Raveendran et al. 2012].

4 The classic Schur complement method

We introduce the basic principles of the Schur complement method
[Quarteroni and Valli 1999] by explaining how an aggregate solver
for the pressure Poisson equation can be assembled using as subrou-
tines two independent solvers for two non-overlapping partitions of
the entire computational domain. After covering the basic theory
we will detail how this construction extends to multiple partitions,
and derive a preconditioner based on this concept in later sections.

4.1 The two-subdomain case

Ω1

Ω2

Γ

Consider a domain Ω that has been par-
titioned into two subdomains Ω1 and Ω2

through an interface region Γ. Let us as-
sume we have a finite-difference discretiza-
tion of the pressure Poisson equation on Ω,
and that the interfacial region Γ is thick
enough to shield any stencil in Ω1 from including a point in Ω2

(and vice-versa). In practice, when using the standard 7-point sten-
cil in a Cartesian discretization, the interface layer Γ can simply
be one-node thick as long as it cleanly decouples Ω into two dis-
tinct subdomains (although Γ could also be made wider, if desired).
For simplicity of notation we will write the Poisson equation as
Ax = b, with the understanding that the vector x contains the un-
known pressure values and b contains the respective divergence val-
ues of the velocity field. We then reorder degrees of freedom as:

x =

x1

x2

xΓ

 , b =

b1b2
bΓ

 (1)

where xi, bi correspond to values in Ωi, for i ∈ {1, 2} (and sim-
ilarly xΓ, bΓ correspond to degrees of freedom in Γ). Under this
reordering, the matrix A assumes the following block form:

A =

A11 A1Γ

A22 A2Γ

AΓ1 AΓ2 AΓΓ

 (2)

Note that due to symmetry ofA, we have ATΓ1=A1Γ and ATΓ2=A2Γ

for the off-diagonal blocks. Using this block form ofA it is possible

to write the following factorization of the inverse matrix A−1:

A-1 =

I -A-1
11A1Γ

I -A-1
22A2Γ

I

A-1
11

A-1
22

Σ-1

 I
I

-AΓ1A
-1
11 -AΓ2A

-1
22 I

U D UTwhere

Σ = AΓΓ −AΓ1A
-1
11A1Γ −AΓ2A

-1
22A2Γ

is the Schur complement of the block AΓΓ in equation (2). The
validity of this factorization can be verified via a direct substitution
into the identity A·A−1 = I . Finally, since A (and its inverse) is a
symmetric positive definite (SPD) matrix, this factorization implies
that the Schur complement is also SPD (the matrix D is equal to
the symmetric conjugation of the SPD matrix A−1 with the matrix
U−1; hence its diagonal sub-block Σ−1 is symmetric definite, too).

4.2 The multiple subdomain solver

This formulation extends naturally to an arbitrary number of k sub-
domain partitions Ω1, . . . ,Ωk separated by an interface set Γ (fig-
ure 2 depicts such a partitioning into four subdomains, with the
interface Γ highlighted as the magenta-colored separator surface).
The corresponding factorization of A−1 in this case is given in
equation (3). In order to translate this algebraic expression into
a solver algorithm, we first re-factor this into the five-matrix prod-
uct of equation (4), which has every subdomain inverse A-1

ii appear
only twice (as opposed to three inversions per subdomain, in equa-
tion 3). The last algebraic manipulation, as given in equation (5)
further avoids the appearance of the subdomain Laplacian Aii, re-
quiring only the inverses of such matrices. In this expression we
have also substituted the symbol M† ≈ M−1 for approximate in-
verses ofAii and Σ. If the exact inverse of these matrices was used,
equation (5) becomes identically equal to the five-factor expression
of equation (4). We will later engage in such approximations; for
now, we may assume that all these inverses are exact.

The Schur complement method effectively solves the equation
Ax = b by multiplying the right hand side b with the factorized
equivalent of A−1 from equation (5). The key observation is that
we can apply this multiplication indirectly, without explicitly con-
structing the matrix in this factorization. We do this as follows:

1. Solve k subproblems: A11x̂1 = b1, . . . , Akkx̂k = bk.
2. Solve ΣxΓ = bΓ −AΓ1x̂1 −AΓ2x̂2 − . . .−AΓkx̂k.
3. Solve the k new subproblems
A11δx1 = −A1ΓxΓ, . . . , Akkδxk = −AkΓxΓ.

4. Update x1 ← x̂1 + δx1, . . . , xk ← x̂k + δxk.

Observe that steps (1) and (3) require the solution of fully de-
coupled systems for each subdomain Ωi, and this can easily be
performed in parallel, without any communication. Step (2) re-
quires the solution of a symmetric and positive definite system (with
the Schur complement Σ as the coefficient matrix). Traditionally,

A-1 =

I -A-1

11A1Γ

. . .
...

I -A-1
kkAkΓ

I

A-1

11

. . .
A-1
kk

Σ-1

I
. . .

I
-AΓ1A

-1
11 . . . -AΓkA

-1
kk I

 (3)

=

A-1

11

. . .
A-1
kk

I

I -A1Γ

. . .
...

I -AkΓ

I

A11

. . .
Akk

Σ-1

I
. . .

I
-AΓ1 . . . -AΓk I

A-1

11

. . .
A-1
kk

I

 (4)

≈

A†11

. . .
A†kk

I

I -A1Γ

. . .
...

I -AkΓ

I

I

. . .
I

Σ†

I +

-AΓ1 . . . -AΓk I

A†11

. . .
A†kk

I

 (5)

solvers based on this method attempt to solve this interface system
using a preconditioned Krylov subspace method such as Conjugate
Gradients. We will deviate from this practice, and use equation (5)
instead, to design a preconditioner for the global (coupled) system.

Let us examine the structure of Σ and assess the computational cost
of solving the system in step (2) directly. For a volumetric domain
Ω with N total degrees of freedom, the dimensionality of Γ would
be O(

√
N) in 2D, and O(N2/3) in 3D. Note, however, that in con-

trast to the sparse Laplace matrix A, the Schur complement is a
dense matrix, thus havingO(N4/3) entries and requiring at least as
much computation to solve. Asymptotically, this would make step
(2) above by far the bottleneck of the solver, if Σ was to be explic-
itly constructed. Furthermore, the construction of the matrix alone
would likely require even more computation, as it would need to ac-
count for computing the subdomain inverses A-1

ii . Using Conjugate
Gradients as the solver in step (2) opens up an interesting possibil-
ity: the CG algorithm does not need an explicitly constructed ma-
trix Σ, as long as we have a way to compute matrix-vector products
ΣxΓ. In turn, this would require computing products of the form
AΓiA

-1
iiAiΓxΓ as efficiently as possible. Although the factors AΓi,

AiΓ are sparse enough to allow efficient multiplication, multiply-
ing with A-1

ii (i.e. solving a subdomain Poisson problem) requires
at least linear cost relative to the size of the subdomain (assuming
a linear-complexity solver, like an extremely well built multigrid
scheme, iterated to full convergence). There would be opportunity
for parallelization across subdomains, but we would be still con-
fronted with a linear complexity cost for each CG iteration, and we
would have to rely on constructing an extremely efficient precondi-
tioner to ensure that only a small finite number of iterations would
suffice, independent of resolution. This is, in fact, what is done by
many variants of the Schur complement method (often referred to
as iterative substructuring; see Quarteroni and Valli [1999]).

5 A Schur-complement preconditioner

In light of these challenges we propose certain strategic simplifi-
cations that would make the Schur complement method yield an
approximate solver of the Poisson equation, rather than a strictly
accurate one. Our intent would be to use this approximation as a
preconditioner for the Conjugate Gradients method, applied to the
full-scale Poisson problem. Our last transformation of the factor-
ized form for A−1, captured in equation (5) was precisely intended
to facilitate this process. We can easily show that any nonsingular
approximation A†ii ≈ A−1

ii of the subdomain inverses, combined
with a symmetric positive definite (SPD) approximation Σ† ≈ Σ−1

will produce, after substitution in equation (5), an SPD matrix ap-
proximation to A−1. Thus multiplication with this expression can
be used as a preconditioner for the Conjugate Gradients method.

From an implementation standpoint, we map the application of this
preconditioner to a heterogeneous platform by assigning the inte-
rior degrees of freedom of each subdomain Ωi to a single GPU or
Many-Core accelerator card, while the interface degrees of freedom
(Γ) will be the maintained on the CPU. We design the approximate
subdomain inverses A†ii so that they can be multiplied with respec-
tive vectors exclusively on the GPU, local to the accelerator that
owns the subdomain Ωi. Multiplication with the matrix blocks AΓi

will coincide with data transfer from the card that owns Ωi to the
CPU, while multiplication with the transpose AiΓ will relay data
from the CPU to the respective accelerator in the opposite direction.
Multiplication with the approximate inverse of the Schur comple-
ment, i.e. Σ†, will be handled fully on the CPU. The application of
this preconditioner is formalized in pseudocode in Algorithm 1.

Algorithm 1 Preconditioner application z = A†r, from eqn. (5)

1: parallel for i = 1 . . . k do . on GPU
2: Get ri ← CPU
3: Solve qi ← A†iiri

4: Compute s(i)
Γ ← −AΓiqi

5: Send s(i)
Γ → CPU

6: Send qi → CPU
7: end parallel for
8: Compute fΓ = rΓ + s

(1)
Γ + . . .+ s

(k)
Γ . on CPU

9: Solve zΓ ← Σ†fΓ

10: parallel for i = 1 . . . k do . on GPU
11: Get qi ← CPU
12: Get zΓ ← CPU
13: Compute fi ← −AiΓzΓ

14: Solve zi ← A†iifi
15: Add zi+ = qi
16: Send zi → CPU
17: end parallel for

5.1 Multigrid subdomain solver

For approximatingA†ii in the formulation described above, we use a
simple, voxel-accurate multigrid solver in the spirit of prior works
[McAdams et al. 2010; Molemaker et al. 2008], with some em-
bellishments to support sparse domains as discussed in section 7.
The multigrid hierarchy is constructed by classifying every grid cell
as “interior”, “exterior” (to the active domain) or “Dirichlet”, and
coarsening this classification to voxels of lower resolution grids.
Trilinear transfer operators and a damped Jacobi smoother are em-
ployed, with an additional smoothing effort in a narrow band around
the boundary (3-7 iterations) for each interior smoothing pass.

Figure 5: Smoke injected from the bottom of a cylinder, and forced
through a twisted bundle of cylindrical holes. Color corresponds to
vorticity magnitude. Total 1.2B active cells, in a 10242×2048 grid.

6 The interface Schur-complement system

The last remaining piece for generating our preconditioner is the
design of the approximation Σ† and the application of its effec-
tive numerical solution which is hosted exclusively on the CPU.
As previously stated, our objective is to arrive at an algorithm
that is sublinear in complexity relative to the size of the over-
all boundary and yields a good approximation to the exact matrix
Σ = AΓΓ−

∑k
i=1 AΓiA

-1
iiAiΓ. The approximations incurred in Σ†

are twofold: (a) instead of solving ΣxΓ = bΓ exactly, we will sub-
stitute a number of V-cycles of an appropriately designed multigrid
scheme, and (b) we modestly modify the matrix used in this multi-
grid scheme, using adaptivity, to reduce the cost of direct algebra.

6.1 Multigrid solver for the interface

The Schur complement matrix Σ is not only symmetric and positive
definite, but it can further be shown that it is an elliptic operator, as
it is a discretization of the continuous and elliptic Steklov-Poincaré
operator for the Poisson equation [Smith et al. 1996]. This suggests
that a multigrid solver (on the interface variables; separate from the
multigrid cycles used to approximate the subdomain inverses) could
be applicable. The simplest technique for building the multigrid hi-
erarchy is to use Galerkin coarsening to construct the operator at
each resolution level. However, this would require explicitly com-
puting the matrix Σ at the finest level, which is a computationally
expensive proposition. We propose a different hierarchy construc-
tion, and design a smoother that avoids explicit matrix assembly.

We construct the coarser level operators in the following fashion,
Σ2h = A2h

ΓΓ −
∑k
i=1 A

2h
Γi (A

2h
ii)-1A2h

iΓ , where the entire matrix Ah

has first been coarsened down to A2h using trilinear interpolation,
and then the individual building blocks are harvested and reassem-
bled for computing Σ2h. While this may appear a plausible choice
for the multigrid hierarchy, and indeed our experiments show that
this gives good convergence, the intuition behind it comes from the
following observation. Suppose we constructed a multigrid hierar-
chy for the full problem Ax = b, where the right hand side b has
non-zero entries only on the interface Γ, i.e., we are solving the
following equation via multigrid:A11 A1Γ

A22 A2Γ

AΓ1 AΓ2 AΓΓ

x1

x2

xΓ

 =

 0
0
bΓ

 (6)

then the solution can be shown to satisfy xΓ = Σ-1bΓ. Let us
further assume that our smoother routine was designed such that
it completely eliminated any residual of equations interior to the
subdomains, leaving nonzero residuals only on interface degrees of
freedom. We can then interpret our proposed multigrid procedure,
which operates solely on the interface, as algebraically equivalent
to a full-domain multigrid scheme used with a right hand side that is
zero anywhere outside the boundary, as in equation (6), combined
with a smoother that annihilates residuals on subdomain interiors.

The terms
∑k
i=1 AΓiA

-1
iiAiΓ in the formula of Σ correspond di-

rectly to this concept of subdomain-interior equations being solved
exactly, and used to eliminate those degrees of freedom from the
dimensionality of Σ. A smoother that can operate on Σ directly,
implicitly ensures that all equations in the interior of each subdo-
main are satisfied at all times. Finally, the restriction and prolon-
gation operators for the interface-based multigrid solver can be in-
ferred from the transfer operators of the global problem. Note that,
for the purposes of this section we depart from the cell-centered
perspective of grid values, as employed for example in the hierar-
chy construction by McAdams et al [2010], and switch to viewing
unknowns as stored in the nodes of the dual of the typical MAC
grid used for the Navier-Stokes discretization (i.e. pressure values
stored on nodes of this new grid). We then coarsen the cells in the
typical 8-to-1 fashion, using trilinear interpolation. This ensures
that interface degrees of freedom remain fully aligned across levels
of the multigrid hierarchy, and that trilinear prolongation of a finer
level’s interface variables will only need coarse interface variables
as input. Although restriction into coarse interface values techni-
cally touches interior values as well, the residuals of all such in-
terior equations will be zero (since the Schur complement operator
assumes those equations fully satisfied). Thus the transfer operators
we ultimately use in our cycle are bilinear interpolation along the
aligned 2D interface surfaces at each level of the hierarchy.

6.2 Smoothing the Schur-complement system

As previously shown, Σ is a symmetric and positive definite matrix.
Thus, in principle, damped Jacobi or Gauss-Seidel would have been
convergent smoothers. However, since we do not have access to
the explicit matrix form of Σ, operations that would be required
(for example, the diagonal elements of Σ) are not readily available.
Thus, we take a different approach of designing a smoother that can
be iterated without an explicit construction of the matrix. Using the
definition of Σ, the system ΣxΓ = bΓ can be rewritten as:

AΓΓxΓ = bΓ +

k∑
i=1

AΓiA
-1
iiAiΓxΓ (7)

We can use equation (7) to design a fixed-point iteration as follows:

AΓΓx
(n+1)
Γ = bΓ +

k∑
i=1

AΓiA
-1
iiAiΓx

(n)
Γ (8)

One may recognize the similarity of equation (8) with the analogous
matrix form Dx

(n+1)
Γ = bΓ + (L + U)x

(n)
Γ of the Jacobi iteration

based on the decomposition Σ = D−L−U , should that have been
explicitly available. Instead of isolating just the diagonal part of Σ,
our decomposition employs the entire AΓΓ term. In Appendix A
we provide a proof that this iterative scheme will always converge.

The iterative scheme in equation (8) requires two basic blocks.
First, given an already computed right hand side, solving for xΓ

requires solving a sparse symmetric and positive definite system.
Since the matrix AΓΓ is very sparse and structured, we use a
sparse Cholesky factorization using the Intel MKL PARDISO li-
brary, which we have found to be very well-performing especially

(a) (b)
Figure 6: Comparison of (a) a uniform discretization of a subdo-
main interior and (b) our adaptive approximation in Section 6.3.

due to the fact that the interface is highly structured and admits a
very effective nested bisection for reordering its degrees of free-
dom to maximize sparsity. Second, the right hand side requires
the inverse operator A-1

ii for each subdomain. Again, our approach
would be to use a Cholesky factorization of Aii (with appropriate
reordering) to solve the inversion problem using forward/backward
substitution. Pseudocode for the smoother routine is given below:

Algorithm 2 Application of smoother routine. Input: bΓ, x
(n)
Γ

1: for i = 1 . . . k do
2: Compute yi ← AiΓx

(t)
Γ . sparse; fast

3: Solve zi ← A-1
iiyi . PARDISO

4: Compute w(i)
Γ ← AΓizi . sparse; fast

5: end for
6: Compute fΓ = bΓ + w

(1)
Γ + . . .+ w

(k)
Γ

7: Solve x(n+1)
Γ ← A-1

ΓΓfΓ . PARDISO

The matrix AΓΓ in step 7 has O(N2/3) nonzero entries, and we
observed that with appropriate reordering (using PARDISO) the
nonzero entries in the Cholesky factors remain asymptotically well
below O(N). The subdomain matrices Aii, however (step 3) con-
tain on the aggregate O(N) nonzero entries, which will yield a
strictly superlinear number of nonzero entries in their Cholesky fac-
tors, even with excellent reordering. We thus proceed to make one
last approximation, in the interest of reducing the dimensionality of
these factors, as explained in the following section.

6.3 Adaptive approximation of subdomains

Another opportunity for a dimensionality-saving approximation
can be exposed by analyzing the action of the operator AΓiA

-1
iiAiΓ

on a vector xΓ (as used in equation 8). This matrix-vector multipli-
cation can be equivalently interpreted as the following process:

1. The value xΓ is used as a Dirichlet boundary condition in a
Laplace problem Aiix̂ii = AiΓxΓ, that computes a harmonic
interpolant x̂ii of xΓ in the interior of Ωi (moving Dirichlet
conditions to the right-hand side yields the product AiΓxΓ).

2. A global scalar field x̂ is assembled by combining the values
xΓ on the interface, with the harmonic interpolants x̂ii from
each subdomain.

3. The Laplacian y = Ax̂ of this interpolated result is computed.
Naturally y will be zero in the interior of each subdomain,
as x̂ was built as a harmonic interpolant in those locations.
Nonzero values will result along the interface, however. It can
be shown that the restriction yΓ of y on the interface degrees
of freedom is exactly what the Schur complement operator
yΓ = ΣxΓ computes. The contribution of each subdomain
Ωi to this result is exactly equal to −AΓix̂ii.

Based on this interpretation, we observe that the harmonic inter-
polant x̂ii in this process could be very well approximated by an
adaptive tessellation of the subdomain interior, as shown in figure
6. Starting from the uniform grid spanning each subdomain (fig-
ure 6a), we aggressively coarsen as we transition to regions farther
towards the subdomain interior (figure 6b). All our experiments
have indicated that the quality of this approximation is excellent;
remember that even if small errors might be observed in the actual
interpolants, deep inside the subdomains, only the Laplacian of the
resulting interpolant on the interface is ultimately relevant.

The performance implications of this approximation are substantial.
When adaptively approximated using our aggressive coarsening in
figure 6, the actual degrees of freedom of the (octree-type) adaptive
subdomain discretization enumerate in the same order of magnitude
as the interface variables in Γ∩Ωi. In practical terms, this adaptive
subdomain approximation translates to matrices AiΓ, Aii, AΓi in
Algorithm 2 being replaced by lower dimensionality, adaptive vari-
antsA∗iΓ,A∗ii, andA∗Γi. MatrixA∗iΓ will is simply constructed from
AiΓ by removing rows that correspond to interior nodes that have
been coarsened away (or have become T-junctions); all such rows
would have been full of zeros in AiΓ, since our coarsening scheme
preserves the layer of nodes immediately adjacent to the interface at
full resolution (and those are the only interior nodes touched by the
stencils of interface equations). Likewise for the transposes AΓi,
A∗Γi of those matrices. Combined, all adapted interior matrices A∗ii
have O(N2/3) nonzero entries, and we observed that with proper
reordering their Cholesky factors remain clearly sublinear in their
aggregate size, allowing us to run step 3 of Algorithm 2 (and the en-
tire smoother) with asymptotic cost safely below the O(N) mark.

7 Implementation details

Construction of adaptive operators We construct the adaptively
coarsened discretization of section 6.3 based on a Galerkin process.
Let us consider the example of the finest level of the multigrid hi-
erarchy. We define an interpolation operator P ∗h that “prolongates”
the adaptive degrees of freedom x∗ into their trilinearly interpolated
uniform counterparts x = P ∗hx

∗ (this interpolation is conscious of
any T-junctions). Thus, the adaptive discretization of the Lapla-
cian is simply computed as A∗h = (P ∗h)TAhP

∗
h . In fact, we never

explicitly build the uniform matrix Ah, but rewrite this equation as

A∗h =
∑
aij 6=0

aijpip
T
j

where aij = [Ah]ij , and pTk denotes the k-th row of P ∗h . This for-
mulation allows us to construct the adaptive discretization directly
(by iterating over the uniform grid, and processing every spoke aij
of any stencil we encounter), without ever building the uniform
matrix. Since our smoother (Algorithm 2) never needs to use the
uniform subdomain discretization, we construct the adaptive dis-
cretizations of coarser levels of the hierarchy A∗h, A∗2h, A∗4h, etc.
by selective (Galerkin) coarsening of the immediately finer adap-
tive discretization, rather than coarsening the corresponding uni-
form discretization at that level into an octree.

Avoiding nullspace issues Global nullspace components (pockets
of fluid with purely Neumann boundary conditions) are handled
at the top-level PCG algorithm via projection, as usual. In our
smoother subroutine, we generally have the guarantee that the left-
hand-side matrixAΓΓ will be positive definite (it is always symmet-
ric), if the global matrixA is definite too. However, it is possible for
nullspace components to appear in the coarsened version of this ma-
trix A2h

ΓΓ, A4h
ΓΓ, as a result of the Galerkin procedure, in the vicinity

of Neumann domain boundaries. To avoid this, we slightly shift the
eigenvalues of every coarsened discretization, say A∗2h by adding a

minute multiple of the identity. The shifted matrixA∗2h+εI is prac-
tically spectrally equivalent to the original, and fully appropriate as
a substitute in a multigrid hierarchy. Since we use direct solvers
to invert AΓΓ in the smoother, conditioning is not an issue. Effec-
tively, this eigenvalue shift will penalize solution components that
lie in the nullspace to be effectively equal to zero.

Boosting accuracy We use a high-order defect correction technique
[Trottenberg et al. 2001] to allow our approximate inverse of a first-
order discretization to be used as a CG preconditioner for a higher
order scheme. We structure our top-level PCG solver to implement
matrix-vector multiply operations in accordance with a second or-
der accurate discretization of the Laplace operator [Enright et al.
2003]. Upon invocation of the preconditioner, however, we per-
form the following steps: (i) We execute a few iterations of a Jacobi
smoother, using the 2nd order operator, (ii) we then compute the
residual, and multiply this with our first-order preconditioner, and
finally (iii) we again compute the residual r, write the error equa-
tion Ae = −r using the second order operator, which we solve
using the same number of Jacobi iterations. We finally add the cor-
rection back to the result returned by the preconditioner. This oper-
ation, as described, preserves the symmetry and definiteness of the
preconditioner, and allows the first order method to be used as an
effective preconditioner for the second-order problem (at the com-
parably minimal expense of some additional smoothing effort near
the high-order interface).

Sparse grid storage We use the SPGrid data structure [Setaluri
et al. 2014] to store grid data, for all our examples which utilized
highly irregular, sparsely populated grids. SPGrid partitions a vir-
tual background grid into rectangular blocks (83 voxels each, in our
examples), and performs streaming operations and stencil applica-
tions by iterating over the sparse collection of active blocks. We
used SPGrid directly on CPU and Xeon Phi while on the GPU (that
does not offer a virtual memory subsystem as utilized by SPGrid)
we translated this representation into a linearized array with explicit
pointers to the 26 neighbors of each rectangular block.

8 Incompressible free surface flow

We solve the incompressible Euler equations

~ut + (~u · ∇)~u +
∇p
ρ

= ~f , ∇ · ~u = 0

using the splitting scheme as described in [Stam 1999]. Here,
~u = (u, v, w) is the velocity field vector, ρ is the fluid density,
p is the scalar pressure field, and ~f denotes external forces (such as
gravity). We discretize these equations on a MAC grid, where we
first explicitly update the advection terms

~u? − ~un

∆t
+ (~u · ∇)~u = ~f

using a semi-Lagrangian scheme [Selle et al. 2008] and then solve
for the pressure via a Poisson equation

∇ · ∇p
ρ

=
∇ · ~u?

∆t

in order to update the intermediate velocity as follows

~un+1 − ~u?

∆t
+
∇p
ρ

= 0

For tracking the free surface, we generally follow [Enright et al.
2002] using the level set advection of [Enright et al. 2005], the
reinitialization scheme of [Losasso et al. 2005], velocity extrapo-
lation method of [Adalsteinsson and Sethian 1999], and a second
order accurate pressure discretization of [Enright et al. 2003].

0

1

2

3

4

5

1 2 4 8 16 20

Ti
m

e(
s)

Number of Threads

Interface Scalability

Serial Code Parallel Code

0

10

20

30

40

50

1 2 4 8 16 32 56

Sp
ee

d
Up

Number of Threads

Subdomain Scalability

Figure 7: (Top) convergence profiles for ICPCG, MCPCG and
DDPCG (our method) from the water simulation of Figure 3. The
numbers (B-I-B) indicate multigrid smoothers that perform B
boundary sweeps, then I interior sweeps, and B more boundary
sweeps at the end. V-Cycle counts in DDPCG reflect the number of
cycles used in the approximate solution of each subdomain. (Bot-
tom) Scaling of subdomain solvers (left; on Xeon Phi) and interface
solver (right; on CPU) relative to the active cores/threads utilized.

9 Examples and performance benchmarks

We demonstrate the effectiveness of our preconditioner through
several examples. Figure 1 illustrates two smoke simulations with
more than one billion of active degrees of freedom, each. Fig-
ure 4 shows a network of interconnected vessels where smoke en-
ters from the lower left corner and exists from the upper right cor-
ner. Our solver is able to capture the correct incompressible be-
havior in relatively few iterations with four subdomains. Figure 8
shows an example where water is poured in a pool with multiple
immersed objects, creating complex Neumann interfaces. Figure 3
shows an example where water flows in a channel with multiple in-
terior walls, which cause the flow to meander around them. Figure 9
provides a breakdown of individual kernels of our Schur Comple-
ment solver for all these examples, along with timings for alter-
native solvers, detailed in the following section. We note that no
vorticity confinement was used in our smoke examples. Finally, in
the interest of efficiency we used as high of a CFL number as our
examples could tolerate – sometimes leading to minor loss of detail.

10 Discussion

Evaluation of convergence and scaling In our benchmarks, we
compared the convergence behavior of our Schur-Complement Do-
main Decomposition preconditioned CG (“DDPCG”) with a stan-

Figure 8: Water poured in a pool with multiple immersed objects. Second figure from the right shows 70M active cells, in a 10242×512 grid.

dard Incomplete Cholesky preconditioner (“ICPCG”) [Foster and
Fedkiw 2001], and a standard Multigrid-Preconditioned CG algo-
rithm (“MGPCG”) [McAdams et al. 2010]. For the multigrid op-
tion, specifically, we note that although we did not experiment with
improved CPU-based versions of MGPCG that take extra steps to
better capture the topology of the domain on coarser levels of the
multigrid hierarchy [Ferstl et al. 2014], we invested a significant ef-
fort to optimize the stock MGPCG to the absolute best of our capac-
ity, both on the CPU as well as on the accelerator cards (using stan-
dard domain partitioning practices and CUDA, on the GPU). We
produced two, heavily optimized MGPCG implementations: One
designed to run exclusively on the CPU, and one designed to run
homogeneously on just a single GPU, for problems that are small
enough to fit entirely in GPU memory. There is only one algorith-
mic difference between the two implementations: The pure-CPU
MGPCG was set up to solve the coarsest level of the multigrid hi-
erarchy using ICPCG – this was done to improve the convergence
behavior at the bottom of the multigrid cycle, which was crucial in
obtaining acceptable performance at our examples with more than
a billion degrees of freedom (without requiring an extremely deep,
and occasionally inaccurate V-cycle). The GPU-native implemen-
tation of MGPCG used a large number of smoother applications
at the bottom of the V-cycle (which was effective for its smaller
problem size), to avoid using Incomplete Cholesky on the GPU.
We benchmarked the pure-CPU MGPCG solver on the faster (dual
socket) of our two test platforms.

In all our examples, the ICPCG solver exhibited dramatically
slower convergence performance than both MGPCG, and our pro-
posed DDPCG method, often needing more than an order of magni-
tude of iterations higher than DDPCG to reach comparable perfor-
mance. We were unable to use ICPCG for our largest of examples
with billions of cells, as the footprint of the explicitly constructed
matrices would cause it to run out of memory. For our smallest ex-
amples, even each iteration of our heterogeneous DDPCG actually
required less time than one CPU-based ICPCG iteration. As a con-
sequence, we did not find ICPCG to be a competitive alternative.

On the other hand, the convergence behavior of MGPCG remained
competitive in several of our smaller-size examples. We should
point out that the behavior of DDPCG is tunable; investing more V-
cycles in the independent subdomain solves, or additional multigrid
iterations in the interface solve can boost its convergence efficiency.
We found MGPCG to be most competitive with our DDPCG tech-
nique in the context of our smaller examples, especially the free-
surface water simulations. This is attributed to the prominence of
Dirichlet boundary conditions in those scenarios, which dramati-
cally improves the efficacy of smoothing boundary regions, which
is essential for multigrid to behave favorably as a preconditioner
[McAdams et al. 2010]. On average, across the various frames
of the water simulations (Figures 3,8) MGPCG would converge
in no more than 1.5x-3x the number of iterations required by our
tuned DDPCG, while in the smoke simulation of Figure 4, MGPCG
required approximately 2x-2.5x more iterations than DDPCG. In
terms of run time, however, the findings paint a quite different pic-

ture. The smaller two of our examples (Figures 4, 8) were compact
enough to fit on just a single GPU card, where a single iteration of
MGPCG was between 5x-8x times faster than a DDPCG iteration.
Thus, in spite of the moderately slower convergence of MGPCG,
its faster per-iteration cost on the homogeneous, single-GPU im-
plementation makes it preferable to DDPCG by a factor of 3x-5x.
Incidentally, the geometry of the smoke example in Figure 4 led
to another interesting observation: Although the narrow cylindrical
connectors between the glass spheres allowed for a small interface
between subdomains used in our solver (and a reduction in CPU
computation cost), the same geometry traits increased the approxi-
mation error induced by our adaptive coarsening of the subdomain
interiors, increasing the required iterations for PCG convergence.

The situation is dramatically different for our larger simulation ex-
amples, which cannot be solved with MGPCG on a single acceler-
ator card. For those examples, the only practical alternative was to
run MGPCG homogeneously on the CPU. In this context, we ob-
served that each iteration of our DDPCG method was within 20% of
the cost of a CPU-only MGPCG iteration. However, for the large-
scale examples, dominated by Neumann boundary conditions, we
observed MGPCG requiring up to 5x more iterations for conver-
gence, leading to a 3.5x-4.5x performance benefit of DDPCG ver-
sus the CPU-only MGPCG. We conclude that for small problem
sizes, in the order of 100M degrees of freedom or less, a homo-
geneous GPU implementation of MGPCG is the preferred solver,
provided that the problem can fully fit in GPU memory. For prob-
lem sizes that do not fit completely in GPU memory, DDPCG ap-
pears to be consistently superior to CPU-based MGPCG, with the
performance gap becoming larger as the resolution increases.

Limitations and future work The most fundamental limitation
of our proposed method is that, in order for its scaling benefits to
take effect, it needs to be applied to a problem of adequately large
size. In designing our (GPU-hosted) multigrid cycle for the solution
of the subdomain problems, we made a conscious choice to keep the
design of this solver as simple as possible, approximating the do-
main at voxel-accuracy at every level, and not enacting any reme-
dies for topological inconsistencies, such as regions merging or
small Neumann gaps disappearing after coarsening. This was done
in the interest of simplicity, to facilitate low-level optimizations of
the solver components. It is quite likely that topology-conscious
coarsening schemes [Ferstl et al. 2014] could further improve the
convergence properties of this component, and the balance between
enacting such improvements and retaining opportunities for aggres-
sive optimization certainly merits investigation. Finally, one should
not discount the software engineering challenges that are still asso-
ciated with developing numerical software that is as inherently het-
erogeneous as our solver. The established programming paradigms
that are available for homogeneous thread-based parallel develop-
ment (e.g. OpenMP) are arguably much more accessible to the non-
expert developer. Given the precedent of CUDA, and the growing
presence of heterogeneity in modern systems, we hope that pro-
gramming abstractions for these platforms will continue to evolve.

The scope of our work was specifically restricted to the design
and optimization of the pressure Poisson solver on a heterogeneous
computer. We also specifically targeted fluid simulation on uni-
form grids in the development of our solver. Although extending
the concepts of our solver to an adaptive discretization is certainly
possible from an algebraic perspective, we feel that a careful in-
vestigation is warranted to make sure that the complexity of work
that needs to happen on the interface region remains comparatively
lower. This aspect, as well as practices for efficient dynamic parti-
tioning of temporally changing adaptive grids would be an exciting
topic for continued investigation.

A very interesting venue for future work might focus on extend-
ing our technique to deeper hierarchies of heterogeneous plat-
forms, using for example clusters of network-interconnected GPU-
accelerated nodes. The same way that we used a multigrid cycle
to approximate a subdomain solver, one could envision using our
entire preconditioner as the approximate solver for a subdomain as-
signed to each cluster node, which is internally subdivided to use
GPU accelerations as we currently do. Although bandwidths of
network interconnects would be even slower than that of PCIe, due
to economy of scale the relevant asymptotics (relative size of in-
terfaces vs. entire grid) could remain favorable. Finally, emerging
GPU architectures and technologies (stacked memory, integration
of CPU and GPU) might facilitate programming in a homogeneous
model (using capabilities such as unified memory spaces), but non-
homogeneity in memory bandwidth is almost certain to persist in
some form (cores having significantly higher bandwidth to their
“local” region of memory). We feel that the adaptation of solver
concepts to such architectural traits is an exciting research thread.

Acknowledgments

The authors are grateful to Mark Hill, David Wood and Michael
Swift for many insightful early discussions, and Tim Czerwonka for
systems setup and support. This work was supported in part by NSF
grants IIS-1253598, CCF-1533885, CCF-1423064, IIS-1407282.
The bronchi model was sourced via sketchfab.com (published by
user thuntu and distributed under the Creative Commons license).

References

ADALSTEINSSON, D., AND SETHIAN, J. 1999. The fast con-
struction of extension velocities in level set methods. Journal of
Computational Physics 148, 1, 2 – 22.

ADAMS, B., PAULY, M., KEISER, R., AND GUIBAS, L. J. 2007.
Adaptively sampled particle fluids. In ACM SIGGRAPH 2007
Papers, ACM, New York, NY, USA, SIGGRAPH ’07.

AMENT, M., KNITTEL, G., WEISKOPF, D., AND STRASSER, W.
2010. A parallel preconditioned conjugate gradient solver for
the poisson problem on a multi-gpu platform. In Proceedings
of the 18th Euromicro Conference on Parallel, Distributed and
Network-based Processing, 583–592.

ANDO, R., THÜREY, N., AND WOJTAN, C. 2013. Highly adaptive
liquid simulations on tetrahedral meshes. ACM Trans. Graph.
32, 4 (July), 103:1–103:10.

ANDO, R., THUEREY, N., AND WOJTAN, C. 2015. A stream
function solver for liquid simulations. ACM Trans. Graph. 34, 4,
53:1–53:9.

ANDO, R., THÜREY, N., AND WOJTAN, C. 2015. A dimension-
reduced pressure solver for liquid simulations. EUROGRAPH-
ICS 2015.

BAILEY, D., BIDDLE, H., AVRAMOUSSIS, N., AND WARNER, M.
2015. Distributing liquids using OpenVDB. In ACM SIGGRAPH
2015 Talks, SIGGRAPH ’15.

BENDER, J., AND KOSCHIER, D. 2015. Divergence-free smoothed
particle hydrodynamics. SCA ’15, 147–155.

BRO-NIELSEN, M., AND COTIN, S. 1996. Real-time volumetric
deformable models for surgery simulation using finite elements
and condensation. In Computer Graphics Forum, 57–66.

CHEN, Z., KIM, B., ITO, D., AND WANG, H. 2015. Wetbrush:
Gpu-based 3d painting simulation at the bristle level. ACM
Trans. Graph. 34, 6, 200:1–200:11.

CHENTANEZ, N., AND MÜLLER, M. 2011. Real-time Eulerian
water simulation using a restricted tall cell grid. SIGGRAPH
’11, 82:1–82:10.

CHENTANEZ, N., FELDMAN, B. E., LABELLE, F., O’BRIEN,
J. F., AND SHEWCHUK, J. R. 2007. Liquid simulation on
lattice-based tetrahedral meshes. SCA ’07, 219–228.

COHEN, J., TARIQ, S., AND GREEN, S. 2010. Interactive fluid-
particle simulation using translating Eulerian grids. In ACM SIG-
GRAPH Symp. on Interactive 3D Graphics and Games, 15–22.

DA, F., BATTY, C., WOJTAN, C., AND GRINSPUN, E. 2015. Dou-
ble bubbles sans toil and trouble: Discrete circulation-preserving
vortex sheets for soap films and foams. ACM Trans. Graph. 34,
4, 149:1–149:9.

DE GOES, F., WALLEZ, C., HUANG, J., PAVLOV, D., AND DES-
BRUN, M. 2015. Power particles: An incompressible fluid solver
based on power diagrams. ACM Trans. Graph. 34, 4, 50:1–
50:11.

DICK, C., GEORGII, J., AND WESTERMANN, R. 2011. A real-
time multigrid finite hexahedra method for elasticity simulation
using CUDA. Simulation Modelling Practice and Theory 19, 2,
801 – 816.

DICK, C., ROGOWSKY, M., AND WESTERMANN, R. 2016. Solv-
ing the fluid pressure poisson equation using multigrid – evalua-
tion and improvements. IEEE Trans. Visualization & Computer
Graphics (to appear).

DOBASHI, Y., MATSUDA, Y., YAMAMOTO, T., AND NISHITA, T.
2008. A fast simulation method using overlapping grids for in-
teractions between smoke and rigid objects. Computer Graphics
Forum 27, 2, 477–486.

EDWARDS, E., AND BRIDSON, R. 2015. The discretely-
discontinuous Galerkin coarse grid for domain decomposition.
CoRR abs/1504.00907.

ENGLISH, R. E., QIU, L., YU, Y., AND FEDKIW, R. 2013.
Chimera grids for water simulation. SCA ’13, 85–94.

ENRIGHT, D., MARSCHNER, S., AND FEDKIW, R. 2002. Ani-
mation and rendering of complex water surfaces. ACM Trans.
Graph. 21, 3, 736–744.

ENRIGHT, D., NGUYEN, D., GIBOU, F., AND FEDKIW, R. 2003.
Using the particle level set method and a second order accurate
pressure boundary condition for free surface flows. In Proc. 4th
ASME-JSME Joint Fluids Eng. Conf.

ENRIGHT, D., LOSASSO, F., AND FEDKIW, R. 2005. A fast
and accurate semi-Lagrangian particle level set method. Com-
put. Struct. 83, 6-7, 479–490.

Smoke
(Fig. 1; right)

Smoke
(Fig. 1; left)

1.2G DOFs 1.8G DOFs

16 40
512 x 512 x 512 1536 x 1536 x 1920

51.894 44.532 61.446 42.882 38.472 25.704 1790.11 4247.98
5.766 4.948 4.389 3.063 1.603 1.071 100.49 193.09
4.291 4.314 3.657 2.769 0.999 0.843 88.9341 183.9
1.362 1.249 1.046 0.865 0.457 0.351 26.4284 152.79
0.378 0.311 0.311 0.218 0.115 0.079 2.68 21.83
0.158 0.309 0.084 0.169 0.103 0.105 7.6252 16.002
1.392 1.539 1.214 1.096 0.029 0.032 33.042 14.3918
0.413 0.349 0.314 0.215 0.006 0.003 7.864 3.741
0.008 0.012 0.008 0.007 0.00013 0.0002 0.145 0.094

4.16 2.82 1.32 N/A N/A
0.424 0.316 0.1736 N/A N/A

10.1838 17.679 7.983 N/A N/A
5.55 3.135 4.489 67.28 175.4

127.65 153.5933 218.64 3902.8062 16742

Water (Fig. 3) Water (Fig. 9) Smoke (Fig. 4)
Active DOFs: 114M Active DOFs: 70M Active DOFs: 42M

GPU Phi GPU Phi GPU Phi GPU Phi
Number of subdomains 16 16 4
Subdomain resolution 128 x 128 x 768 128 x 128 x 768 512 x 512 x 512
DDPCG total solve time
DDPCG iteration cost
Preconditioner Application

Subdomain Solve (3 V-cycles)
Each MG V-cycle
Data transfer from/to CPU

Interface Solve (1 V-cycle)
Smoothing (Top-Level)
Restriction/Prolongation

ICPCG iteration cost (CPU only)
MGPCG iteration cost (GPU only)
MGPCG solve time (GPU only)
MGPCG iteration cost (CPU only)
MGPCG solve time (CPU only)

Figure 9: Timing information for four examples. All run times cited are in seconds. Our “GPU” platform is an Intel Xeon E5-1650v3 CPU
equipped with two NVidia GTX Titan X GPUs and 128GB RAM, while our “Phi” platform is an Intel Xeon E5-2650v3 CPU equipped with
six Intel Xeon Phi 31S1P cards. The row labeled Preconditioner Application reflects the preconditioning cost for a single PCG iteration.

FERSTL, F., WESTERMANN, R., AND DICK, C. 2014. Large-scale
liquid simulation on adaptive hexahedral grids. IEEE Trans. Vi-
sualization & Computer Graphics 20, 10 (Oct), 1405–1417.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. In Proc. of ACM SIGGRAPH 2001, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graph. Models Image Process. 58, 5, 471–483.

FROEMLING, E., GOKTEKIN, T., AND PEACHEY, D. 2007. Sim-
ulating whitewater rapids in Ratatouille. In ACM SIGGRAPH
2007 Sketches, SIGGRAPH ’07.

GAO, M., MITCHELL, N., AND SIFAKIS, E. 2014. Steklov-
poincaré skinning. SCA ’14, 139–148.

GEIGER, W., LEO, M., RASMUSSEN, N., LOSASSO, F., AND
FEDKIW, R. 2006. So real it’ll make you wet. In ACM SIG-
GRAPH 2006 Sketches, SIGGRAPH ’06.

GOLAS, A., NARAIN, R., SEWALL, J., KRAJCEVSKI, P., DUBEY,
P., AND LIN, M. 2012. Large-scale fluid simulation using
velocity-vorticity domain decomposition. ACM Trans. Graph.
31, 6, 148:1–148:9.

HECHT, F., LEE, Y. J., SHEWCHUK, J. R., AND O’BRIEN, J. F.
2012. Updated sparse cholesky factors for corotational elastody-
namics. ACM Trans. Graph. 31, 5, 123:1–123:13.

HORVATH, C., AND GEIGER, W. 2009. Directable, high-resolution
simulation of fire on the gpu. In ACM SIGGRAPH 2009 Papers,
ACM, New York, NY, USA, SIGGRAPH ’09, 41:1–41:8.

HOUSTON, B., NIELSEN, M. B., BATTY, C., NILSSON, O., AND
MUSETH, K. 2006. Hierarchical RLE level set: A compact and
versatile deformable surface representation. ACM Trans. Graph.
25, 1, 151–175.

IHMSEN, M., CORNELIS, J., SOLENTHALER, B., HORVATH, C.,
AND TESCHNER, M. 2014. Implicit incompressible SPH. IEEE
Transactions on Visualization and Computer Graphics 20, 3,
426–435.

IRVING, G., GUENDELMAN, E., LOSASSO, F., AND FEDKIW, R.
2006. Efficient simulation of large bodies of water by coupling
two and three dimensional techniques. SIGGRAPH ’06, 805–
811.

JIANG, C., SCHROEDER, C., SELLE, A., TERAN, J., AND STOM-
AKHIN, A. 2015. The affine particle-in-cell method. ACM Trans.
Graph. 34, 4, 51:1–51:10.

JUNG, H.-R., KIM, S.-T., NOH, J., AND HONG, J.-M. 2013. A
heterogeneous CPU-GPU parallel approach to a multigrid pois-
son solver for incompressible fluid simulation. Computer Ani-
mation and Virtual Worlds 24, 3-4, 185–193.

KLINGNER, B., FELDMAN, B., CHENTANEZ, N., AND O’BRIEN,
J. 2006. Fluid animation with dynamic meshes. SIGGRAPH
’06, 820–825.

LADICKÝ, L., JEONG, S., SOLENTHALER, B., POLLEFEYS, M.,
AND GROSS, M. 2015. Data-driven fluid simulations using
regression forests. ACM Trans. Graph. 34, 6, 199:1–199:9.

LENTINE, M., ZHENG, W., AND FEDKIW, R. 2010. A novel
algorithm for incompressible flow using only a coarse grid pro-
jection. ACM Trans. Graph. 29, 4, 114:1–114:9.

LIU, B., MASON, G., HODGSON, J., TONG, Y., AND DESBRUN,
M. 2015. Model-reduced variational fluid simulation. ACM
Trans. Graph. 34, 6, 244:1–244:12.

LONG, B., AND REINHARD, E. 2009. Real-time fluid simulation
using discrete sine/cosine transforms. In Proceedings of the 2009
Symposium on Interactive 3D Graphics and Games, I3D ’09,
99–106.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating
water and smoke with an octree data structure. SIGGRAPH ’04,
457–462.

LOSASSO, F., FEDKIW, R., AND OSHER, S. 2005. Spatially adap-
tive techniques for level set methods and incompressible flow.
Computers and Fluids 35, 2006.

LOSASSO, F., TALTON, J., KWATRA, N., AND FEDKIW, R. 2008.
Two-way coupled SPH and particle level set fluid simulation.
IEEE Transactions on Visualization and Computer Graphics 14,
4, 797–804.

MACKLIN, M., AND MÜLLER, M. 2013. Position based fluids.
ACM Trans. Graph. 32, 4, 104:1–104:12.

MACKLIN, M., MÜLLER, M., CHENTANEZ, N., AND KIM, T.-Y.
2014. Unified particle physics for real-time applications. ACM
Trans. Graph. 33, 4, 153:1–153:12.

MCADAMS, A., SIFAKIS, E., AND TERAN, J. 2010. A paral-
lel multigrid poisson solver for fluids simulation on large grids.
SCA ’10, 65–74.

MOLEMAKER, J., COHEN, J. M., PATEL, S., AND NOH, J.
2008. Low viscosity flow simulations for animation. In Proceed-
ings of the 2008 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, Eurographics Association, Aire-la-Ville,
Switzerland, SCA ’08, 9–18.

MUSETH, K. 2013. VDB: High-resolution sparse volumes with
dynamic topology. ACM Trans. Graph. 32, 3 (July), 27:1–27:22.

QUARTERONI, A., AND VALLI, A. 1999. Domain decomposition
methods for partial differential equations, vol. 10. Clarendon
Press.

RASMUSSEN, N., NGUYEN, D. Q., GEIGER, W., AND FEDKIW,
R. 2003. Smoke simulation for large scale phenomena. ACM
Trans. Graph. 22, 3, 703–707.

RAVEENDRAN, K., WOJTAN, C., AND TURK, G. 2011. Hybrid
smoothed particle hydrodynamics. SCA ’11, 33–42.

RAVEENDRAN, K., THUEREY, N., WOJTAN, C., AND TURK, G.
2012. Controlling liquids using meshes. SCA ’12, 255–264.

SELLE, A., FEDKIW, R., KIM, B., LIU, Y., AND ROSSIGNAC, J.
2008. An unconditionally stable MacCormack method. J. Sci.
Comput. 35, 2-3 (June), 350–371.

SETALURI, R., AANJANEYA, M., BAUER, S., AND SIFAKIS, E.
2014. SPGrid: A sparse paged grid structure applied to adaptive
smoke simulation. ACM Trans. Graph. 33, 6, 205:1–205:12.

SMITH, B. F., BJØRSTAD, P. E., AND GROPP, W. D. 1996. Do-
main Decomposition: Parallel Multilevel Methods for Elliptic
Partial Differential Equations. Cambridge University Press.

SOLENTHALER, B., AND GROSS, M. 2011. Two-scale particle
simulation. SIGGRAPH ’11, 81:1–81:8.

STAM, J. 1999. Stable fluids. SIGGRAPH ’99, 121–128.

STAM, J. 2002. A simple fluid solver based on the FFT. J. Graph.
Tools 6, 2, 43–52.

TAN, J., YANG, X., ZHAO, X., AND YANG, Z. 2008. Fluid ani-
mation with multi-layer grids. In SCA ’08 Posters.

TENG, Y., MEYER, M., DEROSE, T., AND KIM, T. 2015. Sub-
space condensation: Full space adaptivity for subspace deforma-
tions. ACM Trans. Graph. 34, 4, 76:1–76:9.

THÜREY, N., WOJTAN, C., GROSS, M., AND TURK, G. 2010. A
multiscale approach to mesh-based surface tension flows. ACM
Trans. Graph. 29, 4, 48:1–48:10.

TROTTENBERG, U., OOSTERLEE, C. W., AND SCHULLER, A.
2001. Multigrid. Academic Press.

VAN OPSTAL, B., JANIN, L., MUSETH, K., AND ALDÉN, M.
2014. Large scale simulation and surfacing of water and ice ef-
fects in Dragons 2. In ACM SIGGRAPH 2014 Talks, SIGGRAPH
’14.

WOJTAN, C., THÜREY, N., GROSS, M., AND TURK, G. 2010.
Physics-inspired topology changes for thin fluid features. ACM
Trans. Graph. 29, 4, 1–8.

WU, X., MUKHERJEE, R., AND WANG, H. 2015. A unified ap-
proach for subspace simulation of deformable bodies in multiple
domains. ACM Trans. Graph. 34, 6, 241:1–241:9.

WU, J., DICK, C., AND WESTERMANN, R. 2016. A system for
high-resolution topology optimization. IEEE Transactions on
Visualization and Computer Graphics 22, 3, 1195–1208.

ZHANG, X., AND BRIDSON, R. 2014. A PPPM fast summation
method for fluids and beyond. ACM Trans. Graph. 33, 6, 206:1–
206:11.

ZHU, Y., AND BRIDSON, R. 2005. Animating sand as a fluid.
SIGGRAPH ’05, 965–972.

ZHU, B., YANG, X., AND FAN, Y. 2010. Creating and Preserving
Vortical Details in SPH Fluid. Computer Graphics Forum.

ZHU, B., LU, W., CONG, M., KIM, B., AND FEDKIW, R. 2013.
A new grid structure for domain extension. ACM Trans. Graph.
32, 4, 63:1–63:12.

ZHU, B., QUIGLEY, E., CONG, M., SOLOMON, J., AND FEDKIW,
R. 2014. Codimensional surface tension flow on simplicial com-
plexes. ACM Trans. Graph. 33, 4, 111:1–111:11.

A Appendix: Proof of smoother convergence

Consider the fixed-point iteration

AΓΓx
(n+1)
Γ = bΓ +

∑k
i=1 AΓiA

-1
iiAiΓx

(n)
Γ

⇒ S1x
(n+1)
Γ = bΓ + S2x

(n)
Γ

(9)

where S1 = AΓΓ and S2 =
∑k
i=1 AΓiA

-1
iiAiΓ. Let x? be the exact

solution of this iterative scheme, i.e., x? satisfies the equation

S1x? = bΓ + S2x? (10)

Subtracting equation (10) from equation (9) gives

S1e
(n+1) = S2e

(n) ⇒ e(n+1) = S-1
1 S2e

(n)

where e(n) = x
(n)
Γ −x? is the error in the n-th iteration. In order to

show convergence of the iterative scheme in equation (9), we need
to show that the spectral radius of S-1

1 S2 is less than 1. Now,

Σ = S1 − S2 ⇒ S1 = Σ + S2

Since S2 is symmetric and positive definite (SPD), S1/2
2 is well-

defined. Noting that the two matrices S-1
1 S2 and S1/2

2 S-1
1 S

1/2
2 are

related by a similarity transform (via S1/2
2), it follows that

ρ(S-1
1 S2) = ρ(S

1/2
2 S-1

1 S
1/2
2) = ρ

[
(S

-1/2
2 S1S

-1/2
2)-1

]
= ρ

[
(S

-1/2
2 (Σ + S2)S

-1/2
2)-1

]
= ρ

[
(I + S

-1/2
2 ΣS

-1/2
2)-1

]
= 1

λmin

(
I+S

-1/2
2 ΣS

-1/2
2

) = 1

1+λmin

(
S
-1/2
2 ΣS

-1/2
2

)
Since Σ is SPD and S-1/2

2 is symmetric, the matrix S-1/2
2 ΣS

-1/2
2 is

SPD, so λmin
(
S

-1/2
2 ΣS

-1/2
2

)
> 0. Thus, ρ(S-1

1 S2) < 1.

