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Abstract

The subfield of derandomization in computational complexity theory aims to understand

the conditions under which randomness can be efficiently reduced or completely eliminated

from computational processes. The fundamental question regarding algorithms asks whether

probabilistic algorithms can be simulated deterministically with a small overhead in time.

A corresponding question about proofs asks whether probabilistic proofs known as Arthur-

Merlin protocols can be simulated nondeterministically with a small overhead in time. Both

questions are intricately tied to computational hardness. Prominently, in both settings

blackbox derandomization, i.e., derandomization through pseudorandom generators, has been

shown equivalent to lower bounds for decision problems against circuits and nondeterministic

circuits, respectively. This dissertation focuses on generic, so-called whitebox derandomiza-

tion for Arthur-Merlin protocols.

Instance-wise hardness. We develop a near-equivalence for Arthur-Merlin protocols between

whitebox derandomization and lower bounds on almost-all inputs against protocols

for multi-bit functions f that are efficiently computable nondeterministically. Our

technique works instance-wise: It succeeds for every input x for which a particular

Arthur-Merlin protocol fails to compute f(x). We also obtain the first indication for

Arthur-Merlin protocols of the equivalence between whitebox derandomization and the

existence of targeted pseudorandom generators.

Refuting bottleneck protocols. We establish a full equivalence for Arthur-Merlin protocols

between derandomization via targeted pseudorandom generators and the existence
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of efficiently computable nondeterministic refuters for the identity function against

bottleneck Arthur-Merlin protocols. We also show that the identity function can be

replaced by any other function f that is efficiently computable nondeterministically. A

refuter for a function f is a meta-algorithm that, on input the description of a protocol,

finds an input where the protocol fails to compute f . An Arthur-Merlin protocol is

said to have a bottleneck if it first probabilistically compresses the input to a shorter

representation and then computes the output from the compressed representation.

Mild derandomization. We develop two equivalence results for mild derandomizations of

Arthur-Merlin protocols: between whitebox derandomization and targeted pseudoran-

dom generators, and between whitebox derandomization and the existence of multi-

bit functions f that are efficiently computable nondeterministically and are leakage-

resilient against Arthur-Merlin protocols. A mild derandomization is a simulation by

a nondeterministic algorithm with oracle access to NP, as opposed to a simulation by

a plain nondeterministic algorithm. A function f is leakage-resilient against a class

of protocols if every protocol in the class fails to compute f even when additionally

receiving a small amount of information about the value of f on the given input.

In addition to time-efficient derandomization of Arthur-Merlin protocols, we also study

space-efficient derandomization of probabilistic algorithms. We show that space-efficient

isolation for generic as well as catalytic computation follows from the existence of efficiently-

computable unambiguous refuters against unambiguous space-bounded bottleneck algorithms.

We also show that a space-bounded version of Arthur-Merlin protocols admit space-efficient

catalytic algorithms. Isolation is the process of singling out solutions for computational

problems that may have multiple solutions. The notion is closely related to unambiguous

algorithms, i.e., nondeterministic algorithms that have at most one accepting computation

path. Catalytic computation has read/write access to an additional populated memory that

must be restored to its initial contents at the end of the execution.
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Chapter 1

Introduction

What is a mathematical proof? A common interpretation is as a sequence of symbols that

when read by another person, probably a mathematician, convinces them that a certain

statement is true. A more formal interpretation casts the proof verification process as a

computation. Given a sequence of symbols representing the proof, the computation involves

verifying that the sequence follows a previously defined set of rules: the axioms and rules of

inference in a formal system.

When defining proofs, mathematicians may not take the length of the proof or the time

required to verify it into consideration, but computer scientists do. After all, how useful is a

proof that requires a thousand years to be verified? With the intent of defining “reasonable”

proofs, we lay out some definitions. We say that a decision problem or Π is a subset of

strings in some fixed alphabet, which for simplicity we set to {0, 1}. An instance of a

decision problem is a binary string, which may be positive if it is in Π or negative otherwise.

The definition of a decision problem allows for capturing true mathematical statements

without proof length or verification time considerations: We just take Π to be the set of true

mathematical statements with respect to some fixed formal system F .

The theory of computational complexity theory allows for a more grounded definition via

the complexity class NP, where we limit the length of the proof as well as the time required
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by the verification process. In the field of computational complexity, polynomial running

times, those that grow polynomially with respect to the input length, are often considered

“reasonable”, and so we stick to this convention. The class NP consists of those decision

problems Π for which there exists a polynomial-time algorithm V , called the verifier, such

that:

○ If x is a positive instance, then there exists a polynomial-length proof y such that

V (x, y) accepts.

○ If x is a negative instance, then for all polynomial-length candidate proofs y′, V (x, y′)

rejects.

To formally capture “short” proofs in NP, we can define the following decision problem Π:

Given a mathematical assertion φ in some fixed formal system F and an integer n in unary,

is there a proof of length at most n in F for φ?

A more general interpretation of the notion of proof is that it is any process that persuades

someone that a certain statement is true. Such a process can be a conversation: A prover

tries to convince a verifier of the validity of the statement. Along the way, the verifier can

ask questions until reaching a conclusion. The verifier may accept, indicating that they

believe in the validity of the statement, or reject, indicating that they were not convinced

by the prover.

At first, the class NP seems to disregard the conversational aspect of the more general

interpretation of a mathematical proof. However, it turns out that NP does capture such

interactions: An equivalent definition of NP is that of a computational process in which

a computationally unbounded prover P interacts with a polynomial-time verifier V for as

many rounds as necessary (though limited by the running time for the verifier) until the

verifier accepts or rejects, with the requirement that some algorithm P representing a proof

strategy that makes the verifier accept must exist for positive instances, and that no such
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strategy can exist for negative instances. The reason for this equivalence is that a transcript

for the interaction between P and V serves as a proof in the more traditional sense.

There is, however, one aspect that the class NP does not consider: randomness. What

if we allow the verifier access to a fair coin to aid in the verification process? Do we gain

anything from this change? To explore this notion, we discuss how randomness allows a

person who can see colors — call him Merlin — to prove to a colorblind person — call him

Arthur — that the two socks Arthur holds in his hands are of different colors — say red and

green. The interaction between Merlin and Arthur goes as follows: First, Arthur secretly

flips a coin. If the coin lands heads, Arthur shows Merlin the sock that he claims to be red,

otherwise, Arthur shows Merlin the supposedly green sock. Merlin then tells Arthur whether

the sock he sees is red or green. If the socks are indeed of different colors, Merlin will always

be able to answer Arthur’s challenge correctly. Otherwise, Merlin can’t do better than just

randomly guessing, answering incorrectly with probability exactly 1/2. Of course, there is

still a probability of 1/2 on an individual interaction as above that Merlin can convince

Arthur that the two socks are of different colors, even if they are not. However, repeating

this procedure say, 10 times, already reduces this probability to 1/1024. In that case, even

though the proof may not be satisfactory from a mathematical perspective, we may say that

if Merlin always gets it right, Arthur is convinced with high probability that the socks are

indeed of different colors.

The notion of a probabilistic proof as above can also be formalized by the theory of

computational complexity, and we do so next.

Probabilistic proofs. Let Π be a decision problem. A probabilistic proof for Π is com-

posed of two probabilistic algorithms V (for verifier) and P (for prover), together with a

protocol that defines how the two entities interact. The interactive protocol must respect

the following properties:

1. Completeness. For a positive instance of Π, the probability that V accepts after
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interacting with P is 1, i.e., if the statement is true, then P can always make V accept

the validity of the statement.

2. Soundness. For a negative instance of Π, for all algorithms P ∗, the probability that V

accepts after interacting with P is at most 1/2, i.e., if the statement is false, then no

proof strategy P ∗ can make V accept with high probability.

To guarantee that the definition above is as “reasonable” or efficient as the definition of NP,

we also require that V runs in probabilistic polynomial time and that V and P exchange at

most a polynomial number of messages, each of polynomial length. Notice that we do not

limit the computational power for the prover P .

One may now ask: Are there any problems that admit efficient probabilistic proofs as

above, and are not known to be in NP? The answer is yes, since efficient probabilistic proofs

are captured by PSPACE, the class of problems decidable in polynomial space instead of time

[Sha92]. As PSPACE is conjectured to be much larger than NP, introducing randomness

seems to greatly increase the set of statements that can be proven. The class of problems

admitting efficient probabilistic proofs is very robust. For example, we may allow the verifier

to incorrectly reject positive instances with low probability, and also let the verifier reveal

all of their coin tosses to the prover, without changing the class [FGM+89; GS86].

Having defined efficient probabilistic proofs and seen how powerful they are, we may

still wonder if there is some restriction/subclass that is closer to NP while still allowing for

“short” proofs for problems that are not known to be in NP. Looking ahead, we also want

to find some subclass that could reasonably equal NP under some sort of derandomization

hypothesis. In computational complexity, the subfield of derandomization asks whether

it is possible to efficiently reduce or completely remove randomness from computational

processes. In a sense, we are trying to increase the power of NP by introducing randomness,

but then looking for ways to derandomize the resulting class. It turns out that restricting

the number of rounds of communication to some constant independent of the input length
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is enough. Before we define the resulting subclass, let us see an example of such a protocol,

which has a very similar structure to the “colored-sock” protocol above, for a problem not

known to be in NP.

The Graph Isomorphism problem is defined as follows: The input is a pair of graphs

(G0, G1), and the objective is to decide whether G0 is isomorphic to G1. We say that two

graphs are isomorphic if they have the same connectivity structure, even though they may

look different at first. Formally, this means that there exists a permutation of one graph’s

vertices that maps it to the other graph (and vice-versa). Notice that Graph Isomorphism

is in NP since a permutation as above serves as a short proof that can be efficiently ver-

ified. However, we don’t know of any short proofs for negative instances: those pairs

(G0, G1) of nonisomorphic graphs. Formally, we don’t know whether the decision prob-

lem Graph Nonisomorphism is in NP, where Graph Nonisomorphism is the set of

pairs of graphs that are not isomorphic. We do know, however, of an efficient probabilistic

proof for Graph Nonisomorphism, which works as follows: For a pair of graphs G0, G1,

1. The verifier V samples a random bit b and a random permutation τ . V then applies

τ to Gb, obtaining a graph H, which is sent to the prover P .

2. If H is isomorphic to G0, P sets b′ = 0, otherwise, it sets b′ = 1. P then sends b′ to V .

3. V accepts if and only if b = b′, i.e., P was able to detect which graph was randomly

permuted to obtain H.

The key property in this protocol is that when G0 is not isomorphic to G1, a computationally-

unbounded prover P can always discover to which of the two graphs H is isomorphic (for

example, by trying out all possible permutations and checking which one maps H into one

of G0 or G1), and can therefore make V accept with probability 1. However, when G0

is isomorphic to G1 (a negative instance for the problem Graph Nonisomorphism), the

distribution of H is identical in the cases b = 0 and b = 1, meaning that no proof strategy
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P ∗ can extract from H (the only message sent by V ) the value of b with probability higher

than 1/2. Thus, V rejects with probability exactly 1/2.

In the protocol above, it is critical that the verifier keeps the random bits it selects

private, not revealing them to the prover. Otherwise, the prover would always be able to

correctly guess which graph was randomly permuted by the verifier. However, there exists a

protocol for Graph Nonisomorphism where it is safe for the verifier to reveal its random

bits. The protocol has the following structure:

1. First, the verifier selects a polynomial number of random bits, obtaining a random

string r, and sends r to the prover.

2. The prover replies with a proof yr that may depend on the sequence r.

3. The verifier runs a deterministic verification process on the original input, r and yr,

accepting or rejecting.

Notice that in the protocol above, all of the verifier’s random bits are revealed to the

prover. A protocol with the structure above exists for all problems that admit constant-round

probabilistic proofs, even ones where the verifier’s randomness is private [GS86; BM88]. We

call such a protocol an Arthur-Merlin protocol, a term coined by Babai and Moran [BM88].

Arthur-Merlin protocols. The idea behind the name Arthur-Merlin is that Merlin, an

all-powerful but untrustworthy entity, wants to convince Arthur, a reliable but computation-

ally-limited entity, that a certain assertion is true. To do so, Arthur first flips a coin a couple

of times in plain view of Merlin, who then replies with a proof that is verified by Arthur.

We define the class AM as the decision problems that admit an Arthur-Merlin protocol. By

the discussion above, the problem Graph Nonisomorphism is in AM. We remark that

there also exists the related class MA, where Merlin goes first in the protocol. It is known

that NP is in MA, which is in AM, though it is unknown whether AM equals MA, or even

whether Graph Nonisomorphism is in MA.
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The class AM is the main topic of this dissertation. Our focus is on the following question

that we alluded to earlier: Is AM equal to NP? Alternatively, can we remove all randomness

in an Arthur-Merlin protocol at only a polynomial cost in time? As mentioned before, this

is a derandomization question, and it turns out that there is ample evidence that AM equals

NP. Next, we explore the derandomization subfield of computational complexity.

Derandomizing probabilistic algorithms. The classic derandomization question is

concerned with efficient computation instead of efficiently-verifiable proofs, i.e., with the

class BPP, which we define next. We say that a decision problem Π is in BPP if there

exists a probabilistic polynomial-time algorithm A such that, for every instance x of Π, the

following holds:

○ If x is a positive instance, then the probability over r that A(x; r) accepts is at least

2/3.

○ If x is a negative instance, then the probability over r that A(x; r) rejects is at least

2/3.

Above, we view the internal randomness of A as an additional input.

The main question posed by the field of derandomization is whether the class BPP equals

P, the class of problems decidable by polynomial-time algorithms. Similar to what we briefly

mentioned for AM, there is plenty of evidence suggesting that BPP equals P.

Because the algorithm A in the definition of BPP above runs in polynomial time, it can

only access polynomially-many random bits during its execution. On an input x of length n,

we can deterministically enumerate the 2poly(n) possible random strings r and compute ex-

actly the probability that A(x; ⋅) accepts, which implies that BPP is in EXP, the class of prob-

lems decidable in exponential time. The containment BPP ⊆ EXP represents what we refer to

as a trivial derandomization for BPP. A relaxed goal for the full derandomization BPP = P is

to obtain a faster-than-trivial deterministic algorithm for BPP: Even a subexponential-time
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simulation remains open, where subexponential time refers to ∩ε>0DTIME[2nε]. The latter

setting is commonly referred to as the low end of the derandomization spectrum, while full

derandomization is referred to as the high end.

How could we hope to figure out, deterministically, whether x is positive or negative

without cycling through the values of r? A common approach is to employ a pseudorandom

generator (PRG): A deterministic algorithm that produces a set of strings that “looks ran-

dom” to any efficient computational process. To be more precise, a pseudorandom generator,

on input a length n, outputs a multi-set S of strings such that, for any circuit C of size n,

the following holds:

∣ Pr
r∈{0,1}n

[C(r) = 1] − Pr
s∈S
[C(s) = 1]∣ ≤ ε,

where ε is a small constant. For derandomizing BPP, it suffices to set ε < 1/6 to distinguish

between positive and negative instances. This is the case because the algorithm A in the

definition of BPP accepts or rejects correctly with probability 2/3, and thus introducing an

error ε < 1/6 would not push the acceptance/rejection probability to 1/2 or less.

We can capture the computation A(x; ⋅) as a linear-size circuit, by padding if necessary.

Thus, the existence of a pseudorandom generator computable in deterministic time poly(n)

implies that BPP equals P: To derandomize an algorithm A on input x, the deterministic

simulation D computes the multi-set S output by the pseudorandom generator. Then, for

every r ∈ S, D computes A(x; r). In the end, D accepts if A(x; r) accepts for most r,

and rejects if A(x; r) rejects for most r. By a probabilistic argument, a random multi-set

S ⊆ {0, 1}n of size n is a pseudorandom generator with very high probability. The difficult

part is computing such a multi-set deterministically.

So now we know of a potential way to derandomize BPP, but do pseudorandom generators

exist? A long line of works connects the existence of efficiently-computable pseudorandom

generators to circuit lower bounds for linear-exponential time. In particular, the assumption

that the class E = DTIME[2O(n)] requires circuits of size at least 2ε⋅n for some ε > 0 implies

the existence of a pseudorandom generator that suffices to show that BPP equals P [IW97].
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Standard hierarchy theorems imply, for example, that E /⊆ DTIME[20.99⋅n], and the only differ-

ence between DTIME[20.99⋅n] and SIZE[20.99⋅n] (the class of problems computable by circuits

of size 20.99⋅n) is that the latter class allows for a different algorithm for each input length.

Since even a lower bound against the class SIZE[20.01⋅n] would suffice for derandomization,

the circuit lower bounds that imply derandomization are considered believable, and so is

derandomization. Weaker lower bounds, such as superpolynomial-size circuit lower bounds

for E, imply weaker derandomization results (for the example, a low-end derandomization),

and there is a smooth interpolation between the two extremes [Uma03].

We remark that the circuit lower bounds that are required for derandomization need to

hold almost-everywhere: For every sufficiently large input length and every “small” circuit

C, there must exist some input of that length where C fails to compute the corresponding

decision problem Π. A less restrictive lower bound is one that holds infinitely-often, which

only guarantees that there exist infinitely-many input lengths where every “small” circuit

fails to compute Π. We address this technical distinction in the body but ignore it in this

introduction.

At the same time that the circuit lower bounds mentioned above are believable, prov-

ing such results is complicated, and several barrier results indicate that doing so is beyond

current techniques, such as the natural proofs barrier of Razborov and Rudich [RR97]. The

discussion leaves a question open: Are pseudorandom generators, and thus circuit lower

bounds, necessary for derandomization? Notice that pseudorandom generators imply a

strong, blackbox derandomization: The set of strings output by a PRG “fools” every cir-

cuit of a given size. For certain parameter settings, in particular the low-end, it is known

that derandomization implies the existence of nondeterministic pseudorandom generators

with the parameters necessary for recovering the derandomization [IKW02]. Because such

pseudorandom generators are nondeterministic instead of deterministic, these actually re-

cover a nondeterministic simulation for BPP instead of a deterministic one.

Morally, pseudorandom generators seem like overkill for derandomization. For example,
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instead of “fooling” circuits, which are a non-uniform model of computation, it would suffice

to “fool” the algorithms A(x; ⋅). Under a uniform hardness assumption such as EXP /⊆ BPP

[IW01], it is possible to construct a pseudorandom generator that “fools” algorithms A(x; ⋅)

on average, meaning that the pseudorandom generator “fools” A(x; ⋅) over a random choice of

input x of a certain length with high probability. At the low end of the derandomization spec-

trum, an equivalence is known between the assumption EXP /⊆ BPP and a subexponential-

time simulation for BPP. Such uniform hardness versus randomness results are still open for

the high end of the derandomization spectrum (see [TV07; CRT+20; CRT22] for progress

toward an equivalence at the high end).

Given the discussion above, we may ask whether there exists some type of relaxation for

a pseudorandom generator that is equivalent to any type of derandomization that works on

all inputs. Such derandomizations are called whitebox derandomizations in contrast to the

blackbox derandomizations obtained via pseudorandom generators. For BPP, the answer is

positive: Whitebox derandomization is equivalent to the existence of targeted pseudorandom

generators [Gol11; Gol20]. These objects receive as input a circuit (representing a compu-

tation A(x; ⋅), for example) and are only required to produce a set of strings that “look

random” to that particular circuit. Until recently, a hardness assumption that is equivalent

to the existence of targeted generators (and thus derandomization of BPP) was unknown.

We discuss recent results that address this question in Section 1.1.

Before moving on to the AM setting, we remark that pseudorandom generators sufficient

for derandomizing BPP also suffice for derandomizing the related class MA. The reason

is that, after fixing an input x and Merlin’s message, the remaining computation can be

captured by a deterministic circuit that receives Arthur’s randomness as input.

Derandomizing Arthur-Merlin protocols. In the AM setting, there are some similar

results to those of the BPP setting, but in some cases changes are necessary. For example, it

is known that AM is in EXP, since in exponential time we can not only enumerate Arthur’s
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randomness, but also all possible Merlin responses. We can also consider derandomizing

Arthur-Merlin protocols using pseudorandom generators. Instead of selecting random bits,

Arthur can compute the multi-set S output by the PRG, and execute, for each s ∈ S, a

parallel instance of the interaction with Merlin by sending s to Merlin and receiving a proof

ys back. In the end, Arthur accepts if all proofs sent by Merlin were valid, i.e., would

be accepted by the original protocol, and rejects if any of the proofs were invalid. The

above simulation can be carried out in NP: The proof is composed of Merlin’s messages. It

is unknown, however, whether regular pseudorandom generators, such as the ones sufficient

for derandomizing BPP, suffice for derandomizing AM. The reason is that if we view Arthur’s

randomness as an input for an AM protocol P , and fix an input x, the computation P (x; ⋅)

is captured by a nondeterministic circuit that guesses Merlin’s response and simulates the

final computation performed by Arthur. Since all we know about the PRG is that it “fools”

deterministic circuits, we cannot guarantee that the simulation above works.

It is natural to consider a strengthening of the notion of pseudorandom generator so that

it “fools” nondeterministic circuits. By the discussion above, such generators are sufficient

for derandomizing AM. Because the objective is to obtain a nondeterministic simulation, it

also suffices for the pseudorandom generator for nondeterministic circuits to be computable

in nondeterministic polynomial time. Assuming that Merlin’s objective is to make Arthur

accept, the only mistake Arthur can make when interacting with Merlin is to accept a false

statement, which happens with low probability. This is the reason the nondeterministic

simulation above is sufficient for derandomization: If Merlin cannot produce a proof yr for

some message r sent by Arthur, then the statement must be false. In that case, a relaxation

of a pseudorandom generator, called a hitting-set generator, suffices for derandomizing AM.

So now we know that pseudorandom generators for nondeterministic circuits are enough

to obtain a blackbox derandomization for AM, but do they exist? Similar hardness versus

randomness results to the ones that hold for BPP also hold for Arthur-Merlin protocols.

For example, by observing that the Nisan-Wigderson pseudorandom generator construction
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relativizes, Klivans and Van Melkebeek showed that linear-exponential SAT-oracle circuit

lower bounds for NE ∩ coNE, a nondeterministic analogue of E, imply that AM equals NP

[KvM02]. Later works managed to weaken the assumption to nondeterministic circuit lower

bounds, and even showed that lower bounds for classes such as E and NE ∩ coNE against

nondeterministic circuits are equivalent to lower bounds against non-adaptive SAT oracle

circuits [MV05; SU05; SU06]. As in the BPP setting, the lower bound equivalences for

blackbox derandomization of AM scale smoothly. Also similar to the BPP setting, proving

the circuit lower bounds that are equivalent to blackbox derandomization seems out of reach,

and the only known equivalence between blackbox derandomization and general, whitebox

derandomization is at the low-end of the derandomization, and one level up in the polynomial

hierarchy [AvM17].

Uniform hardness versus randomness results are also known for AM. Under assumptions

such as EXP /⊆ AMTIME[2εn] for some ε > 0, one can conclude some average-case polynomial-

time derandomization for AM [GST03]. Unlike the BPP setting, low-end uniform hardness

versus randomness results for AM remain open, though some constructions nearly achieve

such results [SU09].

In this work, we focus on the whitebox setting for Arthur-Merlin protocols, that is,

on any derandomization that may, for example, inspect the specific protocol being deran-

domized. Until our work, not much was known about this setting for AM. For example,

when Goldreich showed that BPP equals P is equivalent to the existence of targeted pseu-

dorandom generators, he asked about a similar result in the AM setting [Gol11]. The main

difference between the two settings, and the reason that obtaining such an equivalence for

AM is complicated, is that the techniques underlying the result for BPP rely on treating

polynomial-time algorithms as oracles. Since P equals coP, the class of decision problems

whose complements are in P, replacing the oracles by actual polynomial-time algorithms

still results in a polynomial-time algorithm. For AM, the technique presents an issue since

we don’t know whether NP equals coNP, and thus we must work harder in the search for
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equivalences.

In the following sections, we provide a summary of the main results of this dissertation,

together with additional context and motivation. The main body of this dissertation further

expands on the concepts and formally develops the assertions presented in this chapter. We

now present our results on derandomization of Arthur-Merlin protocols.

1. We obtain near-equivalences between whitebox derandomization of Arthur-Merlin pro-

tocols and the existence of multi-bit functions that are computable in nondeterministic

polynomial time and hard on almost-all inputs against Arthur-Merlin protocols. We

also take a first step toward a resolution for Goldreich’s question, and obtain other

byproducts regarding derandomization of Arthur-Merlin protocols. These contribu-

tions appear in Chapter 2.

2. We obtain full hardness versus randomness equivalences for mild derandomization of

Arthur-Merlin protocols, i.e., simulations in classes that are supposedly larger than

NP. The equivalences are with respect to the existence of multi-bit functions that

remain hard to compute even in the presence of efficiently-computable leakage of their

value. Along the way, we resolve Goldreich’s question in the affirmative in the mild

setting: Mild derandomization of Arthur-Merlin protocols is equivalent to the existence

of targeted pseudorandom generators. These contributions appear in Chapter 3.

3. We characterize the existence of targeted pseudorandom generators for Arthur-Merlin

protocols in terms of a constructive hardness assumption: We show that derandom-

ization via targeted generators is equivalent to the existence of refuters for functions

computable in nondeterministic polynomial time against Arthur-Merlin protocols that

go through a compression phase. Along the way, we also generalize our results in the

mild setting. These contributions appear in Chapter 4.

Though our main focus is on derandomization of time-bounded Arthur-Merlin protocols,

we also develop results for space-bounded algorithms. We obtain conditional results in the
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setting of space-bounded isolation and equivalences for derandomization of unambiguous

space-bounded algorithms. We also show that a space-bounded version of the class AM can

be decided in deterministic catalytic logspace. These contributions appear in Chapter 5.

1.1 Instance-wise hardness

We present our first steps in the whitebox derandomization setting for AM in Chapter 2. For

future reference and comparison, we start with a high-level description of the recent results

in the whitebox derandomization setting for BPP.

As mentioned earlier, whitebox derandomizations for BPP that work on all inputs are

equivalent to the existence of targeted pseudorandom generators. Chen and Tell [CT21]

proposed an equivalent lower bound condition: uniform lower bounds for multi-bit functions

f that hold on almost-all inputs, i.e., any algorithm in the class for which the lower bound

holds can only compute f on finitely many inputs.

Chen and Tell first observe that, by diagonalization, the derandomization assumption

BPP = P implies that there exists a multi-bit function computable in deterministic polyno-

mial time that is hard on almost-all inputs against “faster” probabilistic algorithms. More

importantly, they establish an almost-converse: If there exists a multi-bit function com-

putable by logspace-uniform shallow circuits that is hard on almost-all inputs against “faster”

probabilistic algorithms, then BPP = P. The main gap between the two implications is the

low-depth requirement for the direction of hardness to derandomization.

The Chen-Tell transformation of hardness to derandomization is instance-wise: This

means that the derandomization result they obtain works for every input x for which a

certain algorithm (looking ahead, their reconstructor) fails to compute f(x). This is why

hardness on almost-all input implies derandomization that works for every sufficiently large

input (BPP = P). Similarly, one may assume that their reconstructor fails to compute f(x)

for most inputs of each length and obtain an average-case derandomization, for example.
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The main technical contribution of the Chen-Tell result is a conditional targeted pseu-

dorandom generator construction based on learning reconstructors for hardness-based pseu-

dorandom generator constructions. To understand the concept, we first describe the usual

proofs of correctness for the classical pseudorandom generator constructions. Recall that

a hardness-based PRG construction relies on circuit lower bounds. To show correctness of

such a construction, one shows that if the multi-set output by the PRG based on function f

is not pseudorandom, i.e., there exists some small distinguisher circuit D that is not fooled

by the PRG, then there exists a small circuit computing f . Specifically, most constructions

show something stronger: There exists an efficient learning algorithm that when given oracle

access to f and to the distinguisher D, outputs a small circuit computing f . We call such

an algorithm a reconstructor.

Chen and Tell combine the Nisan-Wigderson (NW) generator [NW94] with the doubly-

efficient proof system of Goldwasser, Kalai and Rothblum [GKR15]. Let C be a uniform

low-depth circuit computing the hard function f and fix an input x. The GKR proof system

captures the computation of C on input x into a sequence of polynomials such that computing

a polynomial in the sequence is efficiently reducible to computing the previous polynomial.

The polynomials represent layers in the the computation of C on input x, and thus the

first polynomial is easily computable given x, and the last polynomial contains the value of

f(x). On input x, the Chen-Tell generator applies the NW generator to each polynomial

in the sequence. In case the generator fails, the learning property of the NW reconstructor

allows them to efficiently produce a small circuit computing the i-th polynomial, given oracle

access to the i-th polynomial. The reducibility properties for the polynomials in the sequence

allows them to start from a trivial circuit computing the first polynomial, and bootstrap the

construction of circuits for each polynomial in the sequence, ending with the polynomial

that captures f(x). Assuming the depth for the circuit C is small, the process leads to a

faster algorithm for computing f .

Follow-up works managed to obtain full equivalences for derandomization of BPP, namely
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with respect to hardness of a computational problem related to Levin-Kolmogorov complex-

ity [LP22] and hardness in the presence of efficiently-computable leakage [LP23]. We explore

the latter in more detail in Chapter 3.

Contributions We start by observing that hardness on almost-all inputs is required for

derandomizing AM. To be a bit more precise, we show that if AM = NP, then there exists a

multi-bit function f that is computable in nondeterministic polynomial time with “a few”

bits of advice, and is hard on almost-all inputs against “faster” Arthur-Merlin protocols.

As our main result for the chapter, we obtain an almost-converse, that hardness on

almost-all inputs is sufficient for derandomizing AM. Specifically, we show that if there

exists a multi-bit function f computable in nondeterministic polynomial time that is hard

on almost-all inputs against “faster” promise Arthur-Merlin protocols, then AM = NP. Just

like the Chen-Tell result, our result is instance-wise: Derandomization holds for each input

where the hardness assumption with relation to our reconstructor holds. In the setting of

hardness on almost-all inputs, the remaining gaps between the two directions are the advice

and the technical difference between regular and promise Arthur-Merlin protocols.

For the main result of the chapter, we combine probabilistically-checkable-proofs (PCPs)

with a recursive variant of the Miltersen-Vinodchandran generator due to Shaltiel and Umans

[SU09], which we dub RMV. Combining these ingredients, we obtain a conditional targeted

pseudorandom generator construction. To derandomize an Arthur-Merlin protocol P on an

input x, given a hard function f , the generator guesses and verifies a PCP asserting the

value of f(x), and uses the PCP as a basis for the RMV generator. In case the generator

fails to “fool” P (x; ⋅), the RMV reconstructor allows for compressing the PCP using an

Arthur-Merlin protocol, which leads to a speed-up for computing f , as the PCP verifier is

very efficient.

As byproducts of our targeted pseudorandom generator construction, we obtain new

results in the uniform setting, concluding derandomization that works on average (with high
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probability over a random input) from worst-case hardness.

Acknowledgment of contributions. The results in Chapter 2 appear for the most part

in CCC 2023 [vMM23a], and represent joint work with Dieter van Melkebeek.

1.2 Mild derandomization

As mentioned previously, there is evidence that AM = NP. However, we don’t even know,

for example, whether AM ⊆ Σ2P = NPNP, i.e., we don’t know whether an extra layer of non-

determinism is enough to eliminate randomness of Arthur-Merlin protocols at a polynomial

slowdown. We refer to this setting as the mild derandomization setting, and mention that

the inclusion above is open even for subexponential-time simulations.

Chapter 3 continues the study of whitebox derandomization for AM in the search of

equivalences, though this time in the mild setting. Our hope is that the relaxed derandom-

ization requirement allows us to obtain equivalences which can be later leveraged into the

standard setting.

Contributions. As our main contribution for the chapter, we fully characterize mild de-

randomization for AM protocols in terms of leakage-resilient hardness. As in [LP23], we say

that a function f is leakage-resilient hard on almost all inputs against a class C if any pair of

algorithms (Leak, A) in C that operate as follows can only compute f with high probability

on finitely many inputs.

1. The algorithm Leak on input x ∈ {0, 1}n and the value of f(x), outputs a short string

π, say of length
√

n.

2. The algorithm A, on input x and π, attempts to compute f(x).

Our result reads as follows: AM ⊆ Σ2P if and only if there exists a multi-bit function f

computable in Σ2P that is leakage-resilient hard on almost-all inputs against non-adaptive
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SAT-oracle algorithms. As mentioned earlier, hardness against non-adaptive SAT-oracle

circuits is equivalent to blackbox derandomization for AM. We show a similar equivalence

for the whitebox mild derandomization setting. Our equivalence scales throughout the entire

derandomization spectrum by varying the time required for computing the hard function f ,

and also applies to intermediate classes between NP and Σ2P such as PNP and ZPPNP.

To obtain our main result for the chapter, we develop a learning reconstructor for the

nondeterministic pseudorandom generator construction due to Shaltiel and Umans, which

we denote by SU [SU05]. Specifically, we show that the SU reconstructor can be cast as an

efficient algorithm that, given oracle access to a function g, outputs with high probability

a small non-adaptive SAT-oracle circuit that computes g. Given a leakage-resilient hard

function f and an input x, we construct a targeted pseudorandom generator that uses the

value of f(x) as a basis for the SU generator, i.e., it uses the function g that maps i to the i-th

bit of f(x) as the basis for SU. If the derandomization on input x fails, then there exists an

efficient algorithm Leak that, on input x (which is necessary to describe the distinguisher for

the SU generator) and f(x), outputs a small non-adaptive SAT-oracle circuit that computes

the mapping i↦ f(x)i. It then suffices to set A as the algorithm that, on input a circuit C,

outputs the truth-table of C.

As a consequence of the characterization via leakage-resilient hardness, we also show

that mild derandomization for AM is equivalent to the existence of targeted pseudorandom

generators recovering the same simulation, thus resolving Goldreich’s question [Gol11] in the

affirmative for mild simulations.

Finally, we show that the hardness assumption can be relaxed to that of hardness on

almost-all inputs against learn-and-evaluate protocols (See Section 2.3.3 for a definition),

and connect leakage-resilience to nondeterministic circuit lower bounds at the low end of the

mild derandomization spectrum.

In Chapter 2, as an additional by-product of our conditional targeted pseudorandom

generator construction, we also obtain an unconditional average-case subexponential-time
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mild derandomization for AM with subpolynomial advice.

Acknowledgment of contributions. The results in Chapter 3 appear for the most part

in FSTTCS 2023 [vMM23b], and represent joint work with Dieter van Melkebeek.

1.3 Refuting bottleneck protocols

Recall that, in the leakage-resilient hardness setting and to compute a function f , we have

a pair of algorithms (Leak, A) that work as follows: Leak gets f(x) as additional input and

outputs a small amount of leakage π on the value of f(x). Then, the algorithm A, on input

x and π, attempts to compute f(x).

Consider the process of, after fixing a pair (Leak, A) as above and an input x, finding

a value of f(x) such that (Leak, A) fails to compute f(x) with high probability. Because

of the bottleneck in this process, an information-theoretic argument guarantees that, for

sufficiently large n, the pair (Leak, A) fails to recover f(x) for the great majority of inputs

f(x) of length n. We may take a step further and view the process of computing f(x)

as a refutation task: Consider Leak(x, ⋅) as a compression algorithm Acomp, and A(x, ⋅)

as a decompression algorithm Adec. Our objective is then to find an input z such that

(Acomp, Adec) fail to recover z with high probability, i.e., to solve a refutation task for the

identity function against such bottleneck algorithms.

A recent contribution of Chen, Tell and Williams [CTW23], shows that, if there is a

deterministic polynomial-time algorithm that, on input 1n and a pair (Acomp, Adec) as above,

outputs a string z such that (Acomp, Adec) fails to recover z with high probability, then

BPP = P. Their result is actually stronger in two ways:

○ Their result establishes an equivalence with derandomization: If BPP = P, then there

exists an algorithm as above.
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○ Viewing the algorithm above as a refuter for the identity function against bottleneck

algorithms, the identity function can be replaced by any other function computable in

deterministic polynomial time.

The Chen-Tell-Williams result captures a line of works that introduce a perspective shift

in relation to constructing targeted pseudorandom generators [Kor22a; Kor22b; CJS+24].

Instead of relying on a hardness assumption that holds on almost-all inputs to obtain deran-

domization, it suffices to rely on a constructive hardness assumption for a function that is

trivially hard for a very restrictive class of algorithms. Most hardness-based pseudorandom

generator reconstructors can be cast as the compressing/decompressing process above, and

thus algorithmically finding an input where this process fails leads to derandomization.

Our starting point for Chapter 4 is the question: How can we employ this new perspective

in the AM setting?

Contributions. As our main contribution for the chapter, we fully characterize deran-

domization of AM through targeted pseudorandom generators in terms of refuters against

bottleneck protocols. Such protocols operate in a similar way as the bottleneck algorithms

above, where we replace Adec by an Arthur-Merlin protocol Pdec.

Informally, we show that there exists a targeted pseudorandom generator achieving the

derandomization AM = NP if and only if there exists a refuter for the identity function com-

putable in nondeterministic polynomial time against polynomial-time bottleneck protocols.

We also show that the identity function can be replaced by any function computable in

nondeterministic polynomial time, and our equivalence scales throughout the entire deran-

domization spectrum by varying the running time for the refuter.

To obtain our main result for the chapter, we adopt the new refutation perspective and

refine the conditional targeted pseudorandom generator construction of Chapter 2 in the

following ways:

○ We replace PCPs in our original construction with probabilistically-checkable proofs
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of proximity (PCPPs) and have the compressing algorithm encode the input with a

suitable error-correcting code (ECC).

○ We additionally employ the RMV generator with the input x as a basis, which leads

to a bottleneck reconstructor when combined with the PCPP above.

For the direction of derandomization to refutation, we exploit a resilience property of our

conditional targeted pseudorandom generator construction, which allows us to use a targeted

pseudorandom generator for AM to find an input where the reconstructor for the generator

fails.

As additional results, we obtain a characterization of mild derandomization in terms of

refutation that generalizes our leakage-resilient hardness characterization of Chapter 3. We

also connect nondeterministic circuit lower bounds for the class Σ2EXP (the exponential-time

analogue of Σ2P) to the existence of refuters against non-adaptive SAT-oracle bottleneck

algorithms that compress their input to a string of polylogarithmic length. Finally, we

explore consequences of derandomizing Arthur-Merlin protocols to explicit constructions of

combinatorial objects.

Acknowledgment of contributions. The results in Chapter 4 represent joint work under

review with Dieter van Melkebeek.

1.4 Space-bounded computation

Whereas the previous results are in the setting of time-bounded Arthur-Merlin protocols,

we now consider space-bounded computations. We focus on two settings for space-bounded

computations: isolation and catalytic computation.

Isolation is the process of singling out solutions for computational problems that may

have multiple solutions. For the class NL, of computational problems decidable by nonde-

terministic algorithms in logarithmic space, isolation is equivalent to the existence of an
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unambiguous logspace algorithm deciding the NL-complete problem of reachability for di-

rected graphs. An unambiguous algorithm is a nondeterministic algorithm that either has a

single accepting computation path or none. The existence of such an algorithm would imply

that NL is equal to the class UL of logspace unambiguous algorithms.

Due to the Isolation Lemma, the problem of space-bounded isolation is essentially a

derandomization problem [RA00; vMP19]: Assigning small random weights to the edges in

a directed graph results in a weighted graph with unique shortest paths between every pair

of vertices.

Catalytic algorithms are algorithms that have access to a small regular read-write mem-

ory, while also having access to an additional, larger read-write memory. The additional

memory is already populated with arbitrary data, which the algorithm is allowed to modify

but must restore to its original content before the end of the execution.

Contributions. By leveraging the new perspective of Chapter 4 as well as recent space-

efficient reconstructors for the NW generator [DT23; DPT24], we are able to deduce isolation

in the space-bounded setting from refutation assumptions similar to those of Chapter 4, and

in some cases obtain full equivalences. We also prove unconditionally that BPNL, a space-

bounded version of the class AM, is contained in CL, the class of problems decidable by

catalytic logspace algorithms.

Acknowledgment of contributions. The results in Chapter 5 represent unpublished,

joint work with Dieter van Melkebeek.
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Chapter 2

Instance-Wise Hardness

2.1 Introduction

We start with a more formal recap of the discussion of blackbox and whitebox derandom-

ization for BPP and AM in Chapter 1.

BPP setting. The first hardness vs. randomness tradeoffs were developed for blackbox

derandomization, where a pseudorandom generator (PRG) produces, in an input-oblivious

way, a small set of strings that “look random” to the process under consideration on ev-

ery input of a given length. A long line of research established tight equivalences between

blackbox derandomization of prBPP (the promise version of the class BPP) and nonuniform

lower bounds for exponential-time classes. At the low end of the derandomization spec-

trum, subexponential-time blackbox derandomizations of prBPP are equivalent to super-

polynomial circuit lower bounds for EXP ≐ DTIME[2poly(n)] [BFN+93]. At the high end,

polynomial-time blackbox derandomizations of prBPP are equivalent to linear-exponential

circuit lower bounds for E ≐ DTIME[2O(n)] [IW97]. A smooth interpolation between the

two extremes exists and yields tight equivalences over the entire derandomization spectrum

[Uma03]. The results are also robust in the sense that if the circuit lower bound holds at

infinitely many input lengths (equivalent to the separation EXP /⊆ P/poly at the low end),
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then the derandomization works at infinitely many input lengths, and if the circuit lower

bound holds at almost-all input lengths, then the derandomization works at almost-all input

lengths.

A uniformization of the underlying arguments led to equivalences between derandom-

izations that work on most inputs of a given length, and uniform lower bounds, i.e., lower

bounds against algorithms. This derandomization setting is often referred to as the average-

case setting.1 At the low end, there exist subexponential-time simulations of BPP that

work on all but a negligible fraction of the inputs of infinitely many lengths if and only if

EXP /⊆ BPP [IW01]. Unfortunately, the known construction does not scale well (see [TV07;

CRT+20; CRT22] for progress toward an equivalence at the high end) and is not robust

(a version for almost-all input lengths remains open). On the other hand, the result holds

for blackbox derandomization as well as for general, “whitebox” derandomization, and im-

plies an equivalence between blackbox and whitebox derandomization in this setting: If

derandomization is possible at all, it can be done through pseudorandom generators.

This left open the setting of whitebox derandomizations that work for almost all inputs.

For prBPP, such derandomizations are equivalent to the construction of targeted pseudoran-

dom generators, which take an input x for the underlying randomized process, and produce a

small set of strings that “look random” on that specific input x [Gol11]. Recently, Chen and

Tell [CT21] raised the question of an equivalent lower bound condition, and proposed a can-

didate: uniform lower bounds for multi-bit functions (rather than usual decision problems)

that hold on almost-all inputs in the following sense.

Definition 2.1 (Hardness on almost-all inputs). A computational problem f is hard

on almost-all inputs against a class of algorithms if for every algorithm A in the class there

is at most a finite number of inputs on which A computes f correctly. ◂

Chen and Tell started from the following observation about derandomization to hardness

1The underlying distribution may be the uniform one or any other polynomial-time sampleable distri-
bution.
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at the high end of the spectrum.

Proposition 2.2 (Chen and Tell [CT21]). If prBPP ⊆ P, then for every constant c there

exists a length-preserving function f that is computable in deterministic polynomial time and

is hard on almost-all inputs against prBPTIME[nc].

Remarkably, they also established a converse, albeit with an additional uniform-circuit

depth restriction on the hard function f . Their approach naturally yields a targeted hitting-

set generator (HSG), the counterpart of a pseudorandom generator for randomized decision

processes with one-sided error (the class RP and its promise version prRP).

Theorem 2.3 (Chen and Tell [CT21]). Let f be a length-preserving function computable

by logspace-uniform circuits of polynomial size and depth nb for some constant b. If f is

hard on almost-all inputs against prBPTIME[nb+O(1)], where O(1) denotes some universal

constant, then prRP ⊆ P.

Note that the hardness hypothesis of Theorem 2.3 necessitates the depth nb of the uniform

circuits computing the function f to be significantly less than their size. Otherwise, there

exists even a deterministic algorithm that computes f in time nb+O(1).

The proof of Theorem 2.3 constructs a polynomial-time targeted hitting-set generator

for prRP, which generically implies a polynomial-time targeted pseudorandom generator for

prBPP, and thus that prBPP ⊆ P. Theorem 2.3 scales smoothly over the entire derandom-

ization spectrum for prRP. Due to losses in the generic conversion from hitting sets to

derandomizations for two-sided error, the corresponding result for prBPP does not scale that

well. In particular, a low-end variant of Theorem 2.3 for prBPP remains open. That said,

the results are robust in a similar sense as above with respect to input lengths. In fact,

the approach inherently yields a much higher degree of robustness because it effectuates a

hardness vs. randomness tradeoff on an input-by-input basis, as we explain further in the

paragraph below about our techniques.
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As a summary of the above discussion, Table 2.1 provides a qualitative overview of

the lower bound equivalences for each of the three types of derandomization considered.

We point out that, in the new setting of whitebox derandomizations that work on almost-all

inputs, an actual equivalence along the lines of Chen and Tell [CT21] remains open due to the

additional uniform-circuit depth requirement that is needed in the direction from hardness

to derandomization. We refer to such results as near-equivalences. Follow-up works managed

to obtain full-fledged equivalences in terms of other types of hardness, namely hardness of

a computational problem related to Levin-Kolmogorov complexity [LP22] and hardness in

the presence of efficiently-computable leakage [LP23].

Derandomization Lower bound
blackbox, almost-all inputs non-uniform

most inputs uniform
whitebox, almost-all inputs uniform, almost-all inputs

Table 2.1: Equivalences between various types of derandomization and lower bounds

AM setting. An equivalence corresponding to the first line of Table 2.1 is known through-

out the entire spectrum [KvM02; MV05; SU05]. The role of EXP is now taken over by

NEXP∩coNEXP, and the circuits are nondeterministic (or single-valued nondeterministic, or

deterministic with oracle access to an NP-complete problem like SAT). The simulations use

hitting-set generators for AM that are efficiently computable nondeterministically. Hitting-

set generators are the natural constructs in the setting of AM because every Arthur-Merlin

protocol can be efficiently transformed into an equivalent one with perfect completeness.

As in the BPP setting, the lower bound equivalences for blackbox derandomization of prAM

scale smoothly and are robust with respect to input lengths.

Regarding derandomizations that work on all but a negligible fraction of the inputs of

a given length (the second line in Table 2.1), no hardness vs. randomness tradeoffs for AM

were known prior to our work. What was known, are high-end results on derandomizations

where no efficient nondeterministic algorithm can locate inputs on which the simulation is
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guaranteed to be incorrect [GST03; SU09]. Indeed, the authors of [GST03] explicitly mention

the average-case setting and why their approach fails to yield average-case simulations that

are correct on a large fraction of the inputs. The setting corresponding to the third line in

Table 2.1 was not studied before.

Main results. As our main results for this chapter, we obtain near-equivalences in this

third setting, i.e., between whitebox derandomizations of Arthur-Merlin protocols that work

on almost-all inputs, on the one hand, and hardness on almost-all inputs against Arthur-

Merlin protocols, on the other hand.

We start from a similar observation in the derandomization to hardness direction as the

one Chen and Tell made for BPP at the high end of the spectrum.

Proposition 2.4. If prAM ⊆ NP, then for every constant c there exists a length-preserving

function f that is computable in nondeterministic polynomial time with “a few” bits of advice,

and is hard on almost-all inputs against AMTIME[nc].

We refer to Section 2.5.1 for the quantification of “a few”.

Importantly, we are able to establish an almost-converse of Proposition 2.4. Under

a slightly stronger hardness assumption, we construct a targeted hitting-set generator for

prAM that is computable in nondeterministic polynomial time, yielding the following deran-

domization result.

Theorem 2.5. Let f be a length-preserving function computable in nondeterministic time

na for some constant a. If f is hard on almost-all inputs against prAMTIME[nc] for c =

O((log a)2), where O(⋅) hides some universal constant, then

prAM ⊆ NP.

Note that, in contrast to Theorem 2.3 in the BPP setting, Theorem 2.5 in the AM setting

has no uniform-circuit depth restriction on the function f . Together with Proposition 2.4,

Theorem 2.5 represents a near-equivalence between prAM ⊆ NP and hardness on almost-all
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inputs of length-preserving2 functions against Arthur-Merlin protocols. Whereas in the BPP

setting, the remaining gap relates to uniform-circuit depth, in the AM setting the remaining

gap relates to the advice and the technical distinction between AM and prAM protocols. We

remark that we do obtain full equivalences in the next chapters. In Chapter 3, we obtain full

equivalences for mild derandomization, i.e., simulations on Σ2-machines, and in Chapter 4

we obtain an equivalence with respect to the existence of targeted hitting-set generators for

prAM.

Both Proposition 2.4 and Theorem 2.5 scale quite smoothly across the derandomization

spectrum. The generalization of Theorem 2.5 has the following form: Let f be a length-

preserving function computable in nondeterministic time T (n). If f is hard on almost-all

inputs against prAMTIME[t(n)], then prAM ⊆ NTIME[poly(T (n))]. Intuitively, we may

think of t(n) as only slightly smaller than T (n) for high-end results and much smaller for

low-end results. Pushing our techniques as far as possible toward the low end, we obtain the

following variant of Theorem 2.5.

Theorem 2.6. Let f be a length-preserving function computable in nondeterministic expo-

nential time. If f is hard on almost-all inputs against prAMTIME[nb(log n)2] for all constants

b, then for some constant c

prAM ⊆ NTIME[2nc]. (2.1)

As prAM ⊆ NEXP trivially holds, the conclusion (2.1) of Theorem 2.6 represents the

very low end of the derandomization spectrum. Note that a perfectly smooth scaling of

Theorem 2.5 would only need a polynomial lower bound to arrive at the conclusion of

Theorem 2.6, but the hypothesis of Theorem 2.6 requires a lower bound of nω((log n)2). We

remark that the same discrepancy shows up in the current best-scaling uniform hardness vs.

2The focus on length-preserving functions f in Proposition 2.4 and Theorem 2.5 is for concreteness. For
Proposition 2.4 to hold, the number of output bits needs to grow with n in an efficiently computable fashion.
For Theorem 2.5 any number of output bits suffices as long as there are not so many that the function f
becomes trivially hard for Arthur-Merlin protocols running in time nc.



29

randomness tradeoffs for AM [SU09]. We refer to Theorem 2.27 in Section 2.4 for the full

scaling and to Table 2.2 in the same section for other interesting instantiations.

Byproducts. Using our targeted hitting-set generators we are able to make progress on a

number of related topics. We mention three representative ones here; more are described in

Section 2.6.

First, there is the relationship between whitebox derandomization of prAM and the ex-

istence of targeted hitting-set generators for prAM. In the paper [Gol11] where Goldreich

introduced targeted pseudorandom generators for prBPP and showed that their existence

is equivalent to whitebox derandomization of prBPP, he asked about analogous results for

prAM. To the best of our knowledge, there have been no prior results along those lines. We

take a first step toward an equivalence in this setting.

Theorem 2.7. If prAMTIME[2polylog(n)] ⊆ io-NEXP, then there exists a targeted hitting-set

generator for prAM that yields the simulation prAM ⊆ io-NTIME[2nc]/nε for some constant c

and all ε > 0.

Second, we establish the first hardness vs. randomness tradeoffs for Arthur-Merlin proto-

cols in the average-case setting. Informally, under a high-end worst-case hardness assump-

tion, we obtain nondeterministic polynomial-time simulations of prAM that are correct on

all but a negligible fraction of the inputs.

Theorem 2.8. If NTIME[2an]∩coNTIME[2an] /⊆ BPTIME[2(log(a+1))2n]SAT
∣∣

for some constant

a > 0, then for every problem in prAM and all e > 0 there exists a simulation of the problem

in NP that is correct on all but a fraction 1/ne of the inputs of length n for infinitely many

lengths n.

The class BPTIME[t(n)]SAT
∣∣

denotes probabilistic algorithms with bounded error that

run in time t(n) and can make parallel (i.e., non-adaptive) queries to an oracle for SAT.

Theorem 2.8 answers a question in [GST03], which presents results in the different but
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related “pseudo” setting, where the simulation may err on many inputs of any given length,

but no polynomial-time nondeterministic algorithm can pinpoint an error at that length. We

remark that our technique also leads to identical results in the “pseudo” setting by replacing

the hardness assumption with hardness against AMTIME[t(n)].

The model prBPPSAT
∣∣ was used as a proxy for prAM in the initial derandomization results

for Arthur-Merlin protocols [KvM02] and is seemingly more powerful. However, derandom-

ization results for prAM typically translate into similar derandomization results for prBPPSAT
∣∣ .

In particular, the conclusion prAM ⊆ NP of Theorem 2.5 implies that prBPPSAT
∣∣ ⊆ PSAT

∣∣
,

and the conclusion prAM ⊆ NTIME[2nc] for some constant c in Theorem 2.6 implies that

prBPPSAT
∣∣ ⊆ DTIME[2nc]SAT

∣∣
for some constant c. In the case of Theorem 2.8, we argue that

the hardness assumption implies simulations of prBPPSAT
∣∣ in PSAT

∣∣
of the same strength as

the simulations of prAM in NP. This way, we obtain a hardness vs. randomness tradeoff in

which the hardness model and the model to-be-derandomized match, namely probabilistic

algorithms with bounded error and non-adaptive access to an oracle for SAT.

As our third byproduct, we present an unconditional mild derandomization result for

AM in the average-case setting. By a mild derandomization of AM we mean a nontrivial

simulation on Σ2-machines. Recall that AM ⊆ Π2P, and proving that AM ⊆ Σ2P is a required

step if we hope to show that AM ⊆ NP. It is known that AM can be simulated (at infinitely

many input lengths n) on Σ2-machines that run in subexponential time and take nc bits of

advice for some constant c [Wil16]. It remains open whether AM can be simulated on Σ2-

machines in subexponential time with subpolynomial advice. Indeed, such a simulation for

prAM would imply lower bounds against nondeterministic circuits that are still open [AvM17].

We show an unconditional subexponential-time and subpolynomial-advice Σ2-simulation for

prAM in the average-case setting.

Theorem 2.9. For every problem in prAM and every constant ε > 0 there exists a simulation

of the problem in Σ2TIME[2nε]/nε that is correct on all but a fraction 1/ne of the inputs of

length n, for all constants e and infinitely many lengths n.
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In fact, we can extend Theorem 2.9 to prBPPSAT
∣∣ in lieu of prAM. Similarly, we can extend

the simulation of [Wil16] to prBPPSAT
∣∣ and thus also to prAM in lieu of AM.

Techniques. For our main result, we develop an instance-wise transformation of hardness

into targeted hitting sets tailored for AM. In the setting of BPP, Chen and Tell combine the

Nisan-Wigderson pseudorandom generator construction [NW94] with the doubly-efficient

proof systems of Goldwasser, Kalai, and Rothblum [GKR15] (as simplified in [Gol18]). The

latter allows them to capture the computation of a uniform circuit of size T and depth d for

f on a given input x by a downward self-reducible sequence of polynomials, which they use

to instantiate the NW generator. In case the derandomization of a one-sided error algorithm

on a given input x fails, a bootstrapping strategy à la [IW01], based on a learning property

of the NW generator, allows them to retrieve the value of f(x) in time O(d ⋅ polylog(T )).

Thus, provided the depth d is small compared to the size T , either the derandomization on

input x works or else the computation of f(x) can be sped up.

A similar approach based on [GKR15] applies to the AM setting by replacing the NW

construction with a hitting-set generator construction for AM that also has the learning

property. Like in the BPP setting, the construction is only of interest when the circuits for

f have relatively small depth. Moreover, the construction can only handle a limited amount

of nondeterminism in the computation for f , whereas the direction from derandomization

to hardness seems to require more.

In order to remedy both shortcomings, we develop a new method to extract hardness

from a nondeterministic computation on a given input x, based on probabilistically check-

able proofs rather than [GKR15]. The soundness of our method presupposes some type of

resilience of the underlying regular pseudorandom generator. The required property was

first identified and used by Gutfreund, Shaltiel and Ta-Shma [GST03] for the Miltersen-

Vinodchandran generator MV [MV05], and later by Shaltiel and Umans [SU09] for their

recursive variant of the MV generator, RMV. We combine RMV with the probabilisti-



32

cally checkable proofs of Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [BGH+06] to

transform hardness into pseudorandomness for AM in an instance-wise fashion, without any

uniform-circuit depth restriction or limitation on the amount of nondeterminism.

We highlight one strong feature of all instance-wise approaches. If the hardness condition

holds on almost-all inputs, then the derandomization works on almost-all inputs. This is the

setting in which we stated the results of Chen and Tell and our main results. Similarly, if the

hardness condition holds on all inputs of a given length, then the derandomization works on

all inputs of that length. This is the robustness property that we alluded to earlier. How-

ever, an instance-wise approach yields much more, including average-case derandomization

results: To obtain a nondeterministic simulation for some prAM problem that works with

high probability over any given distribution, it suffices to assume that every prAM protocol

can only compute the hard function f with low probability over that same distribution.

Our derandomization-to-hardness result follows by diagonalization, as does the one by

Chen and Tell. To obtain our byproducts, we combine our targeted hitting-set generator with

several other ingredients, including diagonalization, the “easy-witness” method and tradi-

tional hardness vs. randomness tradeoffs. Our average-case derandomization results require

a modification of our targeted hitting-set generator so that it respects a stronger resilience

property. Along the way to our unconditional mild derandomization result, we establish an

“easy witness lemma” for Σ2 computations, which may be of independent interest.

Organization. In Section 2.2, we develop the ideas behind our results and relate them to

existing techniques. We start the formal treatment in Section 2.3 with definitions, notation,

and other preliminaries. In Section 2.4, we construct our targeted hitting-set generator and

establish our hardness-to-derandomization results that make use of it (Theorems 2.5 and

2.6). Section 2.5 presents the derandomization-to-hardness side of our near-equivalence,

as well as a proof of our byproduct on derandomization to targeted hitting-set generators

(Theorem 2.7). In Section 2.6, we derive our derandomization byproducts under uniform
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worst-case hardness (the average-case simulation of Theorem 2.8 as well as a simulation that

works on all inputs of infinitely many lengths). Section 2.7 contains our unconditional mild

derandomization result for AM (Theorem 2.9).

2.2 Technical overview

In this section, we start with an overview of techniques used in prior hardness vs. ran-

domness tradeoffs for BPP and AM in a way that facilitates a high-level exposition of our

main hardness-to-derandomization result for AM. We also provide the intuition for our

derandomization-to-hardness result and for our byproducts.

2.2.1 Main results

We start with an overview of the techniques used for hardness-to-derandomization results

in the traditional setting for BPP (lines 1 and 2 in Table 2.1), followed by those in the new

setting (line 3 in Table 2.1). We then transition to AM, discuss the additional challenges,

the known techniques in the traditional setting and, finally, our results in the new setting.

Traditional setting for BPP. The key ingredient in all known hardness vs. randomness

tradeoffs is a pseudorandom generator construction G that takes a function h as an oracle

and produces a pseudorandom distribution Gh with the following property: Any statistical

test D that distinguishes Gh from uniform suffices as an oracle to efficiently learn h approx-

imately from a small number of queries. Thus, if Gh does not “look random” to an efficient

randomized process A on an input x, an approximation to h can be reconstructed efficiently

when provided with x and the values of h on a small number of points, as well as oracle

access to the distinguisher D(r) = A(x, r), where A(x, r) denotes the output of A on input

x and random-bit string r. If the function h can be self-corrected (e.g., by being random
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self-reducible or by its truth table being a codeword in a locally-correctable error-correcting

code), then the exact function h can be reconstructed efficiently.

In order to obtain hardness vs. randomness tradeoffs from pseudorandom generator con-

structions with the learning property, two questions need to be addressed:

1. How to obtain the distinguishers D?

2. How to obtain the answers to the learning queries?

The first question asks how to find inputs x on which the process A is not fooled by Gh. In

the non-uniform setting such an input can be included in the advice. In the uniform setting

for BPP, such inputs can be found by sampling x at random and testing for a difference in

behavior of D ≐ A(x, ⋅) between the uniform and the pseudorandom distributions, which can

be done in prBPP.

Regarding the second question, in the non-uniform setting, the answers to the learning

queries can also be provided as advice. In the uniform setting, [IW01] employs a function h

that is not only random self-reducible but also downward self-reducible, and uses the down-

ward self-reduction to answer the learning queries for length n by evaluating the circuit that

resulted from the reconstruction for length n − 1. This bootstrapping strategy presupposes

that the reconstruction works at almost-all input lengths. This is why we only know how to

obtain simulations that are correct at infinitely many input lengths in the uniform setting

for BPP.

New setting for BPP. In the setting of line 3 in Table 2.1, the role of pseudorandom

generators is taken over by targeted pseudorandom generators. Whereas PRGs are oblivious

to x (beyond its length), targeted PRGs take x as an input and are only supposed to fool the

randomized process on that particular x. This approach obviates the problem of obtaining

the distinguisher D (question 1 above) as we can use D = A(x, ⋅) for the given x. Targeted

PRGs can be constructed from a PRG G by instantiating G with an oracle h = hx that
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depends on x. This raises a third question in the application of a PRG for hardness vs.

randomness tradeoffs:

3. How to obtain the function hx from x?

Chen and Tell [CT21] use the doubly-efficient proof systems of Goldwasser, Kalai, and

Rothblum [GKR15] (as simplified in [Gol18]) to obtain hx from x and combine it with the

Nisan-Wigderson pseudorandom generator construction [NW94]. The GKR proof system

takes a logspace-uniform family of circuits of size T (n) and depth d(n) computing a (multi-

bit) Boolean function f , and transforms the circuit for f on a given input x into a downward

self-reducible sequence of multi-variate low-degree polynomials ĝx,0 . . . , ĝx,d′(n) where d′(n) =

O(d(n) log (T (n))). The polynomial ĝx,0 is efficiently computable at any point given input

x, and the value of f(x) can be extracted efficiently from ĝx,d′(n). We refer to the sequence

of polynomials as a layered arithmetization of the circuit for f on input x.

Chen and Tell instantiate the NW generator with the Hadamard encoding of each of

the polynomials ĝx,i as the function h = hx,i, and follow a bootstrapping strategy similar

to [IW01] to construct ĝx,d′(n) from ĝx,0. For the strategy to work, the NW reconstructor

needs to succeed at every level. This is the reason why Chen and Tell only end up with a

(targeted) hitting-set generator rather than a pseudorandom generator. The time required

by the bootstrapping process is proportional to the number of layers and thus to the depth

d(n) of the circuit computing f . By setting the parameters of the arithmetization appro-

priately, the dependency on the size T (n) is only polylogarithmic. This is what enables the

reconstruction to compute f(x) very quickly as long as the depth d(n) is not too large.

Liu and Pass [LP23] also use the NW generator but obtain hx as an encoding of the value

of f(x) itself, where f is an almost-all inputs leakage-resilient hard function (a function that

remains hard even if some efficiently-computable information about f(x) is leaked to an

attacker). The answers to the learning queries are provided as part of the information

about f(x) that is leaked, which allows them to reconstruct f(x) directly and efficiently.
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This approach leads to a (targeted) pseudorandom generator since it only involves a single

instantiation of the NW generator. Reversing the hardness-to-derandomization direction

yields an equivalence between derandomization of prBPP and the existence of almost-all

inputs leakage-resilient hard functions.

Transition to AM. A number of changes are in order in terms of the requirements for

similar results for AM. First, we need to handle co-nondeterministic distinguisher circuits

D instead of deterministic ones. Co-nondeterministic circuits suffice because Arthur-Merlin

protocols can be assumed to have perfect completeness. The only requirement for a correct

derandomization is in the case of negative instances, in which case we want to hit the set of

Arthur’s random-bit strings for which Merlin cannot produce a witness. By the soundness

property of the Arthur-Merlin protocol, the set contains at least half of the random-bit

strings.

Second, we need to accommodate nondeterministic algorithms computing the function

f . This is because the direction from derandomization to hardness seems to need them (see

Proposition 2.4). On each input x, such an algorithm needs to have at least one successful

computation path, and on every successful computation path, the output should equal f(x).

Third, the algorithm for the targeted hitting-set generator can also be nondeterministic,

which is natural when the algorithm for f is nondeterministic. In the case of a generator,

the nondeterministic algorithm should still have at least one successful computation path on

every input, but it is fine to produce different outputs on different successful computation

paths. For any given x and D, on every successful computation path, the output should

be a hitting set for D. This allows us to nondeterministically simulate a promise Arthur-

Merlin protocol on input x as follows: Guess a computation path of the targeted hitting-set

generator; if it succeeds, say with output S, guess a computation path for the Arthur-Merlin

protocol on input x using each of the elements in S as the random-bit string, and accept if

all of them accept; otherwise, reject.



37

Finally, we need to be able to run the reconstruction procedure as a (promise) Arthur-

Merlin protocol. This is because we want the model in which we can compute f(x) in case

of a failed derandomization on input x, to match the class we are trying to derandomize.

There are two requirements for the protocol to compute f(x) on input x:

○ Completeness demands that there exists a strategy for Merlin that leads Arthur to

succeed with output f(x) with high probability.

○ Soundness requires that, no matter what strategy Merlin uses, the probability for

Arthur to succeed with an output other than f(x) is small.

The reconstructor naturally needs the power of nondeterminism in order to simulate the

distinguisher D. Making sure the reconstructor is sound and needs no more power than

prAM is the challenge.

Traditional setting for AM. In reference to the first two questions above, the answer to

the one about obtaining a distinguisher D is similar as for BPP, except that in the uniform

setting we do not know how to check in prAM for a difference in behavior of D ≐ A(x, ⋅)

between the uniform and the pseudorandom distributions. This is why average-case results

remain open for AM. Instead, one assumes that some nondeterministic algorithm produces,

on every successful computation path on input 1n, an input x of length n on which the

difference in behavior is guaranteed.

As for obtaining answers to the learning queries in the uniform setting for AM, we can

make use of the nondeterminism allowed during the reconstruction and ask Merlin to provide

the answers to the learning queries. However, we need to guard against a cheating Merlin.

A strategy proposed by Gutfreund, Shaltiel and Ta-Shma in [GST03] consists of employing

a function h that has a length-preserving instance checker. After Merlin has provided the

supposed answers to the learning queries, to compute h(z) for a given input z, we run the

instance checker on input z and answer the queries y of the instance checker by running the
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evaluator part of the reconstruction process on input y. All the runs of the evaluator can be

executed in parallel, ensuring a bounded number of rounds overall, which can be reduced to

two in the standard way at the cost of a polynomial blowup in the running time [BM88].

To guarantee soundness, the reconstruction process needs to have an additional resilience

property, namely that it remains partial single-valued even when the learning queries are

answered incorrectly. Two hitting-set generators tailored for AM are known to have the

property: the Miltersen-Vinodchandran generator MV [MV05], which is geared toward the

high end, and a recursive version, RMV, developed by Shaltiel and Umans [SU09] to cover

a broader range. MV is used for the high end in [GST03], and RMV for the rest of the

spectrum in [SU09].

New setting for AM. We build a targeted hitting-set generator for AM based on the

RMV hitting-set generator. To obtain hx from x, we make use of Probabilistically Checkable

Proofs (PCPs) for the nondeterministic computation of the string f(x) from x. Let V denote

the verifier for such a PCP system that uses O(log(T (n)) random bits and polylog(T (n))

queries for nondeterministic computations that run in time T (n). On input x, our targeted

hitting-set generator guesses the value of f(x) and a candidate PCP witness yi for the i-th

bit of f(x) for each i, and runs all the checks of the verifier V on yi (by cycling through all

random-bit strings for V ). If all checks pass, our targeted hitting-set generator instantiates

RMV with yi for each i as (the truth table of) the oracle hx, and outputs the union of all the

instantiations as the hitting set, provided those nondeterministic computations all accept;

otherwise, the targeted hitting-set generator fails.

For the reconstruction of the i-th bit of f(x), Arthur generates the learning queries of the

RMV reconstructor for the oracle yi, and Merlin provides the purported answers as well as

the value of the i-th bit of f(x). Arthur then runs some random checks of the verifier V on

input x, answering the verifier queries by executing the evaluator of the RMV reconstructor.

All the executions of the evaluator can be performed in parallel, ensuring a bounded number
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of rounds overall. The resilient partial single-valuedness property of the RMV reconstructor

guarantees that the verifier queries are all consistent with some candidate proof ỹi. The

completeness and soundness of the PCP then imply the completeness and soundness of the

reconstruction process for our targeted hitting-set generator. As V makes few queries and

is very efficient, the running time of the process is dominated by the running time of the

RMV reconstructor.

Abstracting out the details of our construction and how the distinguisher D is obtained,

the result can be captured in two procedures: a nondeterministic one, H, which has at least

one successful computation path for every input and plays the role of a targeted hitting-set

generator, and a promise Arthur-Merlin protocol, R, which plays the role of a reconstructor

for the targeted hitting-set generator. H and R have access to the input x and a co-

nondeterministic circuit D, and have the following property.3

Property 2.10. For every x ∈ {0, 1}∗ and for every co-nondeterministic circuit D that

accepts at least half of its inputs, at least one of the following holds:

1. H(x, D) outputs a hitting set for D on every successful computation path.

2. R(x, D) computes f(x) in a complete and sound fashion.

Theorem 2.5 follows by considering nondeterministic running time T (n) = na and co-

nondeterministic circuits D of size nc for some c > 1. In this regime, H runs in time

nO(a+c) and R in time nO(c(log a)2). Under the hypothesis of Theorem 2.5, the second item in

Property 2.10 cannot happen except for finitely many x of length n, so the first item needs

to hold. For any constant c′ < c, this yields a polynomial-time targeted hitting-set generator

for prAMTIME[nc′], which can be used for all of prAM by padding. Theorem 2.6 follows

along the same lines; the running time is dictated by the RMV reconstructor.

3The dependency of H on D is only through the number of input bits of D. For R, blackbox access
to D suffices (in addition to the input x). However, we may as well give both H and R full access to the
input x and the circuit D. In the intended application, the co-nondeterministic circuit D is obtained by
hardwiring the input x into the Arthur-Merlin protocol being derandomized, but this is not essential for the
construction.
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We point out that the approach of Chen and Tell can be ported to the AM setting by

replacing NW with a generator for AM that has the learning property and a reconstructor

running in prAM. The nondeterminism allows us to run the bootstrapping process in parallel,

so the number of rounds of Arthur and Merlin remains bounded, but the overall running time

remains proportional to the depth of the circuits for f . This means that, like in the setting of

BPP, this approach only yields meaningful results when the depth is small compared to the

size. Nondeterministic circuits for f can be accommodated in this approach by treating them

as deterministic circuits with nondeterministic guess bits as additional inputs. However, this

limits the amount of nondeterminism that can be handled. Our approach based on PCPs

remedies the limitations on depth as well as nondeterminism.

Derandomization to hardness. Our derandomization-to-hardness result is proven by

diagonalization. Under the prAM ⊆ NP assumption, every fixed-polynomial time AM pro-

tocol computing a length-preserving function can be simulated in nondeterministic fixed-

polynomial time. We would like to diagonalize against these simulating nondeterministic

machines to construct our hard function. Due to the lack of an almost-everywhere hierarchy

result for NTIME, we do not know how to do this efficiently for generic nondeterministic

machines. This is where the advice comes to rescue: We use advice to indicate which nonde-

terministic machines are single-valued at a particular input length. We only need to consider

single-valued machines, and diagonalizing against them is easy for a nondeterministic ma-

chine with a little more running time, but figuring out which nondeterministic machines are

single-valued at a given input length is hard.

2.2.2 Byproducts

In this section, we develop the intuition for our byproducts.

Targeted hitting-set generators from derandomization (Theorem 2.7). To obtain

a targeted hitting-set generator from derandomization of prAM, we employ our targeted
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hitting-set generator in a win-win argument. Either a complexity class separation holds, in

which case a result of [IKW02] guarantees the existence of a regular (oblivious) hitting-set

generator that yields the derandomization result, or we get a strong complexity class col-

lapse. The collapse allows us to bypass some of the difficulties in diagonalizing against prAM

protocols on almost-all inputs (one of the reasons we require advice in the derandomization-

to-hardness direction of our near-equivalence), thus allowing us to do so efficiently and

uniformly, and then instantiate our targeted hitting-set generator construction.

Average-case derandomization (Theorem 2.8). Our average-case derandomization

results under worst-case hardness assumptions also make use of our targeted hitting-set

generator construction, but in a different way. They do not exploit the potential of the

hitting sets to depend on the input x. In fact, they set f(x) to the truth table of the worst-

case hard language L from the hypothesis at an input length determined by ∣x∣. Instead,

they hinge on the strong resilient soundness properties of the reconstructor.

As we are considering the average-case derandomization setting, the problem of obtaining

the distinguisher D for the reconstruction resurfaces. Our approach is similar to the one for

the traditional average-case derandomization setting for BPP. If the simulation fails for pro-

tocol A with noticeable probability over a random input, then we can sample multiple inputs

x1, x2, . . . and construct a list of “candidate distinguishers” Dx1 ≐ A(x1, ⋅), Dx2 ≐ A(x2, ⋅), . . .

such that the list contains, with high probability, at least one “true” distinguisher. Whereas

in the BPP setting one can test each candidate and discard, with high probability, the ones

that are not distinguishers, we do not know how to do that in the AM setting. Instead,

we employ a different approach: We run the reconstructor with each distinguisher with the

hope that every execution either fails or outputs the correct value.

This approach necessitates a stronger form of resilience than the one provided by the

RMV generator: That its reconstruction is sound when given as input any co-nondetermin-

istic circuit D, not just those that accept at least half of their inputs (as in Property 2.10).
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We don’t know how to guarantee this with our prAM reconstruction, but we are able to do

so in prBPPSAT
∣∣ by approximating the fraction of inputs that D accepts and outright failing

if the fraction is too low.

We point out that earlier works [GST03; SU09] also manage to guarantee soundness of

the reconstructor for co-nondeterministic circuits D that accept at least half of their inputs,

based on the resilient partial single-valuedness of the reconstructor for MV or RMV. They

do so by running an instance checker, which limits the hard function f to classes for which

instance checkers are known to exist, such as complete problems for E and EXP. Instead, we

achieve soundness of the reconstructor based on the soundness of a PCP. As PCPs exist for

all nondeterministic computations, this makes our approach more suitable in this setting.

In particular, we do not know how to obtain Theorem 2.8 along the lines of [GST03; SU09].

Unconditional mild derandomization (Theorem 2.9). Our unconditional mild de-

randomization result relies on a similar win-win argument as in the proof of Theorem 2.7:

Either some hardness assumption/class separation holds, in which case we get derandomiza-

tion right away, or we get a complexity collapse that we use to construct, by diagonalization,

a hard function f that has the efficiency requirements we need to obtain the derandomization

result using our targeted hitting-set generator.

Since our result is unconditional, we cannot use derandomization assumptions to make

diagonalizing against prAM protocols easier. Instead, we rely on the inclusion prAM ⊆ Π2P,

which allows for diagonalizing against such protocols in Σ2TIME[nω(1)]. Our generator, how-

ever, requires the hard function to be computable by efficient nondeterministic algorithms.

To help bridge the gap, we prove an “easy witness lemma” for Σ2 computations that guar-

antees a strong collapse in case the aforementioned hardness assumption does not hold. The

collapse then allows us to instantiate our targeted hitting-set generator construction with

the diagonalizing function.
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2.3 Preliminaries

We assume familiarity with standard complexity classes such as NP, AM, and prAM. We

often consider inputs and outputs from non-Boolean domains, such as Fr for a field F and

r ∈ N. In such cases, we implicitly assume an efficient binary encoding for the elements of

these domains. Finally, as is customary, all time bounds considered are implicitly assumed

to be time-constructible.

2.3.1 Nondeterministic, co-nondeterministic and single-valued

computation

We make use of nondeterministic, co-nondeterministic, and single-valued circuits in our

results. A nondeterministic circuit is a Boolean circuit C with two sets of inputs, x and y.

We say that C accepts x if there exists some y such that C(x, y) = 1, and that C rejects x

otherwise. A co-nondeterministic circuit has a symmetric acceptance criterion: It accepts

x if for all y it holds that C(x, y) = 1, and rejects x otherwise. A partial single-valued

circuit also has two inputs, x and y; on input (x, y) it either fails (which we represent by

C(x, y) = �) or succeeds and outputs a bit b = C(x, y). Moreover, we require that for all y, y′

such that both C(x, y) and C(x, y′) succeed, C(x, y) = C(x, y′), i.e., the circuit computes a

partial function on its first input. If, furthermore, for all x there exists a y such that C(x, y)

succeeds, we call the circuit total single-valued or just single-valued.

We are also interested in nondeterministic algorithms that compute total relations R ⊆

{0, 1}∗ × {0, 1}∗. Let T be a time bound. We say that a nondeterministic algorithm N

computes R if for all x ∈ {0, 1}∗, there exists at least one computation path on which

N(x) succeeds, and on all successful computation paths, N(x) outputs some y such that

R(x, y) holds, where y can depend on the computation path. Note, in particular, that if a

function f ∶ {0, 1}∗ → {0, 1}∗ is computable in nondeterministic time T (n), then the language

Lf = {(x, i, b) ∣ f(x)i = b} is in NTIME[T (n)].
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2.3.2 Arthur-Merlin protocols

A promise Arthur-Merlin protocol P is a computational process in which Arthur and Merlin

receive a common input x and operate as follows in alternate rounds for a bounded number

of rounds. Arthur samples a random string and sends it to Merlin. Merlin sends a string that

depends on the input x and all prior communication from Arthur; the underlying function

is referred to as Merlin’s strategy, which is computationally unrestricted. At the end of

the process, a deterministic computation on the input x and all communication determines

acceptance. The running time of the process is the running time of the final deterministic

computation.

Any promise Arthur-Merlin protocol can be transformed into an equivalent one with just

two rounds and Arthur going first, at the cost of a polynomial blow-up in running time,

where the degree of the polynomial depends on the number of rounds [BM88]. As such, we

often use the notation prAM to refer to promise Arthur-Merlin protocols with any bounded

number of rounds, even though, strictly speaking, the notation refers to a two-round protocol

with Arthur going first.

Promise Arthur-Merlin protocols can be simulated by probabilistic algorithms with oracle

access to SAT: Instead of interacting with Merlin, Arthur asks the SAT oracle whether there

exists a response of Merlin that would lead to acceptance. Similarly, PprAM
∣∣

can be simulated

in BPPSAT
∣∣ , the class of problems decidable by probabilistic polynomial-time algorithms with

bounded error and non-adaptive oracle access to SAT. In fact, a converse also holds and

helps to extend some of our results for prAM to the class prBPPSAT
∣∣ .

Lemma 2.11 ([CR11]). prBPPSAT
∣∣ ⊆ PprAM

∣∣
.

In Lemma 2.11, the deterministic machines with oracle access to prAM on the right-hand

side are guaranteed to work correctly irrespective of how the queries outside of the promise

are answered, even if those queries are answered inconsistently, i.e., different answers may

be given when the same query is made multiple times.
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Arthur-Merlin protocols that output values. A promise Arthur-Merlin protocol P

may also output a value. In this case, at the end of the interaction, the deterministic

computation determines success/failure and, in case of success, an output value. We denote

this value by P (x, M), which is a random variable defined relative to a strategy M for

Merlin. Similar to the setting of circuits, we indicate failure by setting P (x, M) = �, a

symbol disjoint from the set of intended output values. Our choice of using success and

failure for protocols that output values is to avoid confusion with the decisional notions of

acceptance and rejection.

Definition 2.12 (Arthur-Merlin protocol with output). Let P be a promise Arthur-

Merlin protocol. We say that on a given input x ∈ {0, 1}∗:

○ P outputs v with completeness c if there exists a Merlin strategy such that the probabil-

ity that P succeeds and outputs v is at least c. In symbols: (∃M)Pr[P (x, M) = v] ≥ c.

○ P outputs v with soundness s if, no matter what strategy Merlin uses, the proba-

bility that P succeeds and outputs a value other than v is at most s. In symbols:

(∀M)Pr[P (x, M) /∈ {v,�}] ≤ s.

○ P has partial single-valuedness s if there exists a value v such that P outputs v with

soundness s. In symbols: (∃v)(∀M)Pr[P (x, M) /∈ {v,�}] ≤ s.

◂

Note that if P on input x outputs v with completeness c and has partial single-valuedness

s, then it outputs v with soundness s, provided s > 1− c. If we omit c and s, then they take

their default values of c = 1 (perfect completeness) and s = 1/3.

For a given function f ∶ X → {0, 1}∗ where X ⊆ {0, 1}∗, we say that P computes f

with completeness c(n) and soundness s(n) if on every input x ∈ X, P outputs f(x) with

completeness c(∣x∣) and soundness s(∣x∣). Note that P may behave arbitrarily on inputs
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that are not in X. In contrast, an AM protocol computing f still computes some value in a

complete and sound fashion on inputs x ∉X.

2.3.3 Learn-and-evaluate and commit-and-evaluate protocols

The reconstruction processes for hardness-based hitting-set generators for prAM are typically

special types of promise Arthur-Merlin protocols. We distinguish between two types.

A learn-and-evaluate protocol is composed of two phases: A learning phase followed by

an evaluation phase. In the learning phase, a probabilistic algorithm makes queries to a

function f and produces an output (which we call a sketch). The evaluation phase then

consists of a promise Arthur-Merlin protocol that computes f(x) correctly on every input x

when given the sketch as additional input.

Definition 2.13 (Learn-and-evaluate protocol). A learn-and-evaluate protocol P con-

sists of a probabilistic oracle algorithm Alearn and a promise Arthur-Merlin protocol Peval.

Let f ∶ X → {0, 1}∗ where X ⊆ {0, 1}∗. We say that P computes f with error e(n) for

completeness c(n) and soundness s(n) if on every input x ∈ X of length n the following

hold: The probability over the randomness of Alearn that Peval with input x and additional

input π = Af
learn(1n) outputs f(x) with completeness c(n) and soundness s(n) is at least

1 − e(n). ◂

The learning phase of a learn-and-evaluate protocol can be simulated by an Arthur-

Merlin protocol with output, where Merlin guesses the queries that Alearn makes on a given

random-bit string and answers them in parallel, and the output is a sketch of f . In this view,

a learn-and-evaluate protocol becomes a pair of promise Arthur-Merlin protocols: one for

the learning phase, and one for the evaluation phase. Note that the quality of the evaluation

phase is only guaranteed when the learning queries are answered correctly, i.e., when Merlin

is honest in the learning phase.
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A commit-and-evaluate protocol [SU09] has the syntactic structure of a pair of promise

Arthur-Merlin protocols without the restriction that Merlin in the first phase only answers

queries about f . Semantically, a commit-and-evaluate protocol is more constrained than a

learn-and-evaluate protocol. The first protocol of the pair now represents a commitment

phase instead of a learning phase. In this phase, Arthur and Merlin interact and pro-

duce an output π, which we call a commitment. Similar to a learn-and-evaluate protocol,

the commitment is given as input to the protocol of the evaluation phase. Whereas in a

learn-and-evaluate protocol there are no guarantees whatsoever when Merlin is dishonest in

the first phase, in a commit-and-evaluate protocol there is a strong guarantee: With high

probability over Arthur’s randomness in the commitment phase, the evaluation protocol is

partial single-valued, meaning that Merlin cannot make Arthur output different values for

the same input x with high probability. The guarantee is referred to as resilient partial

single-valuedness.

Definition 2.14 (Commit-and-evaluate protocol). A commit-and-evaluate protocol is

a pair of promise Arthur-Merlin protocols P = (Pcommit, Peval). P has resilience r(n) for

partial single-valuedness s(n) on domain X ⊆ {0, 1}∗ if for all n, no matter what strategy

Merlin uses during the commit phase, the probability that in the commitment phase, on

input 1n, Pcommit succeeds and outputs a commitment π that fails to have the following

property (2.2) is at most r(n):

For every x of length n in X, Peval(x, π) has partial single-valuedness s(n). (2.2)

In symbols: (∀n)(∀Mcommit)

Pr[(∀x ∈X ∩ {0, 1}n)Peval(x, π) has partial single-valuedness s(n)] ≥ 1 − r(n),

where π = Pcommit(1n, Mcommit). ◂

A commit-and-evaluate protocol naturally induces a promise Arthur-Merlin protocol: On

input x, run Pcommit on input 1∣x∣. If this process succeeds, let π denote its output and run

Peval on input (x, π).
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2.3.4 Hitting-set generators and targeted hitting-set generators

In the setting of prBPP, Goldreich [Gol20] discusses two equivalent definitions of targeted

pseudorandom generators: one for deterministic linear-time machines that take both the

input x and the random-bit string r as inputs, and one based on circuits D that only take

the random-bit string r as input. The circuit D can be obtained by first constructing a circuit

C that simulates the machine on inputs of length ∣x∣, and then hardwiring the input x. The

difference between a regular and targeted pseudorandom generator lies in the dependency

of the output on x (in the first definition) or the circuit D (in the second definition): For

a regular PRG the output can only depend on ∣x∣ or the size of D, whereas for a targeted

PRG it can depend on x and D proper.

In the setting of prAM, without loss of generality, we can assume that promise Arthur-

Merlin protocols have perfect completeness. Therefore, we only need to consider targeted

hitting-set generators, the variant of targeted PRGs for one-sided error. Similar to the BPP

setting, there are two equivalent definitions of targeted hitting-set generators for prAM. We

propose a third, hybrid, and also equivalent definition, where the targeted generator is given

access to both x and the circuit C. For prAM with perfect completeness the circuit C (as

well as D) is co-nondeterministic. For regular hitting-set generators, the output can only

depend on the size of C. Our definition highlights that, in principle, there are two types

of obliviousness that regular PRGs/HSGs exhibit: With respect to the input (where only

dependencies on its size are allowed) and with respect to the algorithm being derandomized

(where only dependencies on its running time are allowed). Since the algorithm description

can be incorporated as part of the input, the dependency on C can be avoided. This is

essentially why all three definitions are equivalent.

We start by defining hitting sets for co-nondeterministic circuits.

Definition 2.15 (Hitting set for co-nondeterministic circuits). Let D be a co-non-

deterministic circuit of size m. A set S of strings of length m is a hitting set for D if there
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exists at least one z ∈ S such that D(z) = 1 (where D might take a prefix of z as input if

necessary). In that case, we say that S hits D. ◂

The notion allows us to define targeted hitting-set generators for prAM as follows, where

we assume, without loss of generality, perfect completeness and soundness 1/2. Regular

hitting-set generators are viewed as a special case.

Definition 2.16 (Regular and targeted hitting-set generator for prAM). A targeted

hitting-set generator for prAM is a nondeterministic algorithm that, on input x ∈ {0, 1}∗

and a co-nondeterministic circuit C, has at least one successful computation path, and if

Prr[C(x, r) = 1] ≥ 1/2, outputs a hitting set for D(r) ≐ C(x, r) on every successful computa-

tion path. A regular hitting-set generator for prAM is a targeted hitting-set generator where

the output only depends on the size of C(x, ⋅). ◂

We measure the running time of a targeted hitting-set generator in terms of both the

length n of the string x and the size m of the co-nondeterministic circuit C. In some cases,

it is more convenient to work with generators that only take a co-nondeterministic circuit

D as input. By the above discussion, such generators suffice for derandomizing prAM.

For completeness, we state the standard way of obtaining the co-nondeterministic circuits

C and D capturing promise Arthur-Merlin protocols.

Proposition 2.17. There exists an algorithm that, on input 1n and the description of

a (Boolean output, two-round) prAMTIME[t(n)] protocol P , runs in time O(t(n)2) and

outputs a co-nondeterministic circuit C of size m = O(t(n)2) that simulates and negates the

computation of P for input length n, i.e., the input of C is comprised of x ∈ {0, 1}n and

Arthur’s random-bit string r, and it co-nondeterministically verifies that there is no Merlin

message that would lead to acceptance. In particular:

○ If P with input x accepts all random inputs, then Dx(r) ≐ C(x, r) rejects every input.
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○ If P with input x rejects at least a fraction 1/2 of its random-bit strings, then Dx(r) ≐

C(x, r) accepts at least a fraction 1/2 of its inputs.

2.3.5 PCPs and low-degree extensions

We use the following construction due to Ben-Sasson, Goldreich, Harsha, Sudan, and Vad-

han.

Lemma 2.18 ([BGH+05]). Let T be a time bound. For every s = s(n) ∶ N → (0, 1] and

every language L ∈ NTIME[T (n)] there exists a PCP verifier V with perfect completeness,

soundness s, randomness complexity log (1/s) ⋅ (log T (n) + O(log log T (n))), non-adaptive

query complexity log (1/s) ⋅ polylog(T (n)), and verification time log (1/s) ⋅ poly(n, log T (n)).

More precisely,

○ V has oracle access to a proof of length T (n)⋅polylog(T (n)), uses log (1/s)⋅(log T (n)+

O(log log T (n))) random bits in any execution, makes log (1/s) ⋅ polylog(T (n)) non-

adaptive queries to the proof and runs in time log (1/s) ⋅ poly(n, log T (n)).

○ If x ∈ L, ∣x∣ = n, then there exists y of length T (n) ⋅polylog(T (n)) such that Pr[V y(x) =

1] = 1.

○ If x ∉ L, ∣x∣ = n, then for all y′ of length T (n) ⋅ polylog(T (n)), Pr[V y′(x) = 1] ≤ s.

We also need standard low-degree extensions. Let x ∈ {0, 1}n, F = Fp be the field with

p elements (for prime p) and h and r integers such that hr ≥ n. The low-degree extension

of x with respect to p, h, r is the unique r-variate polynomial x̂ ∶ Fr → F with degree h − 1

in each variable, for which x̂(v⃗) = xi for all v⃗ ∈ [h]r representing a i ∈ [n] and x̂(v⃗) = 0 for

the v⃗ ∈ [h]r that do not represent an index i ∈ [n]. The total degree of x̂ is ∆ = hr and x̂ is

computable in time n ⋅ poly(h, log p, r) ≤ poly(hr, log p, r) given oracle access to x.
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2.3.6 Average-case simulation

The instance-wise nature of our technique allows us to conclude derandomization on average

with respect to arbitrary distributions by assuming hardness with respect to that same dis-

tribution. The notion of average-case simulation that we use is the one where the simulation

works correctly with high probability over inputs drawn from the distribution. We typi-

cally want good simulations to exist with respect to every efficiently sampleable distribution

(where the simulation may depend on the distribution). This is usually referred to as the

“heuristic” setting.

Definition 2.19 (Heuristic). Let Π be a promise-problem, µ ∶ N → [0, 1), C a complexity

class and x = {xn}n∈N an ensemble of distributions where xn is supported on {0, 1}n and

such that for all n, every x in the support of xn satisfies the promise of Π. We write

Π ∈ Heurx,µC

if there exists a language L ∈ C such that for all sufficiently large n, Prx∈xn[L(x) ≠ Π(x)] ≤

µ(n). We write

Π ∈ HeurµC

if the above property holds for every polynomial-time sampleable ensemble of distributions

with the above support restriction. ◂

The notions of average-case simulation extend to the infinitely-often setting in the natural

way.

2.4 Targeted hitting-set generator construction

In this section, we develop our targeted hitting-set generator construction, which leads to

our instance-wise hardness vs. randomness tradeoffs for Arthur-Merlin protocols.
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Our construction builds on the RMV generator due to Shaltiel and Umans [SU09], which

is a recursive variant of the MV generator that shares the desired resilience property with

MV. We start with the definition of the RMV generator in Section 2.4.1 and state its recon-

struction properties in terms of a commit-and-evaluate protocol. We present our construction

and analysis in Section 2.4.2 and the derandomization consequences in Section 2.4.3.

2.4.1 Recursive Miltersen-Vinodchandran generator

We need a couple of ingredients to describe how the RMV generator works. The first one

is a local extractor for the Reed-Müller code. A local extractor is a randomness extractor

that only needs to know a few bits of the sample. In the following definition the sample is

provided as an oracle, and the structured domain from which the sample is drawn is given

as an additional parameter.

Definition 2.20 (Local extractor). Let S be a set. A (k, ε) local S-extractor is an oracle

function E ∶ {0, 1}s → {0, 1}t that is computable in time poly(s, t) and has the following

property: For every random variable X distributed on S with min-entropy at least k, EX(Us)

is ε-close to uniform. ◂

We make use of the following local extractor for Reed-Müller codes.

Lemma 2.21 (Implicit in [SU05]). Fix parameters r < ∆, and let S be the set of poly-

nomials ĝ ∶ Fr → F having total degree at most ∆, where F = Fp denotes the field with p

elements. There is a (k, 1/k) local S-extractor for k =∆5 with seed length s = O(r log p) and

output length t =∆.

Note that for every subcube with sides of size ∆
r and choice of values at its points, there

exists an interpolating polynomial ĝ with the parameters of Lemma 2.21. It takes (∆/r)r log p

bits to describe these polynomials, but the local extractor only accesses poly(∆, r, log p) bits.
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When instantiated with a polynomial ĝ ∶ Fr → F, the RMV generator groups variables

and operates over axis-parallel (combinatorial) lines over the grouped variables.4 Shaltiel

and Umans call these MV lines, which we define next.

Definition 2.22 (MV line). Let F = Fp for a prime p. Given a function ĝ ∶ Fr → F where

r is an even integer, we define B = Fr/2 and identify ĝ with a function from B2 to F. Given

a point a⃗ = (a⃗1, a⃗2) ∈ B2 and i ∈ {1, 2}, we define the line passing through a⃗ in direction i to

be the function L ∶ B → B2 given by L(z⃗) = (z⃗, a⃗2) if i = 1 and L(z⃗) = (a⃗1, z⃗) if i = 2. This is

an axis-parallel, combinatorial line, and we call it an MV line. Given a function ĝ ∶ Fr → F

and an MV line L we define the function ĝL ∶ B → F by ĝL(z) = ĝ(L(z)). ◂

The input for the RMV construction is a multivariate polynomial ĝ ∶ Fr → F of total

degree at most ∆, and the output is a set of m-bit strings for m ≤∆1/100. The construction

is recursive and requires that r is a power of 2 and that p is a prime larger than ∆100

(say, between ∆100 and 2∆100). Let E be the (k, 1/k)-local extractor from Lemma 2.21 for

polynomials of degree ∆ in (r/2) variables over F. Remember that k = ∆5 and that the

extractor uses seed length O(r log p) and output length t =∆ ≥m. By using only a prefix of

the output, we have it output exactly m bits.

The operation of the RMV generator on input ĝ is as follows: Set B = Fr/2. For every

a⃗ ∈ B2 and i ∈ {1, 2}, let L ∶ B → B2 be the MV line passing through a⃗ in direction i.

Compute E ĝL(y) for all seeds y. For r = 2, output the set of all strings of length m obtained

over all a⃗ ∈ B2, MV lines L through a⃗, and seeds y. For r > 2, output the union of this set

and the sets output by the recursive calls RMV(ĝL) for each of the aforementioned MV lines

L.

The construction runs in time pO(r) and therefore outputs at most that many strings. If

the set output by the procedure fails as a hitting set for a co-nondeterministic circuit D of

4In the original construction [SU09], the RMV generator is defined with the number d of groups of
variables as an additional parameter. Eventually, d is set to 2, which is the value we use for our results as
well.
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size m, then there exists an efficient commit-and-evaluate protocol P for ĝ with additional

input D. This is the main technical result of [SU09], which we present in a format that is

suitable for obtaining our results.5

Lemma 2.23 ([SU09]). Let ∆, m, r, p be such that m ≤ ∆1/100, r is a power of 2 and

p is a prime between ∆100 and 2∆100. Let also F = Fp and s ∈ (0, 1]. There exists a

commit-and-evaluate protocol (Pcommit, Peval) with additional inputs p and D, where D is

a co-nondeterministic circuit of size m, such that the following holds for any polynomial

ĝ ∶ Fr → F of total degree at most ∆.

○ Completeness: If D rejects every element output by RMV(ĝ) then there exists a strategy

Mcommit for Merlin in the commit phase such that Peval on input (z⃗, D, π) outputs ĝ(z⃗)

with completeness 1 for every z⃗ ∈ Fr, where π ≐ Pcommit(1n, Mcommit).

○ Resilience: If D accepts at least a fraction 1/2 of its inputs then (Pcommit, Peval) has

resilience s for partial single-valuedness s on domain Fr.

○ Efficiency: Both Pcommit and Peval have two rounds. Pcommit runs in time log (1/s) ⋅

poly(∆, r) and Peval runs in time (log (1/s))2 ⋅∆O((log r)2).

Moreover, the honest commitment protocol works as follows: Arthur randomly selects a set

S ⊆ Fr/2 of size log (1/s) ⋅ poly(∆, r) and Merlin replies with evaluations of ĝ on each of the

points in S2 ⊆ Fr. The commitment π consists of the set S and the evaluations of ĝ on S2.

Finally, the only way Peval requires access to D is via blackbox access to the deterministic

predicate that underlies D.

5Shaltiel and Umans present the evaluation protocol as a multi-round protocol (with log r rounds). We
collapse it into a two-round protocol by standard amplification (which also amplifies the crucial resilience
property) [BM88; SU09].
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2.4.2 Targeted generator and reconstruction

In this section, we present our targeted hitting-set generator construction, which works as

follows: On input x and a co-nondeterministic circuit D of size m, it guesses a PCP (as in

Lemma 2.18) for each bit of f(x) and verifies each PCP deterministically by enumerating

over the PCP verifier’s randomness. It encodes each PCP as a low-degree polynomial (as

in Section 2.3.5), instantiates the RMV generator with each of the polynomials and outputs

the union of the outputs for each instantiation. For the reconstruction, we have Merlin send

a bit b and commit to the low-degree extension of a proof that the i-th bit of f(x) equals

b. Arthur then runs the PCP verifier using the evaluation protocol to answer proof queries.

The protocol succeeds and outputs b if and only if the PCP verifier accepts. Here is the

formal statement of the result.

Theorem 2.24. Let T (n) be a time bound and f ∈ NTIME[T (n)]. There exists a nonde-

terministic algorithm H (the generator) that always has at least one successful computation

path per input, and a promise Arthur-Merlin protocol R (the reconstructor) such that for

every x ∈ {0, 1}∗ and every co-nondeterministic circuit D that accepts at least half of its

inputs, at least one of the following holds.

1. H(x, D) outputs a hitting set for D on every successful computation path.

2. R(x, D) computes f(x) with completeness 1 and soundness 1/3.

The construction also has the following properties:

○ Resilient soundness: In either case, the probability that R(x, D) outputs a value other

than f(x) is at most 1/3.

○ Efficiency: On inputs x of length n and D of size m, H runs in time poly(T (n), m),

and R, given an additional index i, computes the i-th bit of f(x) in time poly(n) ⋅

(m ⋅ log T (n))O((log r)2) for r = O(log (T (n))/ log m). In particular, R computes f(x)

in time ∣f(x)∣ ⋅ (m ⋅ log T (n))O((log r)2).
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○ Input access: H(x, D) only depends on x and the size of D, and the only way R

requires access to D is via blackbox access to the deterministic predicate that underlies

D.

Proof. Let f ∈ NTIME[T (n)], consider the language Lf = {(x, i, b) ∣ f(x)i = b} and note

that Lf ∈ NTIME[T (n)]. Let V be the PCP verifier of Lemma 2.18 for Lf with soundness

s = s(n) = (100T (n)−1). Let also h = h(m) = m100, r = r(n, m) be the smallest power of

2 such that hr is greater than the proof length of V on input length n and p = p(n, m)

be the smallest prime in the interval [∆100, 2∆100] for ∆ = h ⋅ r. Note, in particular, that

hr = poly(T (n), m) and r = O(log (T (n))/ log m).

Generator. The generator H, on input x and a co-nondeterministic circuit D of size m,

first guesses the value of z = f(x) and a proof yi of the correct length T (n) ⋅ polylog(T (n))

for the i-th bit of z for each i. Then it verifies that Pr[V yi(x, i, zi) = 1] = 1 for all i by

deterministically enumerating over the poly(T (n)) random-bit strings for V . If any of the

verifications fail, it fails. Otherwise, it outputs the union of RMV(ŷi) for all i, where ŷi is the

low-degree extension of yi with parameters p, h and r. The initial verification step takes time

poly(T (n)), and executing RMV(ŷi) takes time pO(r) = poly(T (n), m) and outputs strings of

length m. This culminates in a running time of poly(T (n), m). Finally, since for the correct

output z = f(x) there always exist proofs yi that are accepted with probability 1 for each i,

there always exists a nondeterministic guess that leads the generator to succeed.

Reconstructor. We describe and analyze the prAM protocol R, which uses the commit-and-

evaluate protocol P = (Pcommit, Peval) of Lemma 2.23 with soundness parameter s′ = s′(n) =

(100T (n) ⋅ q)−1, where q = q(n) = polylog(T (n)) denotes the query complexity of V at input

length n. On inputs x, D and an index i, Arthur and Merlin play the commit phase Pcommit,

which produces a commitment πi to be fed into the evaluation phase. In parallel, Merlin also

sends a bit b to Arthur. The idea is for an honest Merlin to send b = f(x)i and commit to

the low-degree extension ŷi of a proof yi that witnesses (x, i, b) ∈ Lf (or f(x)i = b), though a
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dishonest Merlin may send a different bit and/or commit to some different function. Let γi

denote the function that Merlin committed to via Pcommit, which may be accessed with high

probability by executing the evaluation protocol Peval with input πi. The restriction of γi to

[h]r defines a candidate PCP proof ỹi. Arthur then runs the verifier V ỹi(x, i, b), employing

Merlin’s help to evaluate ỹi whenever V makes a query to it (where binary queries are first

converted into the respective v⃗ ∈ Fr
p and all queries are evaluated in parallel). If V ỹi(x, i, b)

accepts, then R succeeds and outputs b, otherwise it fails.

Completeness. If D is not hit by H(x, D), then for all indices i there exists at least one

proof yi that witnesses (x, i, f(x)i) ∈ Lf and such that RMV(ŷi) fails to hit D, where ŷi is

the low-degree extension of yi with parameters p, h and r. In that case, an honest Merlin

can commit to such a ŷi with probability 1 by the completeness property of Lemma 2.23 as

well as send the correct value of f(x)i during the first phase. Then perfect completeness of

V and Peval guarantee that R succeeds and outputs f(x)i with probability 1.

(Resilient) soundness. If D accepts at least half of its inputs, then for a fixed index i the

resilience property of P in Lemma 2.23 guarantees that with probability at least 1 − s′, the

commit phase is successful and thus the evaluation protocol with input πi has partial single-

valuedness s′. In that case, by a union bound over the at most q queries that V makes,

with probability at least 1 − (100T (n))−1 = 1 − s, every execution of the evaluation protocol

results in the evaluation of a fixed function γi ∶ Fr → F. If Merlin sends the incorrect value

of b ≠ f(x)i in the first round (the only way he could try to have Arthur output the wrong

value), the soundness property of V in Lemma 2.18 guarantees that R fails with probability

at least 1 − s since (x, i, b) ∉ Lf . By a union bound over these three “bad” events, all of

which have probability at most s since s ≥ s′, for any fixed index i, R(x, D) with additional

input i either fails or outputs f(x)i with probability at least 1 − 3s. Finally, a union bound

over the at most T (n) possible indices i guarantees that R either fails or outputs f(x) with

soundness 1/3. In particular, if completeness also holds then R(x, D) computes f(x) with

completeness 1 and soundness 1/3.
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Efficiency. The commit phase takes time log (1/s′) ⋅ poly(∆, r) = poly(m, log T (n)) and

two rounds of communication. Afterwards, evaluating each query made by V (x, i, b) with

Peval takes time (log (1/s′))2 ⋅ ∆O((log r)2) = (m ⋅ polylog(T (n)))O((log r)2). The verification

step for V takes time log (1/s) ⋅ poly(n, log T (n)) = poly(n, log T (n)), and it makes at most

log (1/s)⋅polylog(T (n)) = polylog(T (n)) queries, resulting in a total running time of poly(n)+

(m⋅log T (n))O((log r)2). Moreover, because V is non-adaptive, each execution of the evaluation

protocol can be carried out in parallel, and thus the total number of rounds is four. Collapsing

this protocol into a protocol with two-rounds [BM88] leads to a prAM protocol with running

time poly(n) ⋅ (m ⋅ log T (n))O((log r)2).

Input access. We observe that computing RMV(ŷi) for each i only requires knowledge of m,

the size of circuit D (instead of the circuit itself) and thus the generator H also only requires

knowledge of m. Similarly, the commit-and-evaluate protocol in Lemma 2.23 only requires

blackbox access to the deterministic predicate that underlies the circuit D, and thus so does

our reconstructor R since it just gives D as input to P . ∎

We remark that we can amplify the resilient soundness property for the reconstructor so

that the probability that it outputs a value outside of {f(x)i,�} is at most 2−t by running

it Θ(t) times in parallel and outputting � as soon as at least one of the answers is � or the

answers are inconsistent, and outputting the consistent answer bit otherwise.

We also present a version of the generator with a stronger resilient soundness property at

the expense of increasing the complexity of the reconstructor from a promise Arthur-Merlin

protocol to a probabilistic algorithm with parallel access to SAT. This version is useful for

obtaining our byproducts in the average-case setting.

Corollary 2.25. Let T (n) be a time bound and f ∈ NTIME[T (n)]. There exists a nonde-

terministic algorithm H (the generator) and a probabilistic algorithm R (the reconstructor)

with parallel access to SAT that have the same properties as in Theorem 2.24 but such that

the resilient soundness property holds for every co-nondeterministic circuit.
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In the setting of Corollary 2.25, item 2 of Theorem 2.24 should be interpreted as saying

that R(x, D) outputs f(x) with probability at least 2/3. We refer to the stronger resilience

property in Corollary 2.25 as strong resilient soundness.

The idea behind Corollary 2.25 is for the reconstructor to first check whether the co-

nondeterministic circuit D accepts at least somewhat less than half of its inputs. This is

where the parallel access to an oracle for SAT comes in; it allows us to distinguish with

high probability between the cases where the fraction of accepted inputs is, say, at most

1/3 and at least 1/2. In the former case, the new reconstructor indicates failure with high

probability. Otherwise, we boost the fraction of accepted inputs to at least 1/2 by trying

D on two independent inputs, and then run the old reconstructor on the corresponding

co-nondeterministic circuit D′.

Proof of Corollary 2.25. Let H ′ be the generator and R′ the reconstructor of Theorem 2.24

instantiated with function f and amplified to have (resilient) soundness 1/6.

Generator. The generator H, on input x and D of size m, first constructs the circuit D′

of size 2m as D′(r1r2) = D(r1) ∨ D(r2). We then define H(x, D) as Left(H ′(x, D′)) ∪

Right(H ′(x, D′)), where Left(S) and Right(S) output the set of the left and right halves of

every string in S, respectively.

Reconstructor. On input (x, D) and an index i, the reconstructor R estimates up to error

1/12 and with probability of failure 1/6 the fraction of inputs accepted by D by evaluating

circuit D on O(1) random inputs of length m, which can be done in probabilistic time

poly(m) with O(1) parallel queries to a SAT oracle. If the estimated fraction is less than

5/12 (the midpoint between 1/3 and 1/2), then R declares failure. In parallel, R builds the

circuit D′ in the same way as H, samples Arthur’s randomness for protocol R′ with inputs

(x, D′) and i and makes three queries to the SAT oracle to obtain the protocol’s output:

Whether there is a Merlin response that leads to success and whether there are Merlin

responses that lead to outputting 0 and 1. If the first query is answered negatively, or the
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last two queries give inconsistent answers, then R declares failure. Otherwise, R outputs

whatever R′ does.

Strong resilient soundness. Consider two cases in relation to circuit D: Either D accepts

fewer than 1/3 of its inputs, or it accepts at least a 1/3 of its inputs. In the first case, the

initial verification fails with probability at least 5/6. In the second case, D′ accepts at least

2/3−1/9 = 5/9 > 1/2 of its inputs. The resilient soundness property of protocol R′ guarantees

that with probability at least 5/6, R either fails or outputs f(x) correctly. In either case, it

follows that R outputs an incorrect value for f(x) with probability at most 1/6 ≤ 2/3.

Correctness. If a co-nondeterministic circuit D accepts at least half of its inputs, so does

the circuit D′. Moreover, if H(x, D) fails to hit D, then H ′(x, D′) fails to hit D′. The

correctness of protocol R′ then guarantees that there exists a strategy for Merlin that makes

R′ output f(x) with probability 1, and no strategy can make R′ output an incorrect value

for f(x) with probability at least 1/6. It follows that the second parallel phase of R yields

f(x) with probability at least 5/6. Accounting for the error probability of 1/6 in the initial

verification, we conclude that R outputs f(x) with probability at least 2/3.

Efficiency. The running time of H is asymptotically identical to that of H ′, and the running

time of R is polynomial in the running time of R′.

Finally, the input access part follows right away from the input access part of Theo-

rem 2.24. ∎

Similar to the case of Theorem 2.24, we can amplify the strong resilient soundness prop-

erty for the reconstructor so that the probability that it outputs a value outside of {f(x)i,�}

(or different from f(x)i in case D is not hit by the generator) is at most 2−t by running it

Θ(t) times in parallel and outputting the majority answer.
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2.4.3 Derandomization consequences

First, we present a generic derandomization result for prAM that works under hardness

against arbitrary distributions.

Theorem 2.26. There exists a constant c such that the following holds. Let t, T ∶ N → N

be time bounds such that t(n) ≥ n, Π ∈ prAMTIME[t(n)] and {xn}n∈N be an ensemble of

distributions such that xn is supported over {0, 1}n and such that for all n, every x in the

support of xn satisfies the promise of Π. Assume that for µ ∶ N → [0, 1) there exists a

length-preserving function f ∈ NTIME[T (n)] such that for every prAMTIME[t(n)O((log r)2)]

protocol P for r = O(log (T (n))/ log (t(n))), it holds that the probability over x ∼ xn that

P (x) = f(x) is at most µ(n) for all but finitely many n. Then, it holds that

Π ∈ Heurx,µNTIME[T (n)c].

Proof. First, notice that if t(n) ≤ log T (n), then the conclusion is trivial and if t(n) ≥ T (n)

then the premise is impossible, so we focus on the case that log T (n) ≤ t(n) ≤ T (n). Let

Π ∈ prAMTIME[t(n)] and let P be a two-round protocol for Π running in time O(t(n)) on

inputs of length n. On input x ∈ {0, 1}n, compute the circuit Dx of Proposition 2.17 with

protocol P , and note that Dx has size O(t(n)2). Then, instantiate the hitting-set genera-

tor of Theorem 2.24 with f . Feed H inputs x and Dx and run the usual derandomization

procedure for protocol P with the set output by H(x, Dx): For each string ρ ∈ H(x, Dx),

nondeterministically guess Merlin’s message yρ and compute the output of P with random-

ness ρ and message yρ, accepting if and only if P accepts for every ρ ∈H(x, Dx). The entire

procedure runs in nondeterministic time poly(T (n), t(n)) = O(T (n)c) for some constant c,

since T (n) ≥ t(n).

Assume, with the intent of deriving a contradiction, that with probability at least µ(n)

over x ∼ xn, this derandomization fails for input x. First, notice that by the perfect com-

pleteness of P it must be the case that such an x lies in ΠN and that P with input x accepts

every string in H(x, Dx). Therefore, Dx acts as a distinguisher for H(x, Dx), i.e., it rejects
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every string output by Dx while accepting at least half of its inputs. By computing Dx

and feeding it to the prAM protocol R of Theorem 2.24, we obtain a prAM protocol that

computes individual bits of f(x) correctly for every x for which the derandomization fails,

i.e., with probability at least µ(n) over x ∼ xn. By running this protocol n times in parallel

to compute every bit of f(x), we obtain a prAM protocol that runs in time

poly(n) ⋅ (t(n) ⋅ log T (n))O((log r)2) = t(n)O((log r)2)

since t(n) ≥ log T (n) and t(n) ≥ n. This is a contradiction to the hardness of f so we are

done. ∎

We remark that we require hardness not just against AM protocols but against prAM

protocols, which may not respect the completeness and/or soundness conditions on some

inputs. However, an input of length n only contributes to the success fraction µ(n) provided

the completeness and soundness conditions are met on that input.

As a consequence of Theorem 2.26, if the hardness assumption holds for almost-all inputs,

then we obtain full derandomization of prAM.

Theorem 2.27. There exists a constant c such that the following holds. Let t, T ∶ N→ N be

time bounds such that t(n) ≥ n. If there is a length-preserving function f ∈ NTIME[T (n)]

that is hard on almost-all inputs against prAMTIME[t(n)O((log r)2)] for r = O(log (T (n))/

log (t(n))) then

prAMTIME[t(n)] ⊆ NTIME[T (n)c].

Moreover, there exists a targeted hitting-set generator that achieves this derandomization

result.

Proof. The statement follows from Theorem 2.26 by noting that the assumption that f is

hard on almost-all inputs implies that f is hard for all possible distributions xn with success

probability µ(n) = 0. In particular, the following nondeterministic algorithm is a hitting-set
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generator for prAM: On input x ∈ {0, 1}∗ and a co-nondeterministic circuit C of size m,

output H(x, D) where H is the generator of Theorem 2.24 and D ≐ C(x, ⋅). This algorithm

has a successful computation path for any input and, on every successful computation path

on inputs where D accepts at least half of its inputs, it outputs a set that hits D. The

running time of the generator is poly(T (n), m). ∎

Setting T (n) Hard for Derandomization
high end na nO((log a)2) prAM ⊆ NP

middle-of-the-road 2polylog(n) nO((log log n)2) prAM ⊆ NTIME[2polylog(n)]
low end 2no(1)

no((log n)2) prAM ⊆ NTIME[2no(1)]
very low end 2poly(n) nb(log n)2 ∀b ∃c prAM ⊆ NTIME[2nc]

Table 2.2: Derandomization consequences that follow from different instantiations of Theo-
rem 2.27.

By setting parameters in Theorem 2.27, we obtain the derandomization results listed

on Table 2.2. In particular, the first line of Table 2.2 establishes Theorem 2.5 and the last

line establishes Theorem 2.6. We now provide more details on how to obtain each line of

Table 2.2:

○ For the high end, set t(n) = n, in which case r = O(a). Then, prAMTIME[n] ⊆ NP

follows as long as f is hard on almost-all inputs against prAMTIME[nO((log a)2)]. The

result for prAM follows by padding.

○ For the middle-of-the-road result, set t(n) = n, in which case r = polylog(n). Then,

prAMTIME[n] ⊆ NTIME[2polylog(n)] follows as long as f is hard on almost-all inputs

against prAMTIME[nO((log log n)2)]. The result for prAM follows by padding.

○ For the low end, let ν = ν(n) = o(1) be such that T (n) = 2nν and set t(n) = n. In this

case, r ≤ nν . Then, prAMTIME[n] ⊆ NTIME[poly(n, 2nν)] follows as long as f is hard

on almost-all inputs against prAMTIME[nO((ν log n)2)]. Since poly(n, 2nν) = 2no(1) and

nO((ν log n)2) = no((log n)2), the result for prAM follows by padding.
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○ For the very low end, set t(n) = nb for a constant b, in which case r = poly(n). Then,

prAMTIME[nb] ⊆ NTIME[2nc] for some constant c follows as long as f is hard on almost-

all inputs against prAMTIME[nO(b(log n)2)]. To get the result for prAM, it suffices for

hardness to hold for all b.

2.5 Consequences of derandomization

In this section, we prove the derandomization-to-hardness and derandomization-to-targeted

HSGs directions of our near-equivalences.

2.5.1 Hardness on almost-all inputs

We start with our derandomization-to-hardness implication: If prAM ⊆ NP then for all con-

stants c there is a length-preserving function f computable in nondeterministic polynomial

time (with a few bits of advice) that is hard on almost-all inputs against AMTIME[nc]. The

basic idea is that, under the derandomization hypothesis, every (single-bit) AM protocol that

runs in time nc can be simulated by a single-valued nondeterministic machine without too

much time overhead. If we have as advice whether a particular nondeterministic machine is

single-valued or not at input length n, we can negate its input efficiently, obtaining a func-

tion f computable in nondeterministic time poly(n) that is almost-all inputs hard against

AM protocols that run in time nc. We now state Proposition 2.4 formally.

Proposition 2.28 (Formal version of Proposition 2.4). If prAM ⊆ NP, then for every

constant c and increasing function α ∶ N → N there exists a length-preserving function

f ∈ NP/α(n) that is hard on almost-all inputs against AMTIME[nc].

Proof. Assume that prAM ⊆ NP and let c′ be a constant to be defined later (which depends

on c). The basic idea for the function f is as follows: On an input x of length n, we set its

i-th output bit (for 1 ≤ i ≤ min(n, α(n))) to the opposite of the i-th bit output by the i-th
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nondeterministic Turing machine Ni on input x (if Ni is single-valued and halts in at most

nc′+2 steps at input length n), and otherwise we set it to 0. Formally, on input x of length

n and for 1 ≤ i ≤ n

f(x)i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 −Ni(x)i if i ≤ α(n), Ni is single-valued and halts in at most nc′+2 steps,

0 otherwise.

Note that f is computable by a single-valued nondeterministic machine running in time

O(nc′+3) with α(n) bits of advice (indicating whether Ni is single-valued and halts in at most

nc′+2 steps at input length n for 1 ≤ i ≤ α(n)).6 This holds because, when Ni is single-valued,

computing 1 − Ni(x)i can be done by guessing a path on which Ni succeeds, which must

result in the unique value Ni(x), and then outputting the opposite of the i-th bit of that.

Assume, with the intent of deriving a contradiction, that there exists an AM protocol P

that runs in time O(nc) and computes f on an infinite set of inputs X ⊆ {0, 1}∗. Consider

the protocol P ′ that takes as regular input a triple (x, i, b) and accepts iff the i-th bit of

the output of protocol P with input x equals b (if i > ∣x∣ then P ′ rejects). Note that P ′

induces a language L in AMTIME[nc]. Since prAM ⊆ NP and prAMTIME[nc] has a complete

problem under linear-time reductions, it follows that there exists a constant c′ such that

AMTIME[nc] ⊆ NTIME[nc′].7 Let N be a nondeterministic machine that runs in time nc′

and computes L. Note that for every x ∈ {0, 1}∗ and 1 ≤ i ≤ ∣x∣, N(x, i, b) = 1 for exactly one

b ∈ {0, 1}, and when x ∈X, N(x, i, b) = 1 if and only if f(x)i = b.

Now consider the following procedure N ′: On input x ∈ {0, 1}n, guess a value bi and a

witness yi for each 1 ≤ i ≤ n and run N(x, i, bi; yi). If for all i, N(x, i, bi; yi) accepts, N ′

succeeds and prints the concatenation of the guessed bi’s, otherwise N ′ fails. Note that N ′ is

a nondeterministic machine that runs in time O(nc′+1). Moreover, by our assumption that P

6The nondeterministic machine computing f is only guaranteed to be single-valued when given the
correct advice string.

7While our argument only requires that there exists a constant c′ such that AMTIME[nc
] ⊆ NTIME[nc′

],
we use the assumption prAM ⊆ NP instead of AM ⊆ NP since it is unknown whether AMTIME[nc

] contains
a complete problem under linear-time reductions.
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is an AM protocol and that prAM ⊆ NP, N ′ is single-valued on every input. By construction,

the single value equals f(x) for all x ∈X.

Let i be the index of N ′ in our enumeration, i.e., Ni = N ′. By definition of f , for

every input x ∈ {0, 1}∗ of sufficiently large length n ≥ α−1(i) (so that it has a chance to

negate the output of Ni), and in particular for all sufficiently large x ∈ X, we have that

f(x)i = 1 −N ′(x)i = 1 − f(x)i, which is a contradiction. ∎

This result extends to other parameter settings. As an example, we state a version of

Proposition 2.28 at the very low end.

Proposition 2.29. If there exists a constant c such that that AM ⊆ NTIME[2nc], then for

every increasing function α ∶ N → N there exists a function f ∈ NEXP/α(n) that is hard on

almost-all inputs against AM protocols running in polynomial time.

Proof (Sketch). The proof is essentially identical to that of Proposition 2.28, but with a

different time bound. Since AM ⊆ NTIME[2nc], the diagonalizing machine N needs to diago-

nalize against single-valued nondeterministic algorithms running in time 2nc′ for some fixed

constant c′ > c, and thus we get a nondeterministic algorithm that runs in time O(2nk) for

any constant k > c′. ∎

We conclude this section by noting in more detail where the gaps between our hardness-

to-derandomization and derandomization-to-hardness results lie. The first gap lies in the

fact that in the derandomization-to-hardness direction, the hard function f we construct

requires a few bits of advice that we don’t know how to handle in the other direction.

There is, however, a subtler difference — In the hardness-to-derandomization direction, we

require hardness against prAM protocols, which may not obey the AM promise on all inputs

(though we only consider the protocol as computing f(x) on input x if it obeys the promise

and respects both completeness and soundness on input x). In the derandomization-to-

hardness direction, we can only guarantee hardness against AM protocols, which necessarily

obey the AM promise on all inputs. We remark that a similar problem shows up in other
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hardness vs. randomness tradeoffs for AM [GST03; SU09]. For example, to conclude almost-

everywhere derandomization of AM, the authors of [GST03] require hardness of EXP against

AM protocols for which completeness only holds infinitely-often. Finally, we also note that,

while Chen and Tell only state their derandomization-to-hardness result for BPP [CT21],

in that setting one can actually achieve hardness against prBPP (where the probabilistic

algorithm might not have a high-probability output for every input).

2.5.2 Targeted hitting-set generator

In this section, we prove Theorem 2.7 along the lines of the intuition provided in Section 2.2.2.

We make use of a win-win argument: Either the EXP ≠ NEXP hardness assumption holds,

in which case there is a regular (oblivious) hitting-set generator that guarantees the deran-

domization result [IKW02]. Or else we may assume that EXP = NEXP, which allows us to

construct a function f that is hard against prAM protocols by diagonalization, with which

we then instantiate Theorem 2.24 to obtain the targeted hitting-set generator.

We need the following result that follows from the “easy-witness” method.

Lemma 2.30 ([IKW02]). If NEXP ≠ EXP then prAM ⊆ io-NTIME[2nε]/nε for every ε > 0.

Moreover, for every ε > 0 there exists a (regular) hitting-set generator that achieves this

derandomization.

We now prove Theorem 2.7, which we restate here for convenience.

Theorem 2.31 (Theorem 2.7, restated). If prAMTIME[2polylog(n)] ⊆ io-NEXP, then for

some constant c and all ε > 0, there exists a targeted hitting-set generator for prAM that

yields the simulation prAM ⊆ io-NTIME[2nc]/nε.

Proof. If EXP ≠ NEXP, we are done by Lemma 2.30. Otherwise, it holds that NEXP = EXP.

We use this collapse to construct a length-preserving multi-bit function f ∈ EXP that is hard

against prAMTIME[n(log n)3]. We then instantiate Theorem 2.24 with f to obtain the targeted
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hitting-set generator. Hardness against protocols running in this time bound suffices along

the lines of Theorem 2.6.

Before constructing f , we make an observation: Due to the instance-wise nature of

our construction, to obtain an infinitely-often derandomization result using Theorem 2.24 it

suffices to have an infinitely-often all-inputs hardness assumption. More precisely, we require

the following: For every prAMTIME[n(log n)3] protocol P , there exist infinitely many input

lengths n such that P fails to compute f for every x of length n. Thus, we construct a

function f with this requirement in mind.

Under the hypothesized derandomization assumption and because prAMTIME[n(log n)3]

has a complete problem under linear-time reductions, it follows that there exists a constant

k such that prAMTIME[n(log n)3] ⊆ io-NTIME[2nk]. Since NTIME[2nk] also has a complete

problem under linear-time reductions, under the assumption EXP = NEXP, there exists a

constant k′ such that prAMTIME[n(log n)3] ⊆ io-DTIME[2nk′ ]. In that case, it suffices to diag-

onalize against fixed-exponential time machines to construct f . Similar to Proposition 2.28,

we define the i-th bit of f(x) to be the opposite of the i-th bit output by Mi(x) when it

runs for at most 2∣x∣k
′+1 steps, where Mi is the i-th deterministic Turing machine. Formally,

on input x of length n and for 1 ≤ i ≤ n,

f(x)i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 −Mi(x) if Mi(x) halts in at most 2nk′+1 steps,

0 otherwise.

Note that f is computable by a deterministic machine running in time O(n ⋅ 2nk′+1) and

thus f ∈ EXP.

Assume, toward a contradiction, that there exists a prAMTIME[n(log n)3] protocol P such

that for almost-all input lengths n, P computes f on at least one input x ∈ {0, 1}n, and

call the set of inputs where P computes f correctly X. Again, similar to the proof of

Proposition 2.28, P induces a problem Π in prAMTIME[n(log n)3], and by our assumptions,

there is a language L ∈ DTIME[2nk′ ] such that L and Π agree on infinitely many input

lengths. Let M be a deterministic Turing machine running in time O(2nk′) that decides
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L. Recall that yes-instances of Π are triples (x, i, b) such that x ∈ X and f(x)i = b while

no-instances have x ∈ X and f(x)i ≠ b. Let M ′ be the deterministic Turing machine that,

on input x of length n, outputs M ′(x) of length n such that M ′(x)i = 1 if and only if M

accepts (x, i, 1) for 1 ≤ i ≤ n. Note that M ′ runs in time 2nk′+1 . By construction and our

assumption on P , for infinitely many input lengths n there exists at least one x ∈X ∩{0, 1}n

such that M ′(x) = f(x).

Let i be the index of M ′ in our enumeration. By definition of f , for every input x ∈ {0, 1}∗

of sufficiently large length n ≥ i (so that it has a chance to negate the output of M ′), and in

particular for all sufficiently large inputs x ∈X, we have that f(x)i = 1−M ′(x)i = 1− f(x)i,

a contradiction. Finally, we instantiate Theorem 2.26 with f to obtain a targeted hitting-set

generator for prAM that runs in exponential time, which suffices to obtain the conclusion. ∎

2.6 Derandomization under uniform worst-case

hardness

Our technique also leads to new results in the traditional uniform worst-case setting. Under

worst-case hardness against probabilistic algorithms with non-adaptive oracle access to SAT,

we obtain average-case derandomization results for prAM. Moreover, by further strengthen-

ing the hardness assumption, we may also conclude full (infinitely-often) derandomization

of prAM. As previously mentioned, these results extend to average-case derandomization of

prBPPSAT
∣∣ .

2.6.1 Average-case simulation

In this section, we develop our average-case derandomization results for prAM under worst-

case uniform hardness assumptions (where hardness is against BPTIMESAT
∣∣ ). Our results

in this setting work as follows: Assume there exists a hard language L ∈ NTIME[T (n)] ∩

coNTIME[T (n)]. To derandomize some prAM protocol P on input length n, we first consider
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the hard language L at some suitable input length `, which depends on the hardness of L

(for Theorem 2.8, for example, we take ` = Θ(log n)). Then we let f be the function that

maps any input x ∈ {0, 1}n to the truth table of L at input length `, and it follows from the

complexity of L that f ∈ NTIME[2` ⋅ T (`)]. Finally, we instantiate our targeted hitting-set

generator construction H with f and use it to derandomize P .

For the reconstruction, we make use of the strong resilient soundness property of Corol-

lary 2.25. If the average-case derandomization fails, to decide whether z of length ` is in L,

we first sample multiple candidate “good” strings x that hopefully lead to a distinguisher

Dx for the generator (enough so that we expect at least one “good” x with high probability).

Then, we run the reconstruction for all of them, accepting if and only if at least one of

those outputs 1. By the strong resilient soundness property and amplification, with high

probability every execution either fails or outputs f(x)z = L(z), and in the high probability

case that we sample at least one “good” x, some execution outputs L(z), meaning we can

compute L efficiently on input length `.

First, we present such a result at the high end of the derandomization spectrum.

Theorem 2.32 (Strengthening of Theorem 2.8). If NTIME[2an] ∩ coNTIME[2an] is not

included in BPTIME[2(log(a+1))2n]SAT
∣∣

for some constant a > 0, then for all e > 0 it holds that

prAM ⊆ io-Heur1/neNP

prBPPSAT
∣∣ ⊆ io-Heur1/nePSAT

∣∣
.

Proof. We first argue the result for prAM. Consider derandomizing a prAM protocol P for a

problem Π running in time O(nk) for some constant k. Let S be an O(ns)-time sampler for

a distribution in {0, 1}n and e be a constant such that we want to “fool” S with probability

at least 1 − 1/ne. Let f be a function mapping every x ∈ {0, 1}n to the truth table of the

hard language L ∈ NTIME[2an] ∩ coNTIME[2an] at input length ` = `(n) = Θ(log n) to be set

precisely later. Note that f ∈ NTIME[T (n)] for T (n) = 2(a+1)`. Instantiate the generator H

of Corollary 2.25 with f , run H on input x = 0n (recall f maps every string in {0, 1}n to the
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same truth table) and co-nondeterministic circuit size m = O(n2k), and use it to attempt to

derandomize P in nondeterministic time poly(T (n), n2k) = poly(n).

If the derandomization fails for almost-all input lengths, even heuristically, then for

almost-all input lengths n, S(1n) outputs with probability at least 1/ne a string x ∈ {0, 1}n

such that the simulation errs on x, i.e., the circuit Dx obtained from x and P using Proposi-

tion 2.17 is a distinguisher for H(0n, Dx). To compute L at input length `, it then suffices to

do the following: On input z ∈ {0, 1}`, first use S to sample t = Θ(ne) inputs x1, . . . , xt and

use these to construct a list Dx1 , . . . , Dxt of candidate distinguishers for H(0n, Dx). With

high probability, this list contains an actual distinguisher for the generator. Let R be the

algorithm of Corollary 2.25, amplified by parallel repetition to have negligible soundness 2−n,

i.e., with probability at least 1 − 2n, the algorithm outputs either f(x) or �. Finally, run R

with inputs 0n, index z (recall f(0n) equals the truth table of L at input length `) and Dxi

for every sampled input xi, and accept if and only if some execution outputs 1. To see that

this is correct, note that by a union bound, with high probability every execution of R is

successful in the sense that it either outputs f(0n)z = L(z) or �. Conditioned on there being

a distinguisher in the list, we are guaranteed to output the correct value of L(z) with high

probability.

The running time for the reconstruction is O(ne+s) for generating the t = Θ(ne) samples,

and O(n2k)O((log r)2) per sample for running R, where r = O(((a+ 1)`)/(k log n)), for a total

of O(ne(ns + nO(k(log r)2))). By setting ` = dk log n, we have that r = O(d(a + 1)) and we can

upper bound the total running time by nO(e+s+k(log(d(a+1)))2). In terms of the input length `,

this is 2(log(a+1))2` when d is a sufficiently large constant depending on a, e, s. This concludes

the argument for prAM.

Now, we argue the result for prBPPSAT
∣∣ . To do so, we use the containment prBPPSAT

∣∣ ⊆

PprAM
∣∣

[CR11]. It suffices to show that every deterministic polynomial-time algorithm with

non-adaptive oracle access to a paddable prAM-complete problem Γ ∈ prAMTIME[n] can be

simulated by deterministic polynomial-time algorithms with non-adaptive oracle access to
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SAT. Let M be a deterministic algorithm with non-adaptive oracle access to Γ running in

time O(nb) and S be an O(ns)-time sampler that we want to “fool” with probability at least

1 − 1/ne. Since Γ is paddable, we may assume that every query made by M on inputs of

length n is of length O(nb) (at the expense of increasing its running time to O(n2b)). To

simulate M on input x, let f be a function mapping every x ∈ {0, 1}n to the truth table

of L at input length ` = `(n) = Θ(log n). As before, f ∈ NTIME[2(a+1)`]. Instantiate the

generator H of Corollary 2.25 with f and use it to derandomize Γ at input length O(nb) in

order to obtain a PSAT
∣∣

simulation for M . Whenever M with input x queries Γ, we instead

query the SAT oracle whether the nondeterministic simulation of Γ using H with input 0n

and co-nondeterministic circuit size m = O(n2b) accepts. This simulation runs in PSAT
∣∣

since

M is non-adaptive.

If this derandomization fails on almost-all input lengths n, then as before we can use S

to sample t = Θ(ne) inputs x1, . . . , xt such that with high probability the simulation fails on

some xi. Let Q(M, x) be the set of queries to Γ made by M on input x. If the simulation fails

on xi, it must be the case that some query q in Q(M, xi) (and also in the promise of Γ) was

answered incorrectly. Since the protocol for Γ has perfect completeness, it must be the case

that q ∈ ΠN and that Dq is a distinguisher for H(0n, Dq). The reconstruction is as before

though we use the sets Q(M, xi) for i ∈ [t] to obtain the list of candidate generators, and

correctness follows by the same argument as in the prAM case. The running time analysis is

similar to the one for the case of prAM. ∎

At the low end, we are able to obtain a slightly stronger average-case derandomization

result. Instead of having a different simulation for each sampler, we obtain a single simula-

tion (depending on the problem in prAM/prBPPSAT
∣∣ and the constant ε) that “fools” every

polynomial-time sampler.

Theorem 2.33. If NEXP ∩ coNEXP /⊆ BPTIME[nb((log n)2)]SAT
∣∣

for all b > 0, then for every
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ε > 0 and all e > 0

prAM ⊆ io-Heur1/neNTIME[2nε]

prBPPSAT
∣∣ ⊆ io-Heur1/neDTIME[2nε]SAT

∣∣
.

Moreover, for any Π in prAM or prBPPSAT
∣∣ and ε > 0, there is a single simulation that works

for all e > 0.

Proof. We begin with the argument for prAM. Let L be a hard language in NTIME[2na] ∩

coNTIME[2na] for some constant a ≥ 1. Consider derandomizing a protocol P for a problem

Π ∈ prAMTIME[nk] for constant k. Let ε > 0 and f be the function mapping every x ∈ {0, 1}n

to the truth table of L at input length ` = nε. Note that f ∈ NTIME[T (n)] for T (n) = 2naε .

Instantiate the generator H of Corollary 2.25 with f , run H on input x = 0n and co-

nondeterministic circuit size m = O(n2k), and use it to derandomize P . The simulation runs

in nondeterministic time poly(T (n), n2k), which is at most 2nε′ for any ε′ > 0 by taking a

sufficiently small ε > 0.

The reconstruction is identical to that of Theorem 2.32 but with ` = nε. The running

time is O(ne+s) to generate the samples and (n2k)O((log r)2) per sample for running R, where

r = O(log (T (n))/ log n), for a total of O(ne(ns +nO((log r)2))). Given our parameter choices,

r = O(naε), and the expression is upper bounded by O(ne(ns + nO((aε log n)2))). As the input

length is ` = nε for constant ε, there exists a constant b (depending on a, e, s, ε) such that

the running time is upper bounded by `b(log n)2 . If hardness holds for all b > 0, then the same

simulation works for any constant value of s and e, i.e., for any polynomial-time sampler

and any inverse-polynomial error probability.

The proof for prBPPSAT
∣∣ is also almost identical to that of Theorem 2.32, where we

derandomize the “oracle” Γ using the generator H from Corollary 2.25 instantiated with the

function f that maps every x ∈ {0, 1}n to the truth table of L at input length ` = nε and

use a set of queries instead of a set of inputs to obtain the list of candidate distinguishers

for the reconstruction. This approach naturally leads to a simulation in PNTIME[2nε
]

∣∣
, and
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we obtain the DTIME[2nε]SAT
∣∣

simulation by replacing the original queries with padded SAT

queries. ∎

2.6.2 Infinitely-often all-input simulation

By introducing nondeterminism in the algorithms we require hardness for, we are able to

extend Theorem 2.8 to conclude full (infinitely-often) derandomization of prAM. We have

shown that, if the hitting-set generator construction of Theorem 2.8 fails to obtain average-

case derandomization of prAM, then we are able to efficiently sample candidate distinguishers

with the hope that at least one is “good”. However, if the hitting-set generator fails in the

worst case, it is harder to pinpoint exactly where it does so as to obtain a distinguisher. To

solve this, we have Merlin send a “good” input x. This necessitates a lower bound against

MATIMESAT
∣∣ , but allows for concluding full (infinitely-often) derandomization of prAM and

prBPPSAT
∣∣ .

Theorem 2.34. If NTIME[2an] ∩ coNTIME[2an] /⊆ MATIME[2(log (a+1))2`)]SAT
∣∣

for some con-

stant a > 0, then

prAM ⊆ io-NP

prBPPSAT
∣∣ ⊆ io-PSAT

∣∣
.

Proof. We argue the result for prAM first. Let Π ∈ prAMTIME[nk] for some constant k and

let L be a hard language in NTIME[2an]∩coNTIME[2an]. Let f be a function mapping every

string in {0, 1}n to the truth table of L at input length ` = Θ(log n) to be set precisely later.

Note that f ∈ NTIME[T (n)] for T (n) = 2(a+1)`. Instantiate the generator H of Corollary 2.25

with f , run H on input 0n and co-nondeterministic circuit size m = O(n2k), and use it to

derandomize P in time poly(T (n), n) = poly(n).

If the simulation fails for some input of almost-all input lengths, then for almost-all input

lengths n there exists an x ∈ ΠN of length n such that the simulation errs on x, i.e., the

circuit Dx of Proposition 2.17 instantiated with the protocol for Π and x is a distinguisher
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for H(0n, Dx). Let R be the reconstructor of Corollary 2.25 and consider the following

Merlin-Arthur protocol for L, where the protocol has parallel oracle access to SAT: On

input z ∈ {0, 1}`, Merlin sends x, and Arthur runs R(0n, Dx) to compute the z-th bit of

f(0n) (which equals L(z)). If R outputs �, then the protocol rejects, otherwise, it accepts

if and only if R outputs 1. Because R is a probabilistic algorithm with parallel access to

an oracle for SAT, Arthur can sample the randomness required for it and then run the

underlying deterministic parallel-SAT-oracle computation, meaning this is indeed a MASAT
∣∣

protocol. Completeness follows since Merlin can send a correct value of x, and soundness

follows from the strong resilience property of R: Even if Merlin sends a “bad” x′, R is still

guaranteed to either fail or output L(z) with high probability.

To finish the argument for prAM, note that the running time of the protocol is just the

running time of R, which is poly(n) ⋅ (m ⋅ log T (n))O((log r)2) for r = O(log (T (n))/ log m).

Since m = O(n2k) and setting ` = dk log n, we have r = O(d(a+ 1)) and the running time for

the protocol is upper bounded by nO(k(log (d(a+1)))2). In terms of the input length `, this is

2(log (a+1))2`) when d is a sufficiently large constant depending on a.

The simulation for prBPPSAT
∣∣ is similar to before and the reconstruction is identical to

the prAM case: If the simulation fails, then there is a query q of length O(nk) (which results

in a distinguisher of size O(n2k)) that Merlin can send Arthur to make Arthur output L(z)

with high probability. Soundness also follows exactly as in the prAM case and the running

time is again 2(log (a+1))2`). ∎

We only state the previous result for the high-end parameter setting because stronger

results are already known for the low end. For example, to conclude a subexponential

derandomization of prAM, it suffices for there to exist a language in NEXP∩ coNEXP that is

hard for a subclass of MASAT
∣∣ [AvM17]. In comparison with ours, other results that conclude

the same derandomization either require hardness of nondeterministic algorithms against

much larger deterministic time bounds, e.g., NE∩coNE /⊆ DTIME[22nε

] for some ε > 0 [IKW02]

or hardness of deterministic algorithms against slightly less space, e.g., E /⊆ SPACE[2εn] for
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some ε > 0 [Lu01].

2.7 Unconditional mild derandomization

In this section, we establish our unconditional mild derandomization result for prAM and

extend it to prBPPSAT
∣∣ . We employ a similar win-win argument to that of the proof of Theo-

rem 2.7: Either some hardness assumption/class separation holds (here, Σ2EXP /⊆ NP/poly),

in which case we get derandomization right away. Or else we get a complexity collapse which

we can use to construct a hard function f that has the efficiency requirements we need to

apply one of our targeted hitting-set constructions (in this case Theorem 2.33, which requires

hardness against BPTIME[2polylog(n)]SAT
∣∣

).

As a first step toward the win-win argument, we prove an “easy-witness lemma” for

Σ2EXP, which allows for the collapse PΣ2EXP ⊆ EXP from the assumption that Σ2EXP ⊆

NP/poly. Then we consider two cases:

○ Σ2EXP /⊆ NP/poly. In this case, the derandomization result follows from standard

hardness vs. randomness tradeoffs.

○ Σ2EXP ⊆ NP/poly. In this case, we diagonalize against BPTIME[2polylog(n)]SAT
∣∣

in

PΣ2EXP = EXP, and then instantiate Theorem 2.33 to conclude the proof.

To diagonalize against BPTIME[2polylog(n)]SAT
∣∣

, we make use of the inclusion prBPPSAT
∣∣ ⊆

PprAM
∣∣

and diagonalize against deterministic algorithms with non-adaptive oracle access to

prAM instead.

2.7.1 Nondeterministic easy witnesses

In this section, we prove our “easy witness lemma” for Σ2EXP. One way of thinking of Σ2

computations is as follows: On input x, guess a string y and then run a co-nondeterministic

verifier on input (x, y). This view allows us to abstract the co-nondeterministic verification
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and think of y as a witness for x. In this section, we show that if Σ2EXP ⊆ NP/poly, then

every language in Σ2EXP has witnesses that are the truth tables of functions computed

by polynomial-size single-valued circuits. To do so, we use the following result to convert

hardness against single-valued circuits into hitting sets for co-nondeterministic circuits.

Lemma 2.35 ([Uma03]). There is a universal constant b and a deterministic polynomial-

time algorithm that, on input 1m and a truth table y of a function with single-valued circuit

complexity at least mb, outputs a set S of size O(∣y∣b) that hits co-nondeterministic circuits

of size m that accept at least half of their inputs.

We also need the following equivalence from [AvM17].

Lemma 2.36 ([AvM17]). Σ2EXP /⊆ NP/poly if and only if prAM ⊆ io-Σ2TIME[2nε]/nε for

all ε > 0.

We are now ready to prove our easy witness result for Σ2EXP.

Theorem 2.37. Assume Σ2EXP ⊆ NP/poly. Then Σ2EXP has single-valued witnesses of

polynomial size, i.e., for every L ∈ Σ2EXP and linear-time (in its input length) co-nondeter-

ministic verifier H for L, the following holds: For every x ∈ L, there exists a single-valued

circuit Cx of size poly(∣x∣) such that H(x, ⋅) accepts the exponential-length truth table of Cx.

Proof. We show that Σ2E has single-valued witness circuits of size nc for some constant c.

The result for Σ2EXP then follows by padding.

Assume that Σ2E does not have single-valued witness circuits of size nc for any constant

c. This implies that for all c ≥ 1, there is a co-nondeterministic verifier Hc that takes as input

a string x and a string y of length 2O(∣x∣), runs in time 2O(∣x∣), and has the following property:

For infinitely many n, there is a input x′ of length n such that Hc(x′, y′) accepts for some

y′, but every y accepted by Hc(x′, ⋅) has single-valued circuit complexity at least nc. Thus,

there are infinitely many n such that, if we give x′ as n bits of advice, guess a string y of

length 2O(n), and verify that Hc(x′, y) accepts (using co-nondeterminism), we are guaranteed
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that y encodes the truth table of a function with single-valued circuit complexity at least

nc. This gives us a Σ2-procedure for obtaining hard functions, which we use to derandomize

prAM and obtain a contradiction to Lemma 2.36.

Let Π ∈ prAM and let P be a protocol for Π that runs in time O(`a) on input length

`. By Proposition 2.17, to derandomize P it suffices to have a set S that hits any co-

nondeterministic circuit of size O(`2a) that accepts at least half of its inputs. To obtain

such a set using Lemma 2.35, we need to first obtain a truth table of single-valued circuit

complexity at least Ω(`2ab), where b is the constant from the lemma. Recall that our objective

is to obtain a subexponential (time 2nε for all ε > 0) simulation. To this end, let ε > 0 be

sufficiently small and consider the verifier Hc for c = 3ab/ε on inputs of length n = `ε. If n

is one of the infinitely many input lengths for which there exists x′ such that every string

accepted by Hc(x′, ⋅) has single-valued circuit complexity at least nc = `3ab, then we can

obtain such a hard string by having x′ as advice, guessing y ∈ {0, 1}2O(`ε) and verifying that

Hc(x′, y) accepts.

In parallel, apply Lemma 2.35 to y to obtain a set S of size 2O(`ε), and use S to deran-

domize the prAM computation (guessing a Merlin response for each string in S). Finally,

accept if and only if both Hc(x′, y) and the prAM simulation accept. All of this can be

carried out in Σ2TIME[2O(`ε)]/`ε. Since ε is an arbitrarily small constant and the simulation

works for infinitely many input lengths `, we obtain a contradiction to Lemma 2.36. ∎

Theorem 2.37 allows us to establish the following complexity class collapse in case

Σ2EXP ⊆ NP/poly. The corollary represents the role our easy witness result plays in the

proof of Theorem 2.9.

Corollary 2.38. If Σ2EXP ⊆ NP/poly, then PΣ2EXP = EXP.

Proof. Under the hypothesis from the statement, we show that Σ2EXP = coNEXP, which

suffices by combining Lemma 2.36 and Lemma 2.30. The hypothesis and Lemma 2.36 guar-

antee the negation of prAM ⊆ io-Σ2TIME[2nε]/nε for all ε, which in turn implies the negation
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of prAM ⊆ io-NTIME[2nε]/nε for all ε, and thus the contrapositive of Lemma 2.30 implies

EXP = NEXP and therefore Σ2EXP = coNEXP = EXP. Finally, we have PΣ2EXP = PEXP = EXP.

To show that Σ2EXP = coNEXP, by padding, it suffices to show that every L ∈ Σ2E is in

coNEXP. Fix L ∈ Σ2E. By Theorem 2.37, L has single-valued witnesses of size nc for some

constant c. On input x ∈ {0, 1}n, we cycle through all nondeterministic circuits C of size nc

and compute their truth tables in time O(2nc). For each truth table T , we then run V (x, T )

(where V is a co-nondeterministic verifier for L), accepting if and only if some verification

accepts. All of this runs in exponential co-nondeterministic time, so we are done. ∎

2.7.2 Simulation

We now execute our win-win strategy and establish Theorem 2.9 and its strengthening for

prBPPSAT
∣∣ in lieu of prAM. We first consider the case where Σ2EXP /⊆ NP/poly. In this case

simulations of the required type that work on all inputs of a given length are provided by

Lemma 2.36 for prAM. We argue the same simulations follow for prBPPSAT
∣∣ .

Lemma 2.39. If Σ2EXP /⊆ NP/poly, then for every ε > 0

prBPPSAT
∣∣ ⊆ io-Σ2TIME[2nε]/nε.

Proof. We use the inclusion prBPPSAT
∣∣ ⊆ PprAM

∣∣
. Let k be a constant and M be an O(nk)-

time deterministic machine with non-adaptive oracle access to a paddable prAM-complete

problem Γ ∈ prAMTIME[n]. We assume that all queries made by M on inputs of length n

are of length O(nk) at the expense of increasing M ’s running time to O(n2k).

Our approach is to use Lemma 2.35 to derandomize the queries made to Γ while making

sure that the overall simulation of M can be carried out in subexponential Σ2-time. To

derandomize Γ at input length O(nk) using the lemma, we need to obtain a truth table of

single-valued circuit complexity at least Ω(n2bk), where b is the constant from the lemma.

Let ε > 0 and L ∈ Σ2E be a language that has nondeterministic circuit complexity at least

n3bk/ε for infinitely many input lengths (which is guaranteed to exist by the hypothesis of



80

the theorem). The simulation of M on inputs x goes as follows: Given as advice the number

of strings of length nε that are in L, the Σ2 algorithm guesses the truth table of L at input

length nε, verifies it, and uses it as the string y in Lemma 2.35. More precisely, after guessing

the truth table, the algorithm performs the following operations in parallel:

○ It uses an existential and a universal guess to verify that the guessed truth table for L

is correct. This is possible because the algorithm has as advice the number of strings

of length nε that are in L, and thus it can existentially guess which strings are in L

and only verify those, with the guarantee that the others are not in L.

○ It guesses which of the queries to Γ that M makes on input x are answered positively

and which are answered negatively. For each query that is guessed to be answered

positively, it uses the set S from Lemma 2.35 and the existential phase to verify that

there is a random-bit string in S for which Merlin can provide a witness. Similarly,

it uses S and the universal phase to verify each query that is guessed to be answered

negatively.

We note that the only existential computation paths that survive the computation are

the ones where the truth table of L at input length nε was guessed correctly. In this case, and

in the case that nε is one of the infinitely many input lengths where L has nondeterministic

circuit complexity at least n3bk/ε, it holds that the guessed truth table has high enough

(single-valued) nondeterministic circuit complexity such that S hits the co-nondeterministic

circuits given by Proposition 2.17 for negative instances of Γ at input length O(nk). This

further guarantees that the surviving existential computation paths are those that correctly

guess the answers to all queries M makes on input x that are in the promise of Γ. This

suffices to obtain a simulation of M that is correct on infinitely many input lengths since M

is insensitive to variations in answers to queries that are outside the promise (even when the

same query is answered differently on different occasions). Finally, we note that the entire
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procedure runs in time 2O(nε), which can be made smaller than 2nε′ for any ε′ > 0 by taking

ε to be sufficiently small. ∎

The other case of the win-win analysis is when Σ2EXP ⊆ NP/poly. In this case, we

use the collapse PΣ2EXP = EXP given by Corollary 2.38 and our targeted hitting-generator

construction to obtain the desired simulation. We conclude:

Theorem 2.40 (Strengthening of Theorem 2.9). For every ε > 0 and every e > 0

prBPPSAT
∣∣ ⊆ io-Heur1/neΣ2TIME[2nε]/nε.

Proof. If Σ2EXP /⊆ NP/poly, then it follows that prBPPSAT
∣∣ ⊆ Σ2TIME[2nε]/nε for all ε > 0 by

Lemma 2.39. Otherwise, by Corollary 2.38, we have that PΣ2EXP = EXP. By Theorem 2.32,

all we need to show is that PΣ2EXP /⊆ ⋃b∈N BPTIME[nb((log n)2)]SAT
∣∣

. Given the containment

prBPPSAT
∣∣ ⊆ PprAM

∣∣
and a padding argument, it follows that ⋃b∈N BPTIME[nb((log n)2)]SAT

∣∣
⊆

DTIME[2polylog(n)]prAM
∣∣

. It remains to show that PΣ2EXP /⊆ DTIME[2polylog(n)]prAM
∣∣

, which we do

by diagonalization.

Fix a prAM-complete problem Γ and note that if L ∈ DTIME[2polylog(n)]prAM
∣∣

, then there

exists a Turing machine M running in time 2polylog(n) with non-adaptive oracle access to

Γ that computes L. Thus, it suffices to diagonalize against such machines with Γ as an

oracle. Let S be the following Σ2EXP-oracle machine: On input x ∈ {0, 1}n, interpret x as

a non-adaptive oracle Turing machine Mx with an oracle for Γ. Then, using binary search

and the Σ2EXP oracle, compute the number q of queries that Mx on input x makes that are

answered negatively, where we let Mx run for at most 2n steps. This is possible in PΣ2EXP

because prAM ⊆ Π2P, so we can verify negative instances in Σ2EXP. Once we know q, we can

simulate Mx(x) for at most 2n steps in Σ2EXP as follows: Guess which q queries are negative

and verify them in Σ2EXP (again using the fact that prAM ⊆ Π2P); then assume that the

other queries are answered positively and simulate Mx(x) directly with these answers. By

querying the Σ2EXP oracle S then outputs the opposite of this simulation. By construction,

the language of S is in PΣ2EXP /DTIME[2polylog(n)]prAM
∣∣

. ∎
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To conclude, we also state the following theorem, which extends the unconditional sim-

ulation for AM of [Wil16] to prBPPSAT
∣∣ and thus also to prAM.

Theorem 2.41. There exists a constant c such that for every ε > 0

prBPPSAT
∣∣ ⊆ io-Σ2TIME[2nε]/nc.

Proof. As before, if Σ2EXP /⊆ NP/poly, then it follows that prBPPSAT
∣∣ ⊆ Σ2TIME[2nε]/nε for all

ε > 0 by Lemma 2.39. Otherwise, if Σ2EXP ⊆ NP/poly, then in particular Π2EXP ⊆ coNP/poly.

Because Π2E has a complete problem under linear-time reductions, it also follows that there

exists a constant k such that prAM ⊆ Π2E ⊆ coNTIME[nk]/nk.

We show that the last inclusion implies that there exists a constant c such that prBPPSAT
∣∣ ⊆

PprAM
∣∣

⊆ PSAT/nc ⊆ ∩ε>0Σ2TIME[2nε]/nc. Let Π ∈ prBPPSAT
∣∣ and M be a polynomial-time

probabilistic machine with non-adaptive oracle access to a prAM-complete problem Γ. The

language LΠ = {(x, i) ∣ the i-th query made by M on input x is true} is in prAM, which we

know is contained in coNTIME[mk]/mk, where m ≤ 2n w.l.o.g. is the input length for LΠ

when x has length n. To decide Γ with non-adaptive oracle access to SAT, it suffices to query

the SAT oracle, for each i, on whether the polynomial-time co-nondeterministic simulation of

LΠ accepts (x, i) with the correct advice string, and then run M on input x and the answers

to the queries. This simulation can be carried out in polynomial time and with at most

(2n)k ≤ nc bits of advice for a constant c > k and sufficiently large n, so we are done. ∎

2.8 Further research

The most important problem that is left open is establishing a full equivalence between

almost-all-inputs hardness and derandomization of prAM. Recall that to conclude prAM ⊆

NP, we require the existence of a length-preserving function f ∈ NTIME[na] such that f

is hard on almost-all inputs against prAMTIME[nO((log a)2)] (Theorem 2.5). However, our

results in the other direction (Proposition 2.28) conclude the existence, for sufficiently large



83

a, of a length-preserving function f ∈ NTIME[na] with very few bits of advice such that f is

hard on almost-all inputs against AMTIME[nO((log a)2)]. The remaining gaps are the advice

and the technical difference between AM and prAM multi-bit protocols (see the discussion

at the end of Section 2.5.1 for an explanation).

In the next chapter, we obtain full equivalences (with respect to leakage-resilient hard-

ness) by relaxing the derandomization requirement to a mild derandomization, i.e., sim-

ulations in Σ2-machines. In doing so, we also establish an equivalence between mild de-

randomization and the existence of targeted hitting-set generators for prAM that recover

the corresponding mild derandomization. In Chapter 4, we improve the targeted genera-

tor construction in this chapter, and obtain a hardness assumption that fully characterizes

derandomization for prAM via targeted generators.
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Chapter 3

Mild Derandomization

3.1 Introduction

In the previous chapter, we mentioned briefly that Liu and Pass managed to obtain an

equivalence between time-bounded derandomization (prBPP ⊆ P) and hardness in the pres-

ence of efficiently-computable leakage [LP23]. In this chapter, we explore this hardness

notion and obtain equivalences with mild derandomization for prAM, i.e., simulation such as

prAM ⊆ Σ2P. We begin by defining the notion of leakage-resilient hardness for computational

problems (multi-bit functions, or more generally relations R ⊆ {0, 1}∗ × {0, 1}∗). Intuitively,

a leakage-resilient hard function is a function that remains hard to compute, for example on

input x, even in the presence of a short, efficiently computable string that is output by an

algorithm that gets to see the value of f(x). We define a version of the notion in the setting

of hardness on almost-all inputs.

Definition 3.1 (Leakage-resilient hardness). A relation R is (T, `)-leakage-resilient hard

on almost-all inputs against a class of algorithms if for all pairs (Leak, A) of algorithms in the

class that run in time T and such that ∣Leak(x, y)∣ ≤ `(∣x∣), the following holds for almost-all

inputs x and every y ∈ R(x) = {y ∣ (x, y) ∈ R}: The probability that A(x, Leak(x, y)) = y is

at most 1/3. ◂
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In cryptographic terms, the algorithm A can be viewed as an attacker that attempts to

compute y ∈ R(x) by receiving a few bits of information about y from the leakage-providing

algorithm Leak. In some cases, such as when the relation R is computable in P, one may

take R to be a function.

At the high end of the derandomization spectrum, the main result of Liu and Pass [LP23]

establishes an equivalence between the derandomization prBPP ⊆ P and the existence of a

length-preserving function f ∈ P that is leakage-resilient hard on almost all inputs against

probabilistic algorithms running in fixed-polynomial time and with sublinear leakage. The

equivalence works across the entire derandomization spectrum. For completeness we mention

that, in another work, Liu and Pass establish an equivalence between derandomization and

hardness related to approximating conditional Levin-Kolmogorov complexity (Kt) [LP22].

The latter equivalence does not scale well toward the low end, though.

One can also ask about efficient simulations of BPP on nondeterministic machines. Sim-

ilar to the AM setting, we refer to such simulations as mild derandomizations. Establishing

mild derandomization results for prBPP is a required step if we hope to show stronger de-

terministic simulations for the class. At the low-end of the derandomization spectrum, an

equivalence is known between whitebox and blackbox mild derandomization for prBPP that

work for infinitely-many input lengths [IKW02]. Specifically, a subexponential-time nonde-

terministic simulation for prBPP with subpolynomial advice that works for infinitely-many

input lengths is equivalent to polynomial-size circuit lower bounds for the class NE. Formally,

prBPP ⊆ io-NTIME[2nε]/nε for all ε > 0 if and only if NE /⊆ NP/poly [IKW02]. The technique,

however, does not scale and is only known to work in the infinitely-often setting. The

Liu-Pass result on the connection between leakage-resilient hardness and derandomization

extends to the mild setting. In contrast to the low-end equivalence of [IKW02], Theorem 3.2

extends to the entire derandomization spectrum. We state the high-end version.

Theorem 3.2 (Follows from [LP23, Theorem 1.6]). There exists a constant c such that

for all ε ∈ (0, 1), the following are equivalent.
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○ prBPP ⊆ NP.

○ There exists a total length-preserving relation R ∈ NP that is (nc, nε)-leakage-resilient

hard on almost-all inputs against prBPP.

AM setting. While it is believed that prAM ⊆ NP and we know that prAM ⊆ Π2P = coNPNP,

it remains open whether prAM ⊆ PNP or even whether prAM ⊆ Σ2P = NPNP, both of which

are required steps toward showing that prAM ⊆ NP. We note that even a subexponential-

time Σ2-simulation with subpolynomial advice for prAM that works for infinitely many input

lengths remains open. In this setting, an equivalence between whitebox and blackbox de-

randomization is known: The simulation is equivalent to polynomial size nondeterministic

circuit lower bounds for the class Σ2E. In symbols, prAM ⊆ io-Σ2TIME[2nε]/nε for all ε if

and only if Σ2E /⊆ NP/poly [AvM17]. The equivalence does not scale well, and it is unknown

whether it holds for other parameter settings such as the high end.

Our results. Our main contribution for this chapter is establishing full equivalences for

mild derandomization of prAM. Specifically, we obtain an equivalence between mild deran-

domization of prAM and leakage-resilient hardness on almost-all inputs against prBPPSAT
∣∣ ,

the class of polynomial-time probabilistic algorithms with non-adaptive oracle access to SAT.

The equivalence scales smoothly across the entire derandomization spectrum, and applies to

other classes between NP and Σ2P in addition to Σ2P. We state the high-end version.

Theorem 3.3. Let C ∈ {PNP, ZPPNP, Σ2P}. There exists a constant c such that for all

ε ∈ (0, 1), the following are equivalent.

○ prAM ⊆ C.

○ There exists a total length-preserving relation R ∈ C that is (nc, nε)-leakage-resilient

hard on almost-all inputs against prBPPSAT
∣∣ .
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Theorem 3.3 can be viewed as a counterpart to Theorem 3.2 in the mild setting for

prAM. Indeed, when compared to the traditional setting, both require an extra level of

nondeterminism in the hardness assumption as well as in the simulation.

As seen in Chapter 2, the class prBPPSAT
∣∣ was used in the initial derandomization results

for Arthur-Merlin protocols, and derandomization results for prAM typically translate into

corresponding derandomization results for prBPPSAT
∣∣ . In particular, the derandomization

prAM ⊆ Σ2P of Theorem 3.3 implies that prBPPSAT
∣∣ ⊆ Σ2P. Also, lower bounds for linear-

exponential time classes such as E and NE against nondeterministic circuits (which suffice

for derandomizing prAM) imply non-uniform lower bounds for the same class against deter-

ministic circuits with non-adaptive oracle access to SAT (which suffice for derandomizing

prBPPSAT
∣∣ ) [SU06].

We show that a connection between prBPPSAT
∣∣ and prAM holds in the leakage-resilient

hardness setting as well. Specifically, we show that the derandomization conclusion of The-

orem 3.3 holds under a weaker hardness assumption on learn-and-evaluate Arthur-Merlin

protocols. As seen in Section 2.3.3 learn-and-evaluate protocols are a two-phase type of

Arthur-Merlin protocol that arises naturally in hardness vs. randomness tradeoffs and fits

nicely into the leakage-resilient hardness paradigm. In the first phase, a probabilistic algo-

rithm with oracle access to a function f produces a short sketch π that consists of evaluations

of f . In our case, f is the function that maps an index i to the i-th bit of a string y such

that (x, y) ∈ R, and the first phase can be viewed as a small amount of leakage on y. In

the second phase, an Arthur-Merlin protocol computes f given π, which naturally translates

into a protocol that attempts to recover y from a “small” amount of leakage. The result,

taken together with the derandomization-to-hardness direction of Theorem 3.3, implies an

equivalence between leakage-resilient hardness on almost-all inputs against prBPPSAT
∣∣ and

learn-and-evaluate protocols.

Theorem 3.4. Let C ∈ {PNP, ZPPNP, Σ2P}. There exists a constant c such that for all

ε ∈ (0, 1), the following are equivalent.
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1. There exists a total length-preserving relation R ∈ C that is (nc, nε)-leakage-resilient

hard on almost-all inputs against prBPPSAT
∣∣ .

2. There exists a total length-preserving relation R ∈ C that is (nc, nε)-leakage-resilient

hard on almost-all inputs against learn-and-evaluate protocols.

Theorem 3.4 partially addresses an open problem posed by Shaltiel and Umans of obtain-

ing uniform equivalences between hardness against Arthur-Merlin protocols and algorithms

with non-adaptive oracle access to SAT [SU06]. They ask whether an implication such as

E /⊆ AM Ô⇒ E /⊆ PSAT
∣∣

holds. Theorem 3.4 establishes an analogous result in the mild

leakage-resilient hardness setting.

We also address, in the mild setting, the open problem posed by Goldreich about

AM [Gol11]. We show that mild derandomization of prAM is equivalent to the existence

of targeted hitting-set generators achieving the same derandomization. We state such a

result at the high end of the derandomization spectrum, but it extends to the entire range.

Theorem 3.5. Let C ∈ {PNP, ZPPNP, Σ2P}. If prAM ⊆ C, then there exist targeted hitting-set

generators that achieve this mild derandomization result.

In fact, we show that the assumption of Theorem 3.5 implies the existence of targeted

pseudorandom generators for non-adaptive SAT-oracle circuits. Employing Theorem 3.5, we

also obtain a simple proof for the result that if prAM ⊆ PNP, then ENP has maximum circuit

complexity [AGH+11] (see the end of Section 3.6).

Finally, we connect leakage-resilient hardness to the known equivalence between whitebox

and blackbox mild derandomization of prAM at the low end. As mentioned before, the

simulation prAM ⊆ io-Σ2TIME[2nε]/nε for all ε > 0 is equivalent to the non-uniform lower

bound Σ2E /⊆ NP/poly [AvM17]. We show that those conditions are also equivalent to leakage-

resilient hardness where the algorithm A needs to produce each individual bit of a solution

y ∈ R(x) very efficiently. The equivalence of [AvM17] holds in the infinitely-often setting.
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Correspondingly, the equivalent leakage-resilient hardness condition holds for all inputs of

infinitely-many input lengths.

Definition 3.6 (Local Leakage-resilient hardness). A relation R is t-local (T, `)-leakage-

resilient hard on all inputs of infinitely-many input lengths against a class of algorithms if for

all pairs (Leak, A) of algorithms in the class such that Leak runs in time T , ∣Leak(x, f(x))∣ ≤

`(∣x∣) and A runs in time t, the holds for infinitely many n ∈ N every x ∈ {0, 1}n and every

y ∈ R(x) and every i ∈ [∣y∣]: The probability that A(x, Leak(x, y), i) = yi is at most 1/3. ◂

This definition allows for separate running times for the leakage-providing algorithm

Leak and the algorithm A, and in particular allows A to run in time that is sublinear in the

length of a solution y ∈ R(x).

Theorem 3.7. The following are equivalent:

1. prAM ⊆ io-Σ2TIME[2nε]/nε for all ε > 0.

2. Σ2E /⊆ NP/poly.

3. For all ε > 0 there exists a total relation R ∈ Σ2TIME[2nε]/nε that is poly(n)-local

(2nε
, poly(n))-leakage-resilient hard on all inputs of infinitely-many input lengths against

prBPPSAT
∣∣ .

4. For all ε > 0 and c ≥ 1 there exists a total length-preserving relation R ∈ Σ2TIME[2nε]/nε

that is nc-local (nc, `(n))-leakage resilient hard on all inputs of infinitely-many input

lengths against prBPPSAT
∣∣ , where nΘ(1) ≤ `(n) ≤ n−ω(1) is polynomial-time computable.

We only know Theorem 3.7 for the low-end of the derandomization spectrum due to the

use of [AvM17].

Techniques. We combine the approach of Liu and Pass in the leakage-resilient setting

for BPP (see Section 3.2 for an overview) with constructions that are suitable for the AM

setting.
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In the hardness-to-derandomization direction, given a hard relation R, we use the value

of y ∈ R(x) as a basis for instantiating the nondeterministic version of the Shaltiel-Umans

(SU) generator for prAM [SU05]. As the SU generator is originally meant for the the non-

uniform setting, the original reconstruction argument only guarantees the existence of a

small nondeterministic circuit that computes y in case the generator fails. Thus, in order to

use the construction we need to “uniformize” the reconstruction procedure and show that

such a circuit can be constructed by an efficient algorithm with non-adaptive oracle access to

SAT. To obtain the results under hardness against learn-and-evaluate protocols, we employ

the same approach but instead use the recursive version of the Miltersen-Vinodchandran

generator [MV05] that we dubbed RMV in Chapter 2 and defined in Section 2.4.1. RMV

does not scale as well as SU but still suffices for obtaining Theorem 3.4.

For the derandomization-to-hardness direction, similar to [LP23], we frame the problem

of computing a leakage-resilient hard function as a BPPSAT
∣∣ search problem, and then make

use of a search-to-decision reduction à la [Gol11] together with the derandomization assump-

tion. We first show that for a fixed x, a random choice r of y ∈ R(x) suffices: With high

probability, the first n algorithms Leak and A according to some canonical enumeration fail

to compute r in the sense that A(x, Leak(x, r)) ≠ r. Then we show that checking whether a

candidate r for R(x) is hard (again w.r.t. the first n algorithms) can be done by a prBPPSAT
∣∣

algorithm. To conclude the argument for R ∈ Σ2P, we guess-and-verify a “good” value of

y ∈ R(x) by exploiting the connection between BPPSAT
∣∣ and prAM [CR11] together with the

derandomization assumption on prAM.

We remark that both directions of the Liu-Pass result for prBPP relativize, which im-

mediately implies an equivalence between the derandomization prBPPSAT ⊆ PSAT and the

existence of leakage-resilient hard functions computable in PSAT that are hard on almost-all

inputs against probabilistic algorithms with SAT oracle. Since our objective is to obtain

equivalences with respect to derandomizing prAM, and it is unknown whether (mild) de-

randomization of prAM implies derandomization of prBPPSAT, the relativization approach is



91

insufficient for our purposes.

Organization. In Section 3.2, we develop the ideas behind our results and relate them

to existing techniques. We start the formal treatment in Section 3.3 with definitions, no-

tation, and other preliminaries. We present the uniformization for the SU reconstructor in

Section 3.4. In Section 3.5, we develop the equivalence between leakage-resilient hardness

on almost-all inputs and mild derandomization of prAM (Theorem 3.3). In Section 3.5.4,

we develop the equivalence between leakage-resilient hardness on almost-all inputs against

prBPPSAT
∣∣ and against learn-and-evaluate protocols (Theorem 3.4). Section 3.5.3 contains the

equivalence between mild derandomization of prAM and the existence of targeted hitting-set

generators (Theorem 3.5). In Section 3.6, we discuss local leakage resilience (Theorem 3.7).

3.2 Technical overview

In this section, we present an overview of the techniques underlying our results. In order to

keep the description self-contained, we start with a brief overview of the learning reconstruc-

tive paradigm used in prior hardness vs. randomness tradeoffs for BPP and AM. We then

provide an overview of the hardness-to-derandomization direction of the Liu-Pass result in

a way that facilitates the transition to our results on the mild derandomization setting for

AM.

Learning reconstructive paradigm. pseudorandom generator constructions G typically

have a hard function h as a basis (where how “hard” h is depends on the context) and

produce a pseudorandom distribution Gh that depends on h. The proof of correctness for

such generators is reconstructive: It presents an algorithm that, given access to any process

D that distinguishes the distribution Gh from a truly random distribution, as well as to some

additional information a, computes the hard function h. It is common for the additional

information a to be composed of evaluations of h at a small number of points, in which
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case we also say that the reconstruction is learning. Thus, unless Gh “fools” an efficient

randomized process P on input x, the function h can be reconstructed efficiently from the

distinguisher D(r) ≐ P (x, r) and the evaluations.

Targeted setting. In Chapter 2, we saw that one way to obtain a targeted PRG is to use

a hardness-based (oblivious) pseudorandom generator construction and instantiate it with

a function hx that depends on the input x. In the leakage-resilient setting and given a hard

function f , we take hx to be the function whose truth-table is f(x). The leakage-providing

algorithm Leak uses access to f(x) to provide the answers to the learning queries, which are

then fed into the algorithm A to compute hx and thus f(x).

Liu and Pass [LP23] employ the Nisan-Wigderson (NW) pseudorandom generator con-

struction [NW94] combined with the locally-list-decodable encoding of [STV01], and in-

stantiate the PRG with the function hx ∶ {0, 1}log n → {0, 1} that computes the mapping

i ↦ f(x)i. In the reconstruction, the leakage-providing algorithm Leak uses access to hx to

answer the learning queries for the NW reconstruction algorithm as well to identify a “good”

random string to be used in the list-decoding step and the position of hx in the resulting list.

This allows the algorithm A to compute the value of f(x) by running the NW reconstruction

followed by the list-decoding process with the “good” random string, outputting the element

in the correct position of the resulting list.

In porting the Liu-Pass approach to the mild derandomization setting for prAM, we follow

a similar idea but replace the NW construction by other hardness-based pseudorandom

generator (PRG) or hitting-set generator (HSG) constructions that exhibit the learning

property: In the case of failure of the PRG/HSG on an input x, the underlying hard function

h can be reconstructed efficiently from the values of h at a small number of points. In

particular, we make use of the following HSGs that have the learning property and are

tailored for Arthur-Merlin protocols:

○ The construction by Shaltiel and Umans [SU09], which we dub SU and use to derive
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our main results under leakage-resilient hardness against prBPPSAT
∣∣ . This construction

scales throughout the entire derandomization spectrum and, in particular, allows for

obtaining tighter connections with blackbox derandomization via our local-leakage-

resilient hardness results. To employ this generator, we present a uniform version for

its reconstruction.

○ The recursive version of the construction by Miltersen and Vinodchandran [MV05]

due to Shaltiel and Umans [SU09], as seen in Section 2.4.1, which we use to derive our

results under hardness against learn-and-evaluate protocols.

The SU construction scales better than RMV toward the low end, and thus we choose

to employ SU for our main results. The disadvantage is that SU requires hardness against

prBPPSAT
∣∣ instead of against Arthur-Merlin protocols. However, as evidenced in Theorem 3.3,

such a hardness assumption is also required in the mild setting.

We now describe the SU construction in more detail and how we employ it to obtain

our results. In the interest of keeping this section self-contained, we also review the RMV

construction.

Shaltiel-Umans construction. The SU generator takes any low-degree polynomial ĝ ∶

Fr → F, which is usually obtained via a low-degree extension/Reed-Müller encoding (in

our case, of y ∈ R(x) of length n), and produces a set of strings of length m, where m

is a parameter. The reconstruction for the generator shows the existence of a small (of

size poly(m, log n)) nondeterministic circuit computing ĝ in case the construction fails as a

hitting-set generator.

The original reconstruction for the generator requires access to a few pieces of information

in relation to the field Fr and the polynomial ĝ: A generating matrix M for the set Fr / {0⃗},

two “good” low-degree curves C1 and C2 over Fr and evaluations of ĝ over points that depend

on M , C1 and C2. For our purposes, the leakage-providing algorithm can compute the matrix

M efficiently enough via a brute-force search. As for the curves C1 and C2, Shaltiel and
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Umans show that a random choice has the required properties with high probability, which

allows Leak to sample those at random. Finally, the evaluations of ĝ can be computed

efficiently given access to the value of y ∈ R(x) by having Leak compute its low-degree

extension ĝ.

In the nondeterministic setting, there is an extra complication: The reconstructor also

requires oracle access to a list of r predictors P1, . . . , Pr, all of which can be obtained from a

distinguisher D for the generator and are run over random curves similar to C1 and C2. As

the predictors themselves are nondeterministic, there is the issue of complementation: How

can negative predictions be computed nondeterministically, instead of with an oracle for an

NP-complete problem such as SAT? Shaltiel and Umans use a strategy (originating in [FF93])

to approximately and nondeterministically evaluate the predictors. The strategy requires for

each predictor an approximation p̃i up to O(log n) bits of precision of the probability pi that

the prediction is positive over a random choice of inputs for the generator. The high-level

idea is as follows: Say we know the approximate probability p̃i that the nondeterministic

predictor Pi is positive, and want to compute k predictions over a random curve. With high

probability, close to p̃i ⋅k of the predictions are positive, and thus we can guess witnesses for

a little less than p̃i ⋅ k positive predictions, and assume that the remaining predictions are

negative. This may mean that a small fraction of the predictions are incorrect, but because

of the use of error correction, the reconstruction argument is robust against such a small

amount of error.

Shaltiel and Umans provide the approximations p̃i as non-uniform additional input to the

reconstructor. Recall that our objective is to obtain a uniform version of the reconstructor,

but we can afford non-adaptive oracle access to SAT. We cannot simply use the SAT oracle

to evaluate the predictors because the inputs for later predictions depend on the results of

previous predictions, which would result in adaptive access to the SAT oracle. Instead, we

exploit the fact that the SU generator is efficiently computable given access to the basis

polynomial ẑ, and use the SAT oracle to efficiently obtain the approximations required to
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run the original reconstructor. This only requires nonadaptive access to the SAT oracle

because it only involves evaluating the predictors on uniformly-random outputs for the SU

generator, and each such evaluation can be performed in parallel. In the end, we obtain a

version Arec of the reconstruction that, on input the values of the learning queries output by

Leak (as well as additional information such as the curves C1, C2 and the matrix M), which

have length poly(m, log n), runs in time poly(m, log n), computes ẑ with high probability and

only makes non-adaptive SAT oracle queries. By picking a small value of m, the amount of

leakage is indeed small with relation to ∣y∣ = n.

Recursive Miltersen-Vinodchandran construction. The RMV generator also takes

any low-degree polynomial ĝ ∶ Fr → F and a parameter m and produces a set of strings of

length m.

The RMV reconstructor for ĝ forms a commit-and-evaluate protocol, a notion introduced

in [SU09] for this reason. It is an Arthur-Merlin protocol that consist of two phases. The first

phase is the commitment phase, where Arthur and Merlin interact to produce a commitment

π. The commitment is then given as input to the evaluation phase, in which Arthur and

Merlin compute evaluations of a function gπ that is determined by π and supposedly equals

ĝ. As Merlin could cheat in the commitment phase, a key property of the protocol is its

resilience: Given a commitment π, the evaluation protocol can only produce evaluations

of a fixed function gπ, except with low probability. As gπ might differ from ĝ, one usually

combines the construction with a checker (as in [GST03]) or a PCP (as we did in Chapter 2)

to verify that gπ = ĝ.

In the commitment phase, Arthur samples a small (of size poly(m, log n)) set of points

in Fr and the honest Merlin provides evaluations of ĝ at those points as the commitment

π. With high probability over the set chosen by Arthur, given the correct commitment π as

additional input and access to a distinguisher D, the evaluation protocol computes ĝ with

high confidence, no matter what strategy Merlin uses.
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By replacing the interaction in the commitment phase by a probabilistic algorithm with

oracle access to ĝ, the RMV reconstruction can be cast as a learn-and-evaluate protocol. A

learn-and-evaluate protocol is a reconstructor for a function h that consists of two phases,

where only the second phase requires access to the distinguisher D. The two phases are:

1. A learning phase, which is a randomized algorithm that can make queries to h and

outputs a string, which we refer to as a sketch.

2. An evaluation phase, which is a promise Arthur-Merlin protocol with access to D that

takes a sketch and an evaluation point z as input, and is supposed to output h(z).

With high probability, given the correct answers to the queries, the learning phase should

output a sketch such that the evaluator with access to a distinguisher D is complete and

sound.

The learn-and-evaluate version of the reconstructor naturally fits the leakage-resilient

hardness-to-derandomization framework, where the leakage-providing algorithm Leak is a

probabilistic algorithm with access to y ∈ R(x) that samples the set of points and produces

evaluations of the low-degree extension ĝ of y on those points and the algorithm A is an

Arthur-Merlin protocol that takes those evaluations as additional input to compute y. The

amount of leakage is upper bounded by poly(m, log n), which just like in the SU construction

can be made small in relation to ∣y∣ = n by picking a sufficiently small m.

3.3 Preliminaries

In this section, we present preliminary definitions and results that are necessary for develop-

ing our contributions. We start by extending the definition of targeted hitting-set generators

for prAM (Definition 2.16) to accommodate computational models such as Σ2-machines, then

present some results on the class BPPSAT
∣∣ . The results in the chapter also rely on the pre-

liminaries for the previous chapter.
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3.3.1 Targeted hitting-set generators

To accommodate different computational models for generating the hitting sets (including

nondeterministic ones), in this chapter we define targeted generators based on a relation

between a circuit D and a hitting set S. In the following definition, we let C denote a

machine model and CTIME[T ] denote computational problems computable by machines in

C that run in time T .

Definition 3.8. Let H be an algorithm that computes a relation R ∈ CTIME[T (m)] between

co-nondeterministic circuits of size m and sets of strings of length m. We say that H is a

targeted hitting-set generator for prAM computable in CTIME[T (m)] if the following two

conditions hold for all sufficiently large m ∈ N:

○ For all co-nondeterministic circuits D of size m, there exists a non-empty S such that

(D, S) ∈ R.

○ For all co-nondeterministic circuits D of size m that accept at least a 1/2 fraction of

their inputs, it holds that for every S ∈ R(D) there exists ρ ∈ S such that D(ρ) accepts.

◂

Notice that we have the targeted hitting-set generator take only the circuit D as input,

which is sufficient for derandomization as discussed in Section 2.3.4.

For some classes of algorithms, such as nondeterministic algorithms, the notion of com-

puting a relation is intuitive: Upon receiving an input, the algorithm eventually halts and

produces an output in the relation on every accepting computation path. For other classes

of algorithms, such as Σ2P, the notion of computing a relation is perhaps less intuitive.

We say that a Σ2-algorithm N computes a relation R if for all x ∈ {0, 1}∗, any accepting

configuration of N(x) outputs a value y such that (x, y) ∈ R.
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It might not be immediately clear that, for example, a targeted hitting-set generator

for prAM computable in Σ2P implies that prAM ⊆ Σ2P. For future reference. we include a

generic statement and proof in the Σ2 setting.

Proposition 3.9. Assume that there exists a targeted hitting-set generator H for co-nonde-

terministic circuits computable in Σ2TIME[T (m)]. Then prAM ⊆ ⋃k∈N Σ2TIME[T (nk)].

Proof. Let Π ∈ prAM, and let P be an Arthur-Merlin protocol (with perfect completeness)

that runs in time nk for some constant k and decides Π. It is standard that we can obtain

from P and an input x ∈ {0, 1}∗, in time O(∣x∣2k), a co-nondeterministic circuit DP,x of size

at most ∣x∣2k such that:

x ∈ ΠY Ô⇒ Pr
r
[DP,x(r) = 1] = 0.

x ∈ ΠN Ô⇒ Pr
r
[DP,x(r) = 1] ≥ 1/2.

The Σ2-simulation for Π works as follows on input x: First, it computes DP,x, and guesses a

set S output by H(DP,x). Using another nondeterministic guess, the simulation verifies that

DP,x rejects every ρ ∈ S, rejecting otherwise. In parallel, the simulation verifies, using an

existential and a universal guess, that the guessed set S is an output of H for DP,x, rejecting

otherwise.

If x ∈ ΠY , then DP,x rejects every ρ ∈ S for any S output by H(DP,x), in which case

the overall simulation accepts. If x ∈ ΠN , then correctness of H implies that DP,x accepts

some ρ ∈ S for every S output by H(DP,x), in which case the overall simulation rejects. The

running time for the simulation is T (n2k), which completes the proof. ∎

3.3.2 Non-adaptive oracle access to SAT

For completeness and due to the important role the class plays in this chapter, we define

the class prBPPSAT
∣∣ . We say that a promise problem Π = (ΠY , ΠN) is in prBPPSAT

∣∣ if there

exists a probabilistic algorithm M with non-adaptive oracle access to SAT such that for all
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x ∈ {0, 1}∗:

x ∈ ΠY Ô⇒ Pr[M(x) = 1] ≥ 2/3.

x ∈ ΠN Ô⇒ Pr[M(x) = 1] ≤ 1/3.

By non-adaptive oracle access, we mean that the queries made by M cannot depend on the

answers to previous queries, i.e., the queries must all be made in parallel.

Recall that by Lemma 2.11, prBPPSAT
∣∣ ⊆ PprAM

∣∣
, a containment that we repeatedly use in

this chapter.

3.4 Uniform version of the SU reconstructor

In this section, we present a uniform version of the original reconstruction algorithm for

the nondeterministic SU generator due to Shaltiel and Umans [SU05]. Our objective is to

establish the following result.

Lemma 3.10. There exists a deterministic algorithm Hdet and a pair Arec = (Acomp, Adec)

consisting of a probabilistic algorithm Acomp and a deterministic algorithm Adec with non-

adaptive access to a SAT-oracle such that for every z ∈ {0, 1}∗, m ∈ N and co-nondeterministic

circuit D of size m, at least one of the following holds:

1. Hdet(z, 1m) outputs a hitting set for D.

2. With probability at least 2/3, Adec(Acomp(z, 1m), D) outputs z.

The construction also has the following properties:

○ Compression: On input z of length n and 1m, the string output by Acomp has length

poly(m, log n).

○ Efficiency: On input z of length n and D of size m, H runs in time poly(m, n). On

input z of length n and 1m, Acomp runs in time n ⋅ poly(m, log n), and Adec, given the
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output of Acomp(z, 1m), D of size m and an additional index i, computes the i-th bit of

z in time poly(m, log n).

○ Input access: The only way Adec requires access to D is via blackbox access to the

deterministic predicate that underlies D.

To prove Lemma 3.10, we begin by describing the SU construction. The basis for the

nondeterministic Shaltiel-Umans hitting-set generator construction is a polynomial ĝ ∶ Fr →

F of total degree at most ∆, where F = Fp for a prime p. To compute SU(ĝ), we need

access to a matrix M that generates Fr / {0⃗}, in the sense that {M iv⃗}1≤i<pr = Fr / {0⃗} for

any nonzero v⃗ ∈ Fr. A systematic way of doing this is as follows: First, we compute an

irreducible polynomial P (x) ∈ F[x] of degree r and identify Fr with F[x]/(P (x)). Then,

we find a generator G(x) for F[x]/(P (x)) / {0} and set M as the linear transformation

corresponding to multiplication by G(x). Given oracle access to ĝ, finding P (x) can be

done in time poly(p, r) by using Shoup’s algorithm [Sho88]. Once we have P (x), [Sho92]

gives us a poly(p, r) procedure that outputs a list of elements in F[x]/(P (x)) that contains a

generator. For our purposes, it then suffices to single-out a generator in the list by factoring

pr − 1 and computing the relevant powers of each element. Using a trivial factorization

algorithm, this can be done in time
√

pr ⋅poly(p, r). A similar strategy for computing M was

used in [CLO+23] to obtain a uniform version for the regular (deterministic) Shaltiel-Umans

generator.

Once M is fixed, define r functions G(s) ∶ Fr → Fm (where m is the length of strings we

want our generator to output) for 0 ≤ s ≤ r − 1, such that G(s)(y⃗) = ĝ(Mps
y⃗) ○ ĝ(M2⋅ps

y⃗) ○

⋅ ⋅ ⋅ ○ ĝ(Mm⋅ps
y⃗). We refer to each 0 ≤ s ≤ r − 1 as a “stride” for the generator. We then

transform each function into a binary one by encoding it with a suitable error-correcting

code. We say that a code E ∶ {0, 1}k → {0, 1}n′ is (ρ, `)-list-decodable if for all x ∈ {0, 1}k,

the set {x ∣ the hamming distance of E(x) and r is at most (1/2 − ρ)n′} has size at most `.

For our purposes, it suffices that such a code exists for the parameters setting we need.
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We take a (γ, γ−2)-list-decodable code E ∶ {0, 1}log p → {0, 1}n′ (for a value γ = 1
24m) with

encoding length n′ = poly(log p, γ−1) = poly(log p, m) and computable in time poly(n′). Define

G
′(s) ∶ {0, 1}r log p+log n′ → {0, 1}m, where

G
′(s)(y⃗, j) = E(ĝ(Mps

y⃗))j ○E(ĝ(M2⋅ps

y⃗))j ○ ⋅ ⋅ ⋅ ○E(ĝ(Mm⋅ps

y⃗))j.

Finally, the (seeded) hitting-set generator is the union of G
′(s) for all s. Specifically, we

have

H(y⃗, j, s) = E(ĝ(Mps

y⃗))j ○E(ĝ(M2⋅ps

y⃗))j ○ ⋅ ⋅ ⋅ ○E(ĝ(Mm⋅ps

y⃗))j.

The SU (hitting-set) generator SU(ĝ) is the function that outputs the union of H(y⃗, j, s)

over all y⃗ ∈ Fr, j ∈ [n′] and 0 ≤ s ≤ r − 1. Notice that, with access to the table of ĝ and M ,

the construction runs in time poly(pr, m) and outputs at most that many strings.

For the reconstruction, our starting point is a version of the standard uniform distin-

guisher-to-predictor reduction for co-nondeterministic circuits that is particularly suitable

for distinguishers for the SU generator.

Lemma 3.11. Fix a polynomial ĝ ∶ Fr → F for F = Fp for a prime p. There exists a linear-

time randomized algorithm that takes as input a co-nondeterministic circuit D with m-bit

inputs and a stride 0 ≤ s ≤ r−1 and outputs either a nondeterministic or co-nondeterministic

circuit P of the same size as D together with a bit b indicating whether it is nondeterministic

(b = 1) or co-nondeterministic (b = 0) with the following guarantee: If D is a distinguisher

for SU(ĝ) with output length m, then with probability at least 2
3m , P has advantage at least

1
3m at predicting the last bit of the seeded HSG H underlying the definition of SU(ĝ) with

fixed stride s.

Proof. Let D be a co-nondeterministic circuit with m input bits that is a distinguisher for

SU(ĝ) (and in particular for the seeded HSG H). This means that

Pr
r∈{0,1}m

[D(r) = 0] ≤ 1
2 and Pr

(y⃗,k,s)∈Fr×{0,1}log n′+log m
[D (H(y⃗, j, s)) = 0] = 1.
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We use D to obtain a predictor for the last bit of H(y, j, s) given the previous elements for

a fixed stride s. Consider randomly sampling 1 ≤ i ≤m and σ1, . . . , σm ∈ {0, 1}, and construct-

ing the circuit Di(g1, . . . , gi−1) = D(g1, . . . , gi−1, σi, . . . , σm) ⊕ σi. Note, first, that the value

of σi determines whether this circuit is nondeterministic or co-nondeterministic, since σi = 1

negates the output (resulting in a nondeterministic circuit), while σi = 0 does not (resulting

in a co-nondeterministic circuit). Moreover, let X be a random variable describing the ad-

vantage that Di has at predicting the i-th bit of H(y, j, s) over random y, k, s, m, σ1, . . . , σm.

By Yao’s prediction versus indistinguishability result, we get that E[X] ≥ 1
2m . By Markov’s

inequality, it follows that Pr [X ≥ 1
3m
] ≥ 1

3m .

Now, say we have a “good” predictor Di for the i-th bit of H (with advantage at least 1
3m).

That is, with noticeable probability over y⃗, j, on input E(ĝ(Mps
y⃗))j, E(ĝ(M2⋅ps

y⃗))j, . . . ,

E(ĝ(M (i−1)⋅ps
y⃗))j, Di outputs E(ĝ(M i⋅ps

y⃗))j. By feeding it m − 1 inputs and having it

ignore the first m − i inputs, we obtain a circuit that, again with noticeable probability

over y⃗, j, when given input E(ĝ(Mps
y⃗))j, E(ĝ(M2⋅ps

y⃗))j, . . . , E(ĝ(M (m−1)⋅ps
y⃗))j, outputs

E(ĝ(Mm⋅ps
y⃗))j, i.e., a predictor for the last bit of H with fixed stride s. Call this mod-

ified version P . The distinguisher-to-predictor algorithm outputs P and σi. ∎

We remark that it is not necessary to know the actual circuit input to the distinguisher-

to-predictor transformation, and black-box access to the underlying deterministic predicate

suffices (in which case the procedure outputs a (co)-nondeterministic circuit with oracle

access to the underlying predicate).

Now, we present a technical lemma that spells out the additional information required

by the Shaltiel-Umans reconstruction and the success probability for the reconstruction. We

also make two changes to the original result: First, we allow for multiple nondeterministic

predictors per stride (instead of a single one) and second, we also make it explicit that the

reconstruction works with additive error in the positive/negative prediction probabilities for

each predictor. The reason for allowing multiple predictors is that this allows us to run the

distinguisher-to-predictor transformation of Lemma 3.11 multiple times per stride s in the
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hope that it produces one “good” predictor.

Lemma 3.12 (Following [SU05]). Let ĝ ∶ Fr → F be a polynomial of degree at most ∆,

where F = Fp for some prime p. Let also m ≤ p and r′ be such that p ≥ (r + 1)r′. Finally, let

H be the seeded version of the SU generator. There exists a nondeterministic algorithm A

that receives the following as input:

○ The generator matrix M used by the SU generator.

○ A list of predictors P1, . . . , Pk ∶ {0, 1}m−1 → {0, 1}, each one given as a circuit of size m

such that for every stride 0 ≤ s ≤ r−1, there exists some predictor Pi that has advantage

(over a random choice of y and j) at least 1
3m at predicting the last bit of H(y, j, s).

Also, bits σ1, . . . , σm indicating if these predictors are nondeterministic (σi = 1) or

co-nondeterministic (σi = 0). Formally, for each 0 ≤ s ≤ r − 1 there exists a predictor

Pi such that

Pr
y⃗∈Fr,j∈[n′]

[Pi(H(y⃗, j, s)1, H(y⃗, j, s)2, . . . , H(y⃗, j, s)m−1) =H(y⃗, j, s)m] ≥
1

3m

○ Values ρ′1,0, ρ
′
1,1 . . . , ρ′1,r−1, ρ

′
2,0, . . . , ρ

′
k,r−1 such that ρ′i,s is a ( 1

24m
)-additive approximation

for the probability ρi,s (over random y⃗ ∈ Fr and j ∈ [n]′) that Pi predicts σi for fixed

stride s. Formally, we have ρi,s − 1
24m ≤ ρ′i,s ≤ ρi,s + 1

24m where

ρi,s = Pr
y⃗∈Fr,j∈[n′]

[Pi(H(y⃗, j, s)1, H(y⃗, j, s)2, . . . , H(y⃗, j, s)m−1) = σi]

for all i ∈ [k], 0 ≤ s ≤ r − 1.

○ (r + 1)r′ points from Fr

y⃗0,1, y⃗0,2, . . . , y⃗0,r′ , y⃗1,1, y⃗1,2, . . . , y⃗1,r′ , . . . , y⃗r,1, y⃗r,2, . . . , y⃗r,r′

as well as (r + 1)r′ distinct points from F

t0,1, t0,2, . . . , t0,r′ , t1,1, t1,2, . . . , t1,r′ , . . . , tr,1, tr,2, . . . , tr,r′

These determine two curves C1 and C2 that are used throughout the reconstruction.

Specifically,
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– C1 ∶ F→ Fr is the degree ν = (r + 1)r′ − 1 curve for which C1(ti,j) = y⃗i,j for all i, j,

and

– C2 ∶ F → Fr is the degree ν = (r + 1)r′ − 1 curve for which C2(t1,j) = y⃗1,j for all j

and C2(ti,j) = Api−2
y⃗i,j for i ≥ 2 and all j.

○ The evaluation of ĝ at 0⃗ ∪⋃m
i=1 M i(C1 ∪C2).

○ A point x⃗ ∈ Fr.

A runs in time poly(k, p, r, m) and outputs a value v ∈ F. If it holds that p ≥ 32∆ν (24m)3,

then with probability at least 1 − Θ (krpr2−r′) over random choices for the y⃗i,j’s and ti,j’s,

it holds that v = ĝ(x⃗) for every input x⃗ ∈ Fr. Finally, A only requires oracle access to the

deterministic predicates underlying each predictor.

Before we sketch the proof of Lemma 3.12, we show how we use it to establish Lemma 3.10.

Proof of Lemma 3.10. First, we define the generator Hdet. On input z ∈ {0, 1}n, Hdet com-

putes the low-degree extension ẑ of z with parameters h, p and r to be defined later (though

recall we need that hr ≥ n and we will need to set p large enough by Lemma 3.12). Then,

it outputs SU(ẑ) with output length m, where SU is the Shaltiel-Umans generator. This

procedure runs in time poly(pr, m) and outputs at most that many strings of length m.

Now, we define the Acomp algorithm. When given inputs 1m and z ∈ {0, 1}n, Acomp

outputs the following values:

1. The generator matrix M , which it computes using the procedure detailed in the be-

ginning of this section.

2. The curves C1 and C2, randomly selected as in Lemma 3.12, and the necessary evalu-

ations of ẑ along the curves (the next-to-last bullet of Lemma 3.12).

3. The random bits required to run the uniform distinguisher-to-predictor transformation

of Lemma 3.11 a total of k times, k/s times per stride s (for k to be defined later) to

obtain a list of k predictors P1, . . . , Pk (each with oracle to D).
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4. The values required for computing the estimates ρ′i,s for each 1 ≤ i ≤ k and 0 ≤ s ≤ r−1.

To obtain these values, for each 1 ≤ i ≤ k and 0 ≤ s ≤ r − 1, Acomp randomly selects

y⃗ ∈ Fr and j ∈ [n′], computes v =H(y⃗, j, s) using the matrix M and ẑ and then outputs

v. Acomp does this as many times as necessary to obtain the required approximation

with “low” failure probability (that we discuss in more detail below).

The algorithm Adec, on input the values output by Acomp(1m, z) and an index i′ in [n],

performs the following actions:

1. Using the random bits output by Acomp, Adec computes the distinguisher-to-predictor

transformation of Lemma 3.11 a total of k times to obtain a list of k predictors

P1, . . . , Pk and the bits σ1, . . . , σk.

2. Computes the estimates ρ′i,s for each 1 ≤ i ≤ k and 0 ≤ s ≤ r − 1. To compute a value

ρ′i,s, it feeds the first m − 1 bits of each value v output by Acomp into the predictor Pi

with stride s, and queries the SAT oracle to determine the output of the predictor,

finally setting ρ′i,s to the estimated probability that Pi with stride s predicts σi. As

each sample/oracle query is independent of the others, these can all be carried out in

parallel.

3. Finally, it queries its SAT oracle to determine the last bit of the output of algorithm

A (note that Adec has access to all of the inputs required by A) on the point x⃗ that

corresponds to bit position i′ of z.

Now, we set some values and argue the correctness, compression, efficiency and input

access properties of (Acomp, Adec).

Correctness. Assume that Hdet does not output a hitting set for D. By Lemma 3.11, each

application of the distinguisher-to-predictor transformation is successful with probability at

least 1/3m. By running it 3mk′ times for each stride, a Chernoff bound guarantees that the

probability that no execution is successful is at most 2k′/3 for sufficiently large k′. By a union
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bound, the probability that we obtain at least one “good” predictor per stride is at least

1−m ⋅2k′/3, which can be made negligible (in m) by taking k′ =m and thus producing a total

of k = O(m3) predictors. Similarly, we can make the probability of getting some estimate ρ′i,s

with error more than 1
24m negligible in m by taking poly(m) samples per predictor/stride.

Conditioned on the list of predictors and the estimates being “good”, the probability that A

with the computed values is correct is at least 1−Θ (krpr2−r′) ≥ 1−Θ (m3rpr ⋅ 2−r′). A union

bound then guarantees correctness with essentially the same probability as the additional

negligible error probability gets absorbed by the Θ(⋅). By setting h = m, r = log n/ log m,

p = Θ(m6 ⋅log4 n) and r′ = Θ(log m+r log p), we have that 32∆(r+1)r′(24m)3 ≤m5 log3 n and

thus p is large enough for Lemma 3.12 to apply. Given our parameter choices, the probability

that A computes ẑ correctly, and thus (Acomp, Adec) output z correctly, is at least 2/3 for

sufficiently large n and m.

Compression. We bound the length of each value output by Acomp. The matrix M has

description length poly(r, log p) = polylog(m, n). The curves C1 and C2 are each described

by (r+1)r′ = poly(r, log m, log p) points, and thus also have description length polylog(m, n).

The algorithm also outputs at most m ⋅ polylog(m, n) evaluations of ẑ, and each evaluation

has length log p = polylog(m, n), resulting in length poly(m, log n). Each distinguisher-to-

predictor transformation requires O(m) bits, and there are k = poly(m) of these, resulting

in poly(m) bits total for those. Finally, the poly(m) samples per predictor/stride result in a

total length of poly(m, log n). Thus, in total, the output length of Acomp on input z of length

n and 1m is poly(m, log n).

Efficiency. We start by bounding the running time of Acomp. Computing the matrix M takes

time
√

pr ⋅poly(p, r) ≤ n⋅poly(m, log n). Tossing the coins required to determine the curves C1

and C2 and to run the distinguisher-to-predictor reductions takes time poly(m, log n). Acomp

also computes poly(m, log n) evaluations of ẑ for items 2 and 4, and each such evaluation

takes time n ⋅ poly(h, log p, r) = n ⋅ poly(m, log n). Finally, computing each value of H(y⃗, j, s)

takes time poly(p, r, m) = poly(m, log n), and there are poly(m) of those. Taking everything
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together, the running time of Acomp is upper bounded by n ⋅ poly(m, log n).

We now upper bound the running time of Adec. Running the poly(m) many distinguisher-

to-predictor transformations takes time poly(m), as does computing the estimates ρ′i,s. Then,

querying the SAT oracle on the output of A takes time poly(k, p, r, m) = poly(m, log n).

Finally, we still need to use Fact 3.22 to allow for computing Adec with only one round of

non-adaptive SAT queries instead of two. Taking everything together, the final running time

for Adec is poly(m, log n) for recovering one bit of z. ∎

Now, we turn back to sketching the argument for Lemma 3.12. To compute ĝ(y⃗) on

input y⃗, the original reconstruction also needs to know the values 0 ≤ dy ≤ pr − 1 such that

y⃗ = Mdy 1⃗ and 0 ≤ a ≤ pr − 1 such that C1(1) = Ma1⃗. In the original version of the SU

reconstruction, the value of a is hardcoded into the circuit and they employ a non-standard

low-degree extension over the original hard function f to allow for efficiently computing dy for

the y⃗ that represent an input of f . In the uniform deterministic setting, this is a significant

challenge, which is overcome in [CLO+23] by combining the SU generator with a generator

based on this discrete logarithm problem for M . In our case, we can use nondeterminism

to guess-and-verify dy and a whenever they are needed, which allows for computing ĝ(y⃗) for

any y⃗ ∈ Fr / {0⃗} without significantly affecting the running time.

The original reconstruction [SU05, Theorem 6.5] employs a procedure called Nondeter-

ministic Learn Next Curve, which learns the evaluations of ĝ on a low-degree curve C ∶ F→ Fr

given a small number of reference points for the values of ĝ ○C as well as some evaluations of

ĝ on which it runs a “good” predictor for the generator at a specific stride s. The procedure

approximately computes the necessary predictions and uses error-correction to recover a list

of polynomials, one of which is supposed to be ĝ○C (assuming that the predictor is “good”).

To determine which one is the correct polynomial, it evaluates each polynomial in the list

and compares the results with the reference points. The only modification we make to the

reconstruction is that we take the union of the lists of polynomials over all k predictors

(since we don’t know which one is “good” for stride s). With this change, we may obtain a
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larger list of candidates for the correct polynomial (by a factor of k). A union bound over

the introduced errors leads to the multiplicative factor of k in the error probability for the

reconstruction. The remainder of the Shaltiel-Umans reconstruction uses the Nondetermin-

istic Learn Next Curve procedure as a blackbox, and is thus unaffected by the change. For

completeness, we also provide a full proof in the following section.

3.4.1 Proof of technical Lemma

This section is dedicated to proving Lemma 3.12, which we do by retracing the original

proof due to Shaltiel and Umans [SU05] and making modifications as necessary. We need a

standard tail inequality for ν-wise independent random variables.

Lemma 3.13 ([BR94]). Let ν ≥ 6 be an even integer. Suppose X1, X2, . . . , Xn are ν-wise

independent random variables taking values in [0, 1]. Let X = ∑n
i=1 Xi and A > 0. Then

Pr [∣X −E[X]∣ ≥ A] ≤ 8 ⋅ (ν ⋅E[X] + ν2

A2 )
ν/2

.

We also need a well-known list-decoding algorithm due to Sudan.

Lemma 3.14 ([Sud97]). Let m, α, deg be integers. Given m many distinct pairs (xi, yi)

from a field F with α >
√

2 ⋅ δ ⋅m there are at most 2m/α polynomials g of degree δ such that

g(xi) = yi for at least α pairs. Furthermore, a list of all such polynomials can be computed

in time poly(m, log ∣F∣).

We now dedicate the remainder of this section to the proof of Lemma 3.12.

The main difference between the non-uniform and uniform versions of the SU recon-

struction is the Nondeterministic Learn Next Curve procedure, so we focus on it. To de-

fine it, though, we first need to compute some values related to the probability estimates

ρ′1,0, ρ
′
1,1, . . . , ρ

′
1,r−1, ρ′2,0, . . . , ρ

′
t,r−1. Recall ρi,s is the probability that predictor Pi predicts the

value σi (that is, the value that is easy to verify). Recall the guarantee for each ρ′i,s

ρi,s −
1

24m
≤ ρ′i,s ≤ ρi,s +

1
24m
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for all i, s.

The algorithm A first computes the values

ni,s = pn′ (ρ′i,s −
1

12m
)

for all i, s. Those values are used in the Nondeterministic Learn Next Curve procedure that

we define next.

Nondeterministic Learn Next Curve. We define the procedure almost exactly as in the

original construction, but with minor modifications to account for the fact that we have

multiple predictors per stride s (at least one of which is “good”). The procedure receives

the following as input:

○ Next curve C ∶ F→ Fr, a degree ν polynomial.

○ Reference points R ⊆ F, a set of r′ distinct elements from F.

○ Stride s, an integer in [0, . . . , (r − 1)].

○ Input evaluations {ai
t}t∈F,i∈[1,...,(m−1)] and {bt}t∈R, elements of F whose intended values

are ai
t = ĝ(A−ips

C(t)) and bt = ĝ(C(t)).

The procedure outputs a sequence of values {ct}t∈F, elements of F whose intended values

are ct = ĝ(C(t)). That is, it computes the values of ĝ restricted to C. The procedure works

as follows:

1. For each 1 ≤ i ≤ k, guess a set Ti of ni,s distinct pairs (tj, zj) ∈ F× [n′] and a “witness”

string wj for each such pair.

2. Check that this is a “good guess”, that is,

∀(tj, zj) ∈ Ti, Pi (E(am−1
tj
)zj

, E(am−2
tj
)zj

, . . . , E(a1
tj
)zj

; wj) = σi.

If is it not, then reject.



110

3. For all 1 ≤ i ≤ k, t ∈ F and z ∈ [n′], set ri,t
z = σi if (t, z) ∈ Ti or 1 − σi otherwise.

4. For all 1 ≤ i ≤ k and t ∈ F, set Si,t to be the list of γ−2 messages (where γ = 1
24m) whose

encodings differ from ri,t in at most (1/2 − γ)n′ places.

○ For each 1 ≤ i ≤ k, apply Lemma 3.14 on the pairs {(t, e)}t∈F,e∈Si,t
with α = γp/4

and δ =∆ ⋅ ν, and collect all polynomials into a single list.

○ If the list is empty, reject and output �. If the list contains a unique polynomial

f(t) for which f(t) = bt for all t ∈ R, output {f(t)}t∈F, otherwise reject and output

�.

Fix a stride s. We say that Nondeterministic Learn Next Curve procedure is successful

for stride s, next curve C and reference points R if, when receiving these as input together

with the intended input evaluations, for every nondeterministic guess it either rejects or

outputs the intended evaluations of ĝ. Moreover, it must be the case that there exists a

“good guess” that it accepts. We now argue that over a random choice of curve C and

reference points R, the procedure is successful with high probability as long as there exists

a “good” predictor for stride s among the P1, . . . , Pk. The idea is to show that, with high

probability over C, the fraction of points for which each Pi predicts σi is close to the ρi (and

thus close to ρ′i), and also that the fraction of points for which a “good” predictor is correct

is close to the predictor’s advantage. When both conditions hold, we are guaranteed to have

enough agreement so that the correct polynomial f appears in the final list-decoding phase.

Finally, we show that the probability (again over C) that some other polynomial passes the

final verification phase (where we evaluate the polynomial on all reference points) is small,

and thus the procedure outputs the correct evaluations of f .

Claim 3.15. Assume that p ≥ 32∆ν (24m)3 and that, for all strides 0 ≤ s ≤ r − 1 there exists

some predictor Pi that has advantage (over random y, j) at least 1
3m at predicting the last bit

of G′(y, j, s). Then, for all strides s, the probability over C and R that Nondeterministic
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Learn Next Curve is successful for s, C and R is at least 1 − 3k ⋅ 2−r′, where C ∶ F→ Fr is a

uniformly chosen degree ν curve, and R ⊆ F is a uniformly chosen subset of F of size r′.

Proof. Fix a stride s. For some 1 ≤ i ≤ k, we first show that the fraction of points on which

Pi predicts σi along C is close to the fraction of points on which Pi predicts σi on the whole

space. Define the random variables

Xt = ∣{z ∈ [n′] ∣ Pi (E(am−1
t )z, E(am−2

t )z, . . . , E(a1
t )z) = σi}∣

and let X = ∑t∈F Xt. Note that the Xt’s are ν-wise independent random variables, that

X = ∣{(t, z) ∶ Pi (E(am−1
t )z, E(am−2

t )z, . . . , E(a1
t )z) = σi}∣,

and that E[X] = pn′ρi,s. By Lemma 3.13, we have that

Pr [∣X −E[X]∣ ≥ 1
24m

⋅ pn′] ≤ 8 ⋅
⎛
⎝

ν ⋅ pn′ + ν2

( 1
24m ⋅ pn′)2

⎞
⎠

ν/2

≤ 8 ⋅
⎛
⎝

2ν

( 1
24m
)2 ⋅ pn′

⎞
⎠

ν/2

≤ 2−ν/2,

where the last two inequalities hold because p ≥ 32∆ν (24m)3. This means that with prob-

ability at least 1 − 2−ν/2,

pn′ (ρi,s −
1

24m
) ≤X ≤ pn′ (ρi,s +

1
24m
) . (3.1)

Define (3.1) as the first “good” event. In particular, we get that

X ≥ pn′ (ρ′i,s −
1

12m
) = ni,s. (3.2)

Define the second “good” event as the event that (3.2) holds for all predictors P1, . . . , Pk.

By a union bound, the second “good” event happens with probability at least 1 − k ⋅ 2−ν/2.

If the second “good” event happens, then there exists at least one “good” guess for each Ti

and the witnesses wj. Moreover, due to the error in the approximation ρ′i,s, the procedure

guesses that between

pn′ (ρi,s −
1

12m
) and pn′ (ρi,s +

1
12m
)
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predictions from Pi evaluate to σi. This differs from the actual value (in the high-probability

case we are considering) by a fraction of at most 1
6m . Therefore, it holds that for all 1 ≤ i ≤ k

and any such “good” guess

∣{(t, z) ∣ ri,t
z = Pi (E(am−1

t )z, E(am−2
t )z, . . . , E(a1

t )z; s)}∣ ≥ (1 − 1
6m
)pn′.

Now, assume there exists some predictor among P1, . . . , Pk that has “good” advantage at

predicting the generator H for stride s. Say this is predictor Pi. We show that Pi is correct

along the curve C on almost the same fraction of points as it is correct in the entire space.

Define the random variable

Yt = ∣{z ∈ [n′] ∣ Pi (E(am−1
t )z, E(am−2

t )z, . . . , E(a1
t )z) = E(ĝ(C(t)))z}∣,

and define Y = ∑t∈F Yt. Again, notice that the Yt’s are ν-wise independent and that E[Y ] ≥

pn′ (1
2 + 1

3m
) since Pi has “good” advantage. By Lemma 3.13, we have, similar to before,

that

Pr [∣Y −E[Y ]∣ ≥ 1
12m

pn′] ≤ 2−ν/2.

By a union bound, the probability that the first two “good” events happen simultaneously

is at least 1 − (k + 1)2−ν/2. In that case, we have that

∣{(t, z) ∣ ri,t
z = E(ĝ(C(t)))z}∣ ≥ (

1
2 +

1
12m
)pn′.

By an averaging argument, we have that for at least a γ = 1
24m fraction of the t’s,

∣{z ∣ ri,t
z = E(ĝ(C(t)))z}∣ ≥ (

1
2 +

1
24m
)n′.

For these t, the relative Hamming distance between ri,t and E(ĝ(C(t))) is at most 1/2 − γ,

so Si,t contains ĝ(C(t)) and thus the list of polynomials produced by the procedure contains

the polynomial f(t) = ĝ(C(t)).

Now, still conditioned the first two “good” events happening, consider a nondeterministic

choice for the procedure that passes the first verification (meaning it is a “good guess”). Each
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application of Lemma 3.14 produces a list of at most 8γ−3 degree ∆ ⋅ν univariate polynomials

f(t) that contains all polynomials for which f(t) ∈ Si,t for at least γp/4 values of t, and thus

the procedure produces a list of at most 8kγ−3 polynomials. By the previous discussion,

the list of polynomials produced by the procedure contains the polynomial ĝ(C(t)), so at

least one polynomial passes the final verification where we compare the polynomials with

the reference points, and this is true for every “good guess”.

Now, to show that, with high probability, there exists a “good guess” that is not ulti-

mately rejected by the procedure, we need to show that at least one “good guess” produces

a list of polynomials such that no other polynomial in the list agrees with ĝ(C(t)) on all

of the reference points. Note that, in that case, the procedure outputs the correct evalua-

tions, since only the polynomial f(t) = ĝ(C(t)) passes the final verification. Recall that two

polynomials of degree ∆ ⋅ ν over Fp can agree on at most a ∆⋅ν
p fraction of their points. This

means that, for a fixed “good guess”, the probability that an incorrect polynomial from the

list agrees with ĝ(C(t)) on r′ random points is at most

(8kγ−3) (∆ ⋅ ν
p
)

r′

≤ (8k(24m)3)( ∆ ⋅ ν
32∆ν(24m)3)

r′

≤ k ⋅ 2−r′ .

Clearly, this also serves as an upper bound for the probability that all “good guesses” lead

to a “bad” list of polynomials containing an incorrect polynomial that agrees with ĝ(C(t))

on r′ random points. Let the third “good” event be the event where at least one “good

guess” leads to the correct output.

Finally, note that as long as the three “good” events happen, then the procedure outputs

ĝ(C(t)) for t ∈ F for all “good guesses”, as well as rejects every “bad” nondeterministic

guess. Moreover, there exists a “good guess”. A union bound guarantees that all “good”

events happen with probability at least

1 − (k + 1) ⋅ 2−ν/2 + k ⋅ 2−r′ .

Recall that ν = (r + 1)r′. Since r + 1 ≥ 2, it follows that this is at most

(k + 1) ⋅ 2−r′ + k ⋅ 2−r′ ≤ 3k ⋅ 2−r′ .
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∎

Moreover, note that Nondeterministic Learn Next Curve runs in time poly(k, p, n′, γ−1, m)

= poly(k, p, m) since n′ = poly(log p, γ−1) and γ−1 = O(m). Shaltiel and Umans [SU05] show

how to, on input y⃗ ∈ Fr, 0 ≤ a ≤ pr − 1 such that C1(1) = Aa1⃗, 0 ≤ dy ≤ pr − 1 such

that y⃗ = Ady 1⃗ and the evaluation of ĝ at ⋃m
i=1 Ai(C1 ∪ C2), use O(pmr) invocations of the

Nondeterministic Learn Next Curve procedure along curves C1 and C2 to compute ĝ(y⃗).

Since the reconstruction is already nondeterministic, we can guess and verify both a and dy

and then run their procedure, which results in a total running time of poly(k, p, r, m). They

also show that, if Nondeterministic Learn Next Curve is successful for any triple s, C, R with

probability at least τ over C1, C2, then the entire reconstruction is successful (in the sense

that it outputs a nondeterministic circuit that computes ĝ correctly at any point in Fr) with

probability at least

1 − p−r − (2rpr)τ ≥ 1 − (9krpr)2−r′

over C1, C2. This concludes the proof of the lemma.

3.5 Equivalence

In this section, we develop our main results, equivalences between mild derandomization of

prAM and the existence of leakage-resilient hard functions/relations. We first state a more

general version of Theorem 3.3 for classes C such that PC ⊆ C. For such classes, we obtain

an equivalence with respect to a hard function.

Theorem 3.16. Let C be a complexity class such that PC ⊆ C. There exists a constant c such

that for all ε ∈ (0, 1), the following are equivalent.

○ prAM ⊆ C.

○ There exists a length-preserving function f ∈ C that is (nc, nε)-leakage-resilient hard on

almost-all inputs against prBPPSAT
∣∣ .
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Theorem 3.16 follows from Theorem 3.18 in Section 3.5.1 and Theorem 3.23 in Sec-

tion 3.5.2. Examples of classes for which Theorem 3.16 applies are PNP and ZPPNP and their

time-2polylog(n) and time-2no(1) variants.

In the case of Σ2P, we state a more general equivalence with respect to a hard relation.

Theorem 3.17. Let T be a time bound. There exists a constant c such that for all ε ∈ (0, 1),

the following are equivalent.

○ prAM ⊆ ⋃k∈N Σ2TIME[nk ⋅ T (nk)].

○ There exists k ∈ N and a total length-preserving relation R ∈ Σ2TIME[nk ⋅ T (nk)] that

is (nc, nε)-leakage-resilient hard on almost-all inputs against prBPPSAT
∣∣ .

Theorem 3.17 follows from Theorem 3.19 in Section 3.5.1 and Theorem 3.25 in Sec-

tion 3.5.2. Similar to Theorem 3.16, Theorem 3.17 applies to the time-poly(n), time-2polylog(n)

and time-2no(1) variants of Σ2P. Theorem 3.3 follows by instantiating Theorems 3.16 and 3.17

with polynomial time bounds.

3.5.1 From leakage-resilient hardness to derandomization

Assuming the existence of a leakage-resilient hard function/relation against prBPPSAT
∣∣ , we

show that we can obtain mild derandomization of prAM. Our approach is to instantiate

the Shaltiel-Umans generator with the value of f(x) (or some y ∈ R(x) in case of a hard

relation R). The reconstructor for the algorithm can be described as a pair (Leak, A). In

case the generator fails, Leak(x, f(x)) outputs with high probability a small string π such

that A(x, π) recovers f(x). Leak is a probabilistic algorithm and A is a PSAT algorithm.

We now prove the hardness-to-derandomization direction of Theorem 3.16.

Theorem 3.18. Let C be a complexity class such that PC ⊆ C and NP ⊆ C. There exists a

constant c ≥ 1 such that the following holds. Assume that there exist a constant ε ∈ (0, 1)
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and a length-preserving function f ∈ C that is (nc, nε)-leakage-resilient hard on almost-

all inputs against prBPPSAT
∣∣ . Then there exists a targeted hitting-set generator H for co-

nondeterministic circuits computable in C, implying that prAM ⊆ C.

Proof. Fix a binary string representation for co-nondeterministic circuits that describes a

circuit of size m by a string of length m′ = Θ(m log m). The generator H, on input a string

x of length m′ describing a co-nondeterministic circuit Dx of size m, sets n = ma for a

sufficiently large constant a to be defined later and sets x′ = x0n−m′ . It then computes f(x′)

and instantiates the generator Hdet of Lemma 3.10, outputting the set Sx =Hdet(1m, f(x′)).

Computing f(x′) can be done in C by the assumption that PC ⊆ C and since ∣x′∣ = poly(m),

and computing Sx from f(x′) takes deterministic time poly(m, n) = poly(m), and therefore

the generator H is computable in C.

Assume, with the intent of deriving a contradiction, that H fails as a targeted hitting-set

generator for prAM. This means that there exists an infinite set D of co-nondeterministic

circuits that accept at least a 1/2 fraction of their inputs such that H(D) fails to hit every

D ∈ D. We show that there exist probabilistic algorithms Leak and A with non-adaptive

oracle access to SAT running in time nc for a constant c to be defined later such that for

infinitely many x′, Leak(x′, f(x′)) produces ∣x′∣ε bits of leakage and A(x′, Leak(x′, f(x′)))

computes f(x′) with high probability.

The algorithm Leak parses the input x′ ∈ {0, 1}n as x′ = x0n−m′ for m′ = Θ(m log m)

and m = n1/a. If x′ is not of the expected type, it outputs 0n. Otherwise, it outputs

π = Acomp(f(x′), 1m). The algorithm A, on input x′ and π, similarly parses x′ as x0n−m′ and

outputs Adec(π, Dx), where Dx is the circuit described by x.

Notice that we measure the running times of Leak and A in terms of n = ma. By

Lemma 3.10, Leak runs in time poly(m, n) = poly(n) ≤ nk for a sufficiently large constant

k. By the same lemma, nk serves as an upper bound for the running time of A, which

is n ⋅ poly(m, log n) to compute the entirety of f(x′). Moreover, the amount of leakage is

poly(m, log n) ≤ (m log n)k, by possibly redefining the value of k. By taking a = 2k/ε, this is
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at most nε.

As for correctness, Lemma 3.10 guarantees that for all x such that H(Dx) fails to hit

Dx, Acomp(1m, f(x′)) for x′ = x0n−m′ outputs with probability at least 2/3 a string π such

that Adec(π, Dx) computes the mapping i ↦ f(x′)i. In that case, A with inputs x′ and π

outputs f(x′). The conclusion prAM ⊆ C follows as in Proposition 3.9: Given an Arthur-

Merlin protocol P witnessing Π ∈ prAM and an input x, we construct DP,x and compute a

hitting set S =H(DP,x). Finally, we use the fact that NP ⊆ C to verify in C that DP,x rejects

all ρ ∈ S, rejecting otherwise. ∎

Essentially the same argument establishes the result for a leakage-resilient hard relation

R ∈ Σ2TIME[T (n)].

Theorem 3.19. There exists a constant c ≥ 1 such that the following holds. Assume that

there exist a constant ε ∈ (0, 1) and a length-preserving relation R ∈ Σ2TIME[T (n)] that

is (nc, nε)-leakage-resilient hard on almost-all inputs against prBPPSAT
∣∣ . Then there exists

a targeted hitting-set generator for prAM computable in the class Σ2TIME[T (poly(m))],

implying that prAM ⊆ ⋃k∈N Σ2TIME[T (nk)].

Proof (sketch). The proof follows the argument of Theorem 3.18 closely. Instead of com-

puting Hdet(f(x′), 1m), the generator H guesses and verifies y ∈ R(x′) and then outputs

Hdet(y, 1m), which leads to a generator computable in time T (ma) + poly(m) = T (poly(m)).

The reconstruction is identical, and allows for computing y ∈ R(x′) given a small amount of

leakage on y. ∎

We remark that the arguments for Theorems 3.18 and 3.19 show, in particular, that it

is possible to compute f(x′) (or y ∈ R(x′)) locally in time poly(m, log n) by having A take

additional input i and run Adec(π, Dx, i).
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3.5.2 From derandomization to leakage-resilient hardness

We first establish the derandomization-to-hardness direction of Theorem 3.16. As mentioned

in Section 3.1, we frame the problem of computing a leakage-resilient hard function as a

prBPPSAT
∣∣ search problem and then makes use of a search-to-decision reduction as in [Gol11].

At a high-level, a prBPPSAT
∣∣ search problem is a search problem R that admits two

polynomial-time probabilistic algorithms with non-adaptive oracle access to SAT, G and V .

V verifies that a candidate solution for R is correct with high probability, and captures

the decisional version of the search problem. However, it is also necessary that a solution

can be produced efficiently, and thus G outputs solutions for S with high probability. The

search-to-decision reduction gives us a deterministic algorithm with oracle access to some

problem in prBPPSAT
∣∣ that outputs solutions for R. Since prBPPSAT

∣∣ ⊆ PprAM
∣∣

, the oracle can

be substituted by a PprAM
∣∣

oracle. For a class C ∈ {PSAT, ZPPSAT}, we can use the fact that

PC ⊆ C together with the derandomization assumption on prAM to compute the leakage-

resilient hard function using the search-to-decision reduction in C. For Σ2P, we need to be

more careful, since it is unknown whether PΣ2P ⊆ Σ2P, and indeed the inclusion is believed to

be false as otherwise the polynomial hierarchy collapses to Σ2P. In this case, we show that a

Σ2-derandomization of prAM implies a derandomization of the same strength for prBPPSAT
∣∣ ,

then have a Σ2-algorithm guess and verify a solution for the search problem.

To carry out the strategy above, we start by defining prBPPSAT
∣∣ search problems.

Definition 3.20. Let RY and RN be two disjoint binary relations. We say that (RY , RN)

is a prBPPSAT
∣∣ search problem if the following two conditions hold.

1. The decisional promise problem represented by (RY , RN) is in prBPPSAT
∣∣ ; that is, there

exists a probabilistic polynomial-time algorithm V with non-adaptive oracle access to

SAT such that for every (x, y) ∈ RY it holds that Pr[V (x, y) = 1] ≥ 2/3 and for every

(x, y) ∈ RN it holds that Pr[V (x, y) = 1] ≤ 1/3.

2. There exists a probabilistic polynomial-time algorithm G with non-adaptive oracle
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access to SAT such that, for every x for which RY (x) ≠ ∅, it holds that Pr[G(x) ∈

RY (x)] ≥ 2/3, where RY (x) = {y ∣ (x, y) ∈ RY }.

◂

We observe that the search-to-decision strategy developed for prBPP-search problems

in [Gol11] relativizes. Thus, to extend the result to prBPPSAT
∣∣ -search problems, it suffices to

argue that if the search problem only requires non-adaptive oracle access to SAT, then the

same holds for the oracle used in the search-to-decision reduction. Note, however, that the

reduction itself is still adaptive, it just requires an oracle for a problem in prBPPSAT
∣∣ .

Proposition 3.21. For every prBPPSAT
∣∣ search problem (RY , RN), there exists a binary

relation R such that RY ⊆ R ⊆ ({0, 1}∗ × {0, 1}∗) / RN and solving the search problem of

R is (adaptively) deterministically polynomial-time reducible to some decisional problem in

prBPPSAT
∣∣ .

Proof of Proposition 3.21. The argument is essentially identical to that for Theorem 3.5

in [Gol11] (an analogue of Proposition 3.21 for prBPP search problems) with two modifica-

tions/observations. For completeness, we sketch the proof of Goldreich’s construction: Let

(RY , RN) be a prBPP search problem, and let G be a solution-finding algorithm and V a

verification algorithm for the problem. We define the algorithm G′(x, r, ρ) = V (x, G(x; r); ρ),

that is, G′ takes input x and a random sequence r for G, which it uses to produce a can-

didate solution, and a random sequence ρ for V , which it uses to verify if this is a good

solution. Given an input x, the strategy is to determine the bits of r one by one while

maintaining the invariant that a random continuation r′′ of the current prefix r′ (which is

initially empty) satisfies G′ with high probability. This is where the decisional prBPP-oracle

comes into play: It is used to verify the invariant by randomly sampling r′′ and ρ, comput-

ing G′(x, r′r′′, ρ) ∈ {0, 1} multiple times and checking whether the average is over a specific

threshold. Once r is found, we can output G(x; r) as a solution.
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The first issue that needs to be addressed to port the argument to the prBPPSAT
∣∣ setting

is that computing G′ in the natural way requires two rounds of non-adaptive queries. Using

Fact 3.22, stated next, it is possible to compute G′ with a single round of non-adaptive

queries at only a polynomial slowdown.

Fact 3.22 (See e.g., [SU06, Lemma 7.2]). There exists a non-adaptive SAT-oracle al-

gorithm M with the following behavior. On input x ∈ {0, 1}n and the description of two

non-adaptive SAT-oracle algorithms M1 and M2 such that M1 runs in time time t1(n) and

produces outputs of length t1(n) and M2 takes inputs of length t1(n) and runs time t2(n),

M runs in time poly(n, t1(n), t2(n)) and outputs M2(M1(x)).

The second modification is in fact an observation: Since computing G′ can be done with

non-adaptive oracle access to SAT, we are able to approximate the acceptance probability of

G′ over a random continuation r′′ by running G′ multiple times in parallel and comparing

the average with the threshold. With these modifications, we guarantee that the decisional

problem used as an oracle by the search procedure also only requires non-adaptive oracle

access to SAT, i.e., is in prBPPSAT
∣∣ . ∎

We are now ready to prove the direction of derandomization to hardness of Theorem 3.16.

Theorem 3.23. Let C be a complexity class such that PC ⊆ C. If prAM ⊆ C, then for all

constants c and ε ∈ (0, 1) there exists a length-preserving function f ∈ C that is (nc, n−ω(1))-

leakage-resilient hard on almost-all inputs against prBPPSAT
∣∣ , where ω(1) is polynomial-time

computable.

Proof. Our approach is to cast computing a leakage-resilient hard function f as a prBPPSAT
∣∣

search problem, which allows us to instantiate Proposition 3.21 and show that there is a

PprBPPSAT
∣∣ ⊆ PPprAM

∣∣ ⊆ PprAM algorithm that solves it. Finally, we use the derandomization

assumption together with the assumption on C to conclude that f is computable in C.

First, we argue that for any x, a random choice of f(x) is hard w.r.t. a fixed pair

(Leak, A) of probabilistic algorithms with non-adaptive oracle access to SAT. Fix a constant
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c, an input x ∈ {0, 1}n and a polynomial-time computable function ν(n) = ω(1). Let ρLeak

and ρA denote the random bits input to Leak and A, respectively. Let

P (r, ρLeak, ρA) ≡ ∣Leak(x, r; ρLeak)∣ ≤ ` ∧A(x, Leak(x, r; ρLeak); ρA) = r,

for ` = n − ν(n). We say that r fails if PrρLeak,ρA
[P (r, ρLeak, ρA)] ≥ 1/6.

We have that

Pr
r
[r fails] = Pr

r
[ Pr

ρLeak,ρA

[P (r, ρLeak, ρA)] ≥ 1/6] [definition of failing r]

≤ 6 ⋅Er[ Pr
ρLeak,ρA

[P (r, ρLeak, ρA)] [Markov’s inequality]

= 6 ⋅Er,ρLeak,ρA
[P (r, ρLeak, ρA)] [expectation of indicator variable]

= 6 ⋅EρLeak,ρA
[Er[P (r, ρLeak, ρA)]] [reordering random bits]

< 62`+1

2n
[pigeonhole argument]

The pigeonhole argument is that, after fixing the random bits ρLeak and ρA, for each of

the at most 2`+1 strings y of length at most `, among all the strings r that Leak maps to y,

there is at most one that A maps back to r. Setting ` = n−ν(n) implies that the probability

that a string r fails is at most 12/2ν(n).

We then define the search problem (RY , RN) such that (x, r) ∈ RY if ∣x∣ = ∣r∣ = n and

for the first ν(n) pairs of probabilistic machines with non-adaptive oracle access to SAT

(Leak, A) clocked to run in time nc, it holds that

Pr
ρLeak,ρA

[∣Leak(x, r; ρLeak)∣ ≤ ` ∧A(x, Leak(x, r); ρA) = r] < 1
6 . (3.3)

As for “no” instances, (x, r) ∈ RN if for at least one pair out of the first ν(n) (Leak, A),

equation (3.3) with 1/6 replaced by 1/3 does not hold.

Now, we show that this problem is a prBPPSAT
∣∣ search problem. On input x ∈ {0, 1}n, the

algorithm for finding a solution samples a random r ∈ {0, 1}n. By a union bound over the ν(n)

many algorithms Leak and A and the fact that r fails for a particular pair with probability

at most 12/2ν(n), it holds that the solution-finding algorithm succeeds with probability at
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least 2/3 for sufficiently large n. On input (x, r), the verification algorithm enumerates the

first ν(n) probabilistic machines with non-adaptive oracle access to SAT, Leak and A, all

clocked to run in time nc. It then estimates the value

pLeak,A = Pr
ρLeak,ρA

[∣Leak(x, r; ρLeak)∣ ≤ ` ∧A(x, Leak(x, r); ρA) = r]

up to error 1/12 and with failure probability at most 1/n for each pair (Leak, A). By a

standard Chernoff bound, it suffices to perform the following steps a polynomial (in n)

number of times per pair: Let Leak′ be the algorithm that, on input x and a random

sequence ρLeak for Leak, computes an output y = Leak(x, r; ρLeak) and outputs (x, y). Let A′

be an algorithm that, on input x, y and random sequence ρA, rejects if ∣y∣ > ` and outputs

A(x, y; ρA) otherwise, and let M be the algorithm of Fact 3.22. Select random strings ρLeak

and ρA for Leak and A, respectively, compute A′(x, Leak′(x, r; ρLeak); ρA) by feeding M

inputs x, r, ρLeak, ρA and the codes of Leak′ and A′ and compare the output with r. Each

such execution requires time poly(n) for a total running time of poly(n). Moreover, all oracle

queries made by M can be made in parallel.

After estimating the average acceptance probability for each pair (Leak, A), the verifi-

cation algorithm outputs 1 if the estimated values are less than 1/4 (the midpoint between

1/6 and 1/3) for all pairs of algorithms. By a union bound over the ν(n) pairs of algorithms,

the algorithm accepts (x, r) ∈ RY and rejects (x, r) ∈ RN with probability at least 2/3.

Finally, we use Proposition 3.21 together with the derandomization assumption and the

assumption on C to conclude that there is a function f ∈ C that solves (RY , RN), i.e., f is a

leakage-resilient hard function. ∎

The proof of Theorem 3.23 shows that, given x, verifying whether a candidate r for R(x)

is hard w.r.t. the first ν(n) algorithms Leak, A can be done in prBPPSAT
∣∣ . The proof also

shows that a “good” r always exists for sufficiently large n. To extend Theorem 3.23 to

obtain a hard relation R ∈ Σ2, we first show that a Σ2-derandomization assumption on prAM

implies the same derandomization for prBPPSAT
∣∣ .
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Proposition 3.24. Let T be a time bound. If prAMTIME[n] ⊆ Σ2TIME[T (n)], then it

follows that prBPPSAT
∣∣ ⊆ ⋃k∈N Σ2TIME[(nk ⋅ T (nk)].

Proof. Let Π ∈ prBPPSAT
∣∣ and recall that prBPPSAT

∣∣ ⊆ PprAM
∣∣

(Lemma 2.11). Let L ∈ PprAM
∣∣

be a language that agrees with Π and M be a polynomial-time non-adaptive prAM-oracle

algorithm that decides L. Without loss of generality, we may assume that M has non-

adaptive oracle access to a complete problem Γ for prAM, and that Γ ∈ prAMTIME[n].

Recall that prAM ⊆ Π2P = coΣ2P and that, by assumption, prAMTIME[n] ⊆ Σ2TIME[T (n)].

Let LΓ ∈ Σ2TIME[T (n)] be such that LΓ agrees with positive instances of Γ (that is, x ∈

ΓY ⇐⇒ x ∈ LΓ) and LΓ ∈ Σ2P be such that it agrees with negative instances of Γ (that is,

x ∈ ΓN ⇐⇒ x ∈ LΓ). To obtain a Σ2-simulation of M on input x, we first guess which of the

queries M makes are answered positively, which are answered negatively, and which queries

are outside of the promise of Γ. Then we verify the positive and negative queries using either

the Σ2TIME[T (n)] algorithm for LΓ, if the query was guessed to be positive, or the Σ2P

algorithm for LΓ, if the query was guessed to be negative. In parallel, verify (using universal

quantification) that M on input x accepts with the guessed positive/negative answers and

any answer to the queries outside of the promise.

Since M is guaranteed to be correct with any answer to queries outside of the promise,

if x ∈ L then there exists an existential guess that leads the simulation to accept, namely

the one that guesses each query type correctly. If x ∉ L, no potentially accepting path can

guess that some positive query is answered negatively or vice-versa, and thus the only way

a mistake could happen is by incorrectly guessing that a set Q of positive/negative queries

are outside of the promise. However, since acceptance of the simulation implies that the

algorithm accepts with any answer to the queries in Q, it in particular implies that it accepts

with the correct answers, a contradiction. This simulation runs in Σ2TIME[nk ⋅ T (nk)] for

some constant k, which depends on the running time for M . ∎

Under a Σ2-derandomization assumption for prAM, Proposition 3.24 allows a Σ2 algo-
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rithm to compute a leakage-resilient hard relation R by guessing a candidate y and verifying

in Σ2 that it is a “good” solution. We therefore establish Theorem 3.25.

Theorem 3.25. Let T be a time bound. If prAMTIME[n] ⊆ Σ2TIME[T (n)], then for every

constant c there exists a constant k and a total length-preserving relation R ∈ Σ2TIME[nk ⋅

T (nk)] that is (nc, n − ω(1))-leakage-resilient hard on almost-all inputs against prBPPSAT
∣∣ ,

where ω(1) is polynomial-time computable.

3.5.3 Targeted hitting-set generators from derandomization

In this section, we show that mild derandomization of prAM implies the existence of tar-

geted hitting-set generators that suffice to obtain the original derandomization result. The

results follow as consequences of the equivalence between leakage-resilient hardness and

derandomization since we show the hardness-to-derandomization direction by constructing

such targeted generators.

Corollary 3.26. Let C be a complexity class such that PC ⊆ C. If prAM ⊆ C, then there exists

a targeted hitting-set generator for prAM computable in C.

Proof. By Theorem 3.18, there is a constant c such that if there is a length-preserving

function f ∈ C that is (nc, n1/2)-leakage-resilient hard on almost-all inputs against prBPPSAT
∣∣ ,

then there is a targeted hitting-set generator as in the conclusion. By Theorem 3.23, the

assumption prAM ⊆ C implies the existence of f as required. ∎

Corollary 3.27 is established in the exact same way.

Corollary 3.27. Let T be a time bound. If prAM ⊆ ⋃k∈N Σ2TIME[nk ⋅ T (nk)], then there

exists a constant k′ and a targeted hitting-set generator for prAM computable in Σ2TIME[nk′ ⋅

T (nk′)].

Theorem 3.5 follows by combining Corollaries 3.26 and 3.27 with polynomial time bounds.
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3.5.4 Derandomization from hardness against learn-and-evaluate

protocols

In this section, we prove that the hardness-to-derandomization direction of Theorems 3.16

and 3.17 holds under hardness against learn-and-evaluate protocols (as defined in Sec-

tion 2.3.3). By combining such a result with the derandomization-to-hardness direction of

Theorems 3.16 and 3.17, we obtain an equivalence in the leakage-resilient hardness setting

between hardness against learn-and-evaluate protocols and hardness against prBPPSAT
∣∣ .

We define (T, `)-leakage-resilient hardness on almost-all inputs against learn-and-evaluate

protocols in a completely analogous way to hardness against prBPPSAT
∣∣ (Definition 3.1), where

a probabilistic algorithm Learn(x, y) (which we take to be Ay
learn) takes on the role of Leak,

running in time T and producing, on input x of length n, an output of length at most `(n),

and Peval takes on the role of algorithm A, also running in time T .

We make use of the following lemma, which hinges on the RMV generator (Lemma 2.23).

Lemma 3.28. There exists a deterministic algorithm Hdet, a probabilistic algorithm Learn

and an Arthur-Merlin protocol Peval such that at least one of the following holds for every

z ∈ {0, 1}∗, m ∈ N and co-nondeterministic circuit D of size m that accepts at least half of

its inputs:

1. Hdet(z, 1m) outputs a set that hits D.

2. Peval(Learn(z, 1m), D) computes z with completeness 1 and soundness 2/3.

The construction also has the following properties:

○ Compression: On input z of length n and 1m, the string output by Alearn has length

poly(m, log n).

○ Efficiency: On input z of length n and 1m, both Hdet and Alearn run in time poly(m, n).

Peval, given a sketch π, D of size m and an additional index i, computes the i-th bit of

z in time (m ⋅ log n)O(log2 r) for r = O(log n/ log m).
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○ Input access: The only way Adec requires access to D is via blackbox access to the

deterministic predicate that underlies D.

Before proving Lemma 3.28, we remark that, while the running time for its evaluator

Peval does not scale as well as the construction based on SU (Lemma 3.10), it achieves the

same compression length.

Proof of Lemma 3.28. First, we define the generator Hdet. On input z ∈ {0, 1}n, Hdet com-

putes the low-degree extension ẑ for z with parameters h =m100, r the smallest power of two

such that hr ≥ n and p the smallest prime between ∆100 and 2∆100, where ∆ = h ⋅ r. Then it

outputs RMV(ẑ) with output length m. This procedure runs in time poly(m, pr) = poly(m, n)

and outputs at most that many strings of length m.

We now define Learn and Peval. Learn first computes the low-degree extension ẑ exactly

as Hdet, and then simulates the honest commitment protocol as described in Lemma 2.23

using ẑ to answer the learning queries posited by Arthur. Peval is essentially identical to

the protocol with the same name in Lemma 2.23, with the only difference being that on

input i, it computes the corresponding element z⃗ ∈ Fr before executing the protocol from

Lemma 2.23.

By setting s = Θ(1/n2), it holds that with probability at least 1 − 1/n2, Learn(z, 1m)

outputs a sketch π such that P D
eval(π, ⋅) computes the mapping i ↦ zi and soundness 1/n2,

and thus computes z with soundness 2/3. If D is not hit by Hdet(z, 1m), then it also holds

that Learn(z, 1m) outputs with probability 1 a sketch such that P D
eval(π, ⋅) computes z with

completeness 1. Finally, Learn runs in time poly(n, δ, r) = poly(m, n) and produces a sketch π

of length at most poly(m, log n), and Peval runs in time ∆O(log2 r)⋅polylog(n) = (m⋅log n)O(log2 r)

to compute an individual bit of i. ∎

We now state the hardness-to-derandomization result that we obtain from Lemma 3.28.

Theorem 3.29. Theorems 3.18 and 3.19 continue to hold when prBPPSAT
∣∣ is replaced by

learn-and-evaluate protocols.
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Proof. The proof follows closely that of Theorems 3.18 and 3.19 but uses the generator Hdet

of Lemma 3.28 instead of Lemma 3.10. For the reconstructor’s running time, since we pick

n = poly(m), we can upper bound the running time of Leak (which equals the algorithm

Learn of Lemma 3.28) and the leakage-receiving protocol (which invokes Peval n times) by

nc for some constant c. The bound on the leakage is calculated in the exact same way. ∎

As a consequence, we obtain an equivalence between hardness on almost-all inputs against

polynomial-time learn-and-evaluate protocols and leakage-resilient hardness on almost-all

inputs against prBPPSAT
∣∣ . For simplicity, we state the result for classes C such that PC ⊆ C,

but it holds for Σ2 as well.

Corollary 3.30. Let C be a complexity class such that PC ⊆ C and NP ⊆ C. There exists a

constant c such that the following are equivalent for all ε ∈ (0, 1):

1. There exists a length-preserving function f ∈ C that is (nc, nε)-leakage-resilient hard on

almost-all inputs against learn-and-evaluate protocols.

2. There exists a length-preserving function f ∈ C that is (nc, nε)-leakage-resilient hard on

almost-all inputs against prBPPSAT
∣∣ .

Proof. We start with the 1 Ô⇒ 2 implication. If 1 holds, then by Theorem 3.29 it follows

that prAM ⊆ C. This in turn implies 2 by Theorem 3.16. As for the other direction, if

a function f is not (nc, nε)-leakage-resilient hard on almost-all inputs against learn-and-

evaluate protocols, then it is also not (nc, nε)-leakage-resilient hard against prBPPSAT
∣∣ since

a prBPPSAT
∣∣ algorithm can use the SAT oracle to determine the output of the evaluation

protocol. ∎
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3.5.5 A direct construction of targeted generators from

derandomization

In this section, we establish the implication of derandomization to targeted generators of

Theorem 3.5 directly, without going through leakage-resilience as in Section 3.5.3. Moreover,

we show that it is possible to obtain targeted pseudorandom generators for non-adaptive SAT-

oracle circuits. These objects don’t follow directly from the existence of a leakage-resilient

hard relation/function and Theorems 3.18 and 3.19, since the generators obtained this way

are hitting-set generators for co-nondeterministic circuits.

For completeness and because our focus has been on targeted hitting-set generators, we

provide a formal definition for targeted pseudorandom generators. First, we define the notion

of δ-fooling a distribution.

Definition 3.31. Let δ ∈ [0, 1) be a constant D ∶ {0, 1}m → {0, 1} be a distribution, and S

a multi-set of binary strings of length m. We say that S δ-fools D if the following holds:

∣ Pr
r∈{0,1}m

[D(r) = 1] − Pr
s∈S
[D(s) = 1]∣ ≤ δ.

◂

We then extend Definition 3.8 to targeted pseudorandom generators for arbitrary classes

of circuits.

Definition 3.32. Let T be a class of circuits and G be an algorithm that computes a relation

R ∈ CTIME[T (m)] between circuits of type T of size m and multi-sets of strings of length m.

We say that G is a targeted pseudorandom generator for T computable in CTIME[T (m)] if

the following two conditions hold for all sufficiently large m ∈ N and some constant δ < 1/6:

○ For all D ∈ T of size m, there exists a non-empty S such that (D, S) ∈ R.

○ For all D ∈ T of size m, every S ∈ R(D) δ-fools D.

◂
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Our approach is similar to the one in Section3.5.2: We view the process of computing

a pseudorandom (multi-)set as a prBPPSAT
∣∣ search problem and then employ a search-to-

decision reduction as in [Gol11]. For simplicity, we state the result for polynomial time

bounds, but it applies to other time bounds such as quasipolynomial and subexpential as

well.

Theorem 3.33. Let C ∈ {PNP, ZPPNP, Σ2P}. If prAM ⊆ C, then there exists a targeted

pseudorandom generator for non-adaptive SAT-oracle circuits computable in C.

Proof. We cast computing a targeted pseudorandom set for non-adaptive SAT-oracle circuits

as a prBPPSAT
∣∣ search problem, which allows us to instantiate Proposition 3.21, and then use

the derandomization assumption to compute the pseudorandom set in the desired class.

The instances for the search problem (RY , RN) consist of pairs (D, S) where D is a non-

adaptive SAT-oracle circuit and S is a multi-set containing a constant number c of strings

in {0, 1}m, for c to be defined later. We then define:

○ (D, S) ∈ RY if and only if ∣Prr∈{0,1}m[D(r) = 1] −Prs∈S[D(s) = 1]∣ < 1/7.

○ (D, S) ∈ RN if and only if ∣Prr∈{0,1}m[D(r) = 1] −Prs∈S[D(s) = 1]∣ ≥ 1/6.

Due to the gap between the two cases, a probabilistic algorithm with non-adaptive oracle

access to SAT can solve the decisional problem (RY , RN) in polynomial time and with high

probability by approximating the acceptance probability of D up to small constant error

ε = 0.01 and checking whether the difference between the estimate and the probability that

D accepts a random s ∈ S is at most 1/7+ε. To compute a solution, it suffices to observe that

for a suitable constant c, a random multi-set S ⊆ {0, 1}m containing c strings approximates,

with high probability, the acceptance probability of D up to error 1/7.

The result now follows along the same lines as the end of the proofs of Theorems 3.23

and 3.25, where we use the derandomization assumption together with the search-to-decision

reduction to derandomize the process of obtaining a solution (for deterministic and zero-error
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probabilistic algorithms with oracle access to SAT) and use the derandomization assumption

together with Proposition 3.24 to guess-and-verify a solution for Σ2 algorithms.

∎

As a Corollary, under the derandomization assumption of Theorem 3.33, we obtain a

targeted hitting-set generator for non-adaptive SAT-oracle circuits that outputs a single

string. This holds because the generator itself can check for acceptance with non-adaptive

SAT oracle queries, which can be simulated by the three classes considered.

Corollary 3.34. Let C ∈ {PNP, ZPPNP, Σ2P}. If prAM ⊆ C, then there exists a targeted

pseudorandom generator for non-adaptive SAT-oracle circuits computable in C that always

outputs a single string.

3.6 Connection to non-uniform lower bounds

In this section, we prove Theorem 3.7, which establishes further equivalences between white-

box and blackbox mild derandomization of prAM. In particular, we show that uniform

leakage-resilient hardness assumptions imply the Σ2E /⊆ NP/poly separation.

We need the equivalence between lower bounds for Σ2E against nondeterministic circuits

and against deterministic circuits with non-adaptive oracle access to SAT. Such an equiva-

lence is known for classes C that admit low-degree extensions, in the sense that a boolean

version of the low-degree extension of a language in C is also in C [SU06]. However, for a

class to admit low-degree extensions, it needs to be closed under composition, such as E and

NE ∩ coNE, and is is unknown whether Σ2E is closed under composition (and indeed this is

believed to be false). Still, a standard argument sidesteps this issue and obtains the equiv-

alence for Σ2E as well. Since we only need this equivalence in the case of polynomial-size

circuit lower bounds, we state it in this setting.
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Lemma 3.35 (Instantiation of [SU06, Theorem 3.2]). Σ2E ⊆ NP/poly if and only if

Σ2E ⊆ PSAT
∣∣
/poly.

Proof. The direction Σ2E ⊆ NP/poly Ô⇒ Σ2E ⊆ PSAT
∣∣
/poly is trivial, so we focus on the

converse implication. Theorem 3.2 in [SU06] shows that if a low-degree extension ĝ with

specific parameters of a function g has non-adaptive SAT-oracle circuits of size s, then g itself

has nondeterministic circuits of size poly(s). Assume that Σ2E ⊂ PSAT
∣∣
/poly. By a standard

argument, Σ2E/n ⊆ PSAT
∣∣
/poly and there exists a constant c such that every language in

Σ2E/n has non-adaptive SAT-oracle circuits of size nc.

Let L ∈ Σ2E. By having as advice n bits describing the number of strings of length n

in L, a Σ2-algorithm can compute the characteristic function gL ∶ {0, 1}n → {0, 1} of L by

guessing which strings of length n are in L and verifying each one in Σ2E, outputting 1 if and

only if the input string is in the list of guessed-and-verified strings. We then set parameters

exactly as in [SU06], that is, for a parameter r′ = 2(n+ log (32n5c)), we set h = (4r′)2(9nc)4,

r = n/ log h + 3 and p to the smallest prime greater than or equal to 9hdr′ to obtain the

low-degree extension ĝ of g. With these parameters, it follows that the function ĝbool that

maps the binary representation of a y⃗ ∈ Fr
p and an index i ∈ [log p] to the i-th bit of ĝ(y⃗) is in

Σ2E/n. Together with the assumption on Σ2E, we have that ĝ has non-adaptive SAT-oracle

circuits of size s(n) = O(nc+1), and thus Theorem 3.2 in [SU06] guarantees that g (and thus

L) has nondeterministic circuits of size poly(s(n)) = poly(n). ∎

Now, we provide some intuition for the proof of Theorem 3.7. The first step is to

understand how lower bounds such as Σ2E /⊆ NP/poly imply leakage-resilient hardness. First,

by Lemma 3.35, the assumption implies also that Σ2E /⊆ PSAT
∣∣
/poly. Define a function f that

maps every input x of length ` to the truth-table of a hard language L ∈ Σ2E. With `

bits of advice (indicating how many strings of length ` are in L), this function can be

computed in Σ2-time 2O(`). Assume, with the intent of deriving a contradiction, that f is

not locally leakage-resilient hard on almost-all inputs against prBPPSAT
∣∣ . For each input x
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where hardness fails, there exists a small leakage string a such that A(x, a) locally computes

f . That is, L ∈ BPPSAT
∣∣ /poly and thus also in PSAT

∣∣
/poly by Adleman’s argument [Adl78].

As for the other direction, by using the techniques developed in Section 3.5, we show that

leakage-resilient hardness is sufficient for obtaining the mild derandomization of item 1, and

thus equivalent to non-uniform lower bounds at the low end by [AvM17].

We now detail how we prove Theorem 3.7. It is already known that items 1 and 2 are

equivalent by the main result of [AvM17]. We show that 2 Ô⇒ 3 in Lemma 3.36, that

3 Ô⇒ 1 in Lemma 3.37 and that 1 ⇐⇒ 4 in Lemma 3.39.

We start by formalizing how to obtain leakage-resilient hardness from the assumption

Σ2E /⊆ NP/poly.

Lemma 3.36. Assume Σ2E /⊆ NP/poly. Then for all ε > 0 there exists a relation R ∈

Σ2TIME[2nε]/nε that is poly(n)-local (∞, poly(n))-leakage-resilient hard on all inputs of

infinitely-many input lengths against prBPPSAT
∣∣ .

The conclusion of Lemma 3.36 should be interpreted in the following way: For any

constant c, any pair (Leak, A) consisting of a function Leak with output length nc and

algorithm A than runs in local time nc can only succeed at computing f on some input of

finitely-many input lengths n.

Proof. Let L ∈ Σ2E and fix ε > 0. We construct a function f from L such that, if f is not hard

as in the theorem statement, then L ∈ NP/poly. The existence of a hard relation then follows.

Define f as the function that maps any input x ∈ {0, 1}n to the truth-table of L at input

length nε/2. By having as advice the number N of strings of length nε/2 in L, it is possible

to compute this function in Σ2-time 2O(nε/2) ≤ 2nε for sufficiently large n by guessing which

N of the 2nε/2 strings of length nε/2 are in L and verifying those using the linear-exponential

time Σ2-algorithm for L. Note that since f(x) is constant for all inputs of a given length,

the same advice string applies to all such inputs.
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Now, assume that f is not poly(n)-local (∞, poly(n))-leakage-resilient hard on all inputs

of infinitely-many input lengths against prBPPSAT
∣∣ . This means there exist a constant c, a

(potentially uncomputable) function Leak and a probabilistic algorithm A with non-adaptive

oracle access to SAT such that for almost-all input lengths n there exists x ∈ {0, 1}n such

that ∣Leak(x, f(x))∣ ≤ nc and A(x, Leak(x, f(x))) computes f(x) locally in time nc. By

providing x and a “good” leakage string a as advice, algorithm A(x, a) computes f locally

in time nc, and thus computes L at input length nε/2 in time poly(n). This implies that

L ∈ BPPSAT
∣∣ /poly and thus L ∈ PSAT

∣∣
/poly [Adl78]. By Lemma 3.35, L ∈ NP/poly. ∎

Now, we show that a slightly weaker hardness assumption, where the leakage-providing

function is computable in subexponential time, suffices to derandomize prAM.

Lemma 3.37. If for all ε > 0 there exists a relation R ∈ Σ2TIME[2nε]/nε that is poly(n)-local

(2nε
, poly(n))-leakage-resilient hard on all inputs of infinitely-many input lengths against

prBPPSAT
∣∣ , then prAM ⊆ io-Σ2TIME[2nε]/nε for all ε > 0.

Proof. The proof is almost identical to that of Theorem 3.19, though padding the input is

not necessary. Fix some ε > 0, the idea to construct a targeted hitting-set generator is to,

on input x ∈ {0, 1}m′ representing a circuit Dx of size m for m′ = Θ(m log m), guess-and-

verify a value y ∈ R(x) and instantiate the generator Hdet of Lemma 3.10 with y and m.

The process takes time 2O(mε) and requires O(mε) bits of advice (for computing y ∈ R(x)).

As with Theorem 3.19, there exist probabilistic algorithms Leak and A with non-adaptive

oracle access to SAT such that for any x ∈ {0, 1}n representing a circuit Dx not hit by the

generator there exists y ∈ R(x) for which the following holds. On input (x, y), Leak runs in

time 2O(nε) and produces poly(n) bits of leakage that, when given as input to A, allow it to

locally compute y in time poly(n, log (2nε)) = poly(n).

As the hardness assumption holds for every input of infinitely-many input lengths (and

R is total on the same input lengths), the targeted generator also works for infinitely-many
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circuit sizes m, and thus the derandomization in the conclusion of the theorem follows along

the lines of Proposition 3.9. ∎

Finally, we show that the weak derandomization assumption of item 1 in Theorem 3.7 is

equivalent to local leakage-resilient hardness against almost-maximal leakage. Before doing

so, we present a variant of Proposition 3.24 for derandomizations with advice that only work

for infinitely-many input lengths.

Proposition 3.38. Assume that prAM ⊆ io-Σ2TIME[2nε]/nε for all ε > 0. Then prBPPSAT
∣∣ ⊆

io-Σ2TIME[2nε]/nε for all ε > 0.

Proof. Lemma 2.39 shows that Σ2E /⊆ NP/poly implies that prBPPSAT
∣∣ ⊆ io-Σ2TIME[2nε]/nε

for all ε > 0. As the premise prAM ⊆ io-Σ2TIME[2nε]/nε implies that Σ2E /⊆ NP/poly, we are

done. ∎

Lemma 3.39. The following are equivalent:

1. prAM ⊆ io-Σ2TIME[2nε]/nε for all ε > 0.

5. For all ε > 0 and c ≥ 1 there exists a length-preserving relation R ∈ Σ2TIME[2nε]/nε

that is nc-local (nc, `(n))-leakage resilient hard on all inputs of infinitely-many input

lengths against prBPPSAT
∣∣ , where nΩ(1) ≤ `(n) ≤ ω(1) is polynomial-time computable.

Proof. The proof follows closely the arguments of Theorems 3.25 (in the derandomization-

to-hardness direction) and 3.19 (in the hardness-to-derandomization direction).

In the derandomization-to-hardness direction, recall that the proof of Theorem 3.25 shows

that for every constant c, checking whether a value y is (nc, n −ω(1)) leakage-resilient hard

for a string x (w.r.t. the first few leakage-providing algorithms/attackers) can be done in

prBPPSAT
∣∣ . Such a value y must also be nc−2-local leakage-resilient hard. Otherwise, we could

amplify the algorithm A that locally computes y so that it outputs every bit of y correctly

with high probability and obtain an algorithm that computes y in its entirety in time nc.

Fix some ε > 0. By the derandomization assumption and Proposition 3.38, the check can be
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replaced by a Σ2TIME[2nε] algorithm with nε bits of advice that is guaranteed to work on

infinitely-many input lengths. By guessing a value of y and running the Σ2 verification, we

obtain a relation R that is defined and hard for all inputs of infinitely-many input lengths.

The hardness-to-derandomization direction follows Theorem 3.19 even more closely. The-

orem 3.19 establishes the hardness-to-targeted-derandomization connection on an instance-

wise basis, i.e., the targeted generator hits every co-nondeterministic circuit Dx described

by a padded string x′ for which the hardness assumption holds. Since hardness holds for

all inputs of infinitely-many input lengths, we obtain a targeted generator that works for

infinitely many circuit sizes, which as in Lemma 3.37 suffices to obtain the derandomization

result. ∎

Due to the gap between the length of a solution y ∈ R(x) and the leakage-resilient hard-

ness in item 3, together with the sub-optimal scaling of the RMV reconstructor (Lemma 3.28)

when compared to the SU reconstructor (Lemma 3.10), this result does not extend to hard-

ness against learn-and-evaluate protocols. Still, even though RMV requires more time for

decompression, the learning part for both the RMV and the SU reconstructor achieve the

same level of compression for the string used as a basis, where we view the sketch produced

by the learning phase as a compressed representation of the input.

To conclude this section, we employ Corollary 3.34 to obtain a simple alternative proof

of the result of [AGH+11] that prAM ⊆ PNP implies ENP has maximum circuit complexity.

Theorem 3.40 ([AGH+11]). If prAM ⊆ PNP, then for all ε ∈ (0, 1) there is a language in

ENP that requires circuits of size (1 − ε) ⋅ 2n/n for all but finitely many input lengths n.

Proof. Assume that prAM ⊆ PNP and let H be the targeted hitting-set generator given by

Corollary 3.34. Fix a constant ε ∈ (0, 1). We define the language Lε ∈ ENP that has high

circuit complexity. On input x ∈ {0, 1}n, we construct the SAT-oracle circuit C that, on

input a string Y of length N = 2n representing the truth-table of a Boolean function on n

input bits, accepts if and only if the circuit complexity of Y is at least (1 − ε) ⋅ 2n/n. C has
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size poly(N), requires only a single SAT oracle query, and accepts at least half of the strings

of length N by a standard counting argument. We then use H to obtain a string Y ′ that is

accepted by C, and accept x if and only if the x-th bit of Y ′ equals 1. By construction, L

has circuit complexity (1 − ε) ⋅ 2n/n, and the time required to construct C, compute H(C)

and then accept or reject an input x of length n is poly(N) = 2O(n) with access to a SAT

oracle. ∎

3.7 Further research

We observe that the there is a common technique underlying the results for this chapter and

the previous one: That of compression. In Chapter 2, we use failure of a PCP as a basis

for the RMV generator to compress the PCP and obtain a speedup via the PCP verifier.

This works because the proof length for a PCP system is the main bottleneck for the Merlin-

Arthur protocol that it induces. The Chen-Tell result based on hardness on almost-all inputs

is similar: Using the Nisan-Wigderson generator, they compress the layer polynomials for

the circuit computing the hard function f , which leads to the speedup for computing f .

In this chapter, we use the SU or RMV reconstructor to compress the value of f(x) itself

where f is a leakage-resilient hard function. In fact, focusing on compression instead of the

speed-up seems to lead more easily to equivalences with derandomization, since a random

string is incompressible with high probability. In the next chapter, we explore how this

observation, together with a change in perspective, allows us to obtain further equivalences

for derandomizing Arthur-Merlin protocols.



137

Chapter 4

Refuting Bottleneck Protocols

4.1 Introduction

This chapter focuses on our more recent contributions, which generalize many of the results

of Chapters 2 and 3. A common theme throughout the chapter is the notion of compression

and how it is useful for obtaining equivalences with derandomization. To introduce the ideas

involved in our results, we start with a brief review of the recent results for derandomizing

BPP and of our earlier results in the AM setting (Chapters 2 and 3).

BPP setting. As we have seen previously, whitebox derandomization for prBPP implies

the existence of targeted pseudorandom generators that recover the derandomization result.

Chen and Tell [CT21] raised the question of an equivalent lower bound and presented a near-

equivalence in terms of uniform lower bounds for multi-bit functions that hold on almost-all

inputs, in the sense that every algorithm in the class for which the lower bound holds can

only compute the hard function on finitely many inputs. Their result falls short of a full-

fledged equivalence due to an additional depth restriction in the direction from hardness to

derandomization.

Later works managed to obtain full-fledged equivalences with other hardness conditions,

all related to compression. Liu and Pass did so for hardness of separating high from low
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Levin-Kolmogorov complexity [LP22] as well as for hardness in the presence of efficiently-

computable leakage [LP23]. Korten [Kor22a] established an equivalence with the existence of

a deterministic polynomial-time algorithm for the following problem: Given a probabilistic

circuit Ccomp ∶ {0, 1}n → {0, 1}n−1 and a deterministic circuit Cdec ∶ {0, 1}n−1 → {0, 1}n, find

a string z ∈ {0, 1}n such that Cdec(Ccomp(z)) differs from z with high probability. Chen,

Tell, and Williams [CTW23] viewed such an algorithm as a refuter for the identity function

against a class A of algorithms that go through a compression phase, reduced the class A, and

extended the result to efficiently computable multi-bit functions other than identity. Their

framework also captures the equivalences from [LP22] and [LP23]. For future reference, we

state their main result in our notation (explained after the statement).1

Theorem 4.1 ([CTW23]). The following are equivalent:

1. prBPP ⊆ P.

2. For some constant ε ∈ (0, 1), there exists a polynomial-time list-refuter for the identity

function against prBPTICOMP[n1+ε, nε].

3. For some constants a ≥ 1 and ε ∈ (0, 1), there exists a function computable in deter-

ministic time na that admits a deterministic polynomial-time list-refuter against the

class prBPTICOMP[na+ε, nε].

For a class A of algorithms, ATICOMP[t(n), γ(n)] denotes the class of computational

processes obtained by first running a probabilistic algorithm Acomp and then an algorithm

Adec ∈ A on the output of Acomp such that both Acomp and Adec run in time t(n) and Acomp

outputs a string of length at most γ(n). Assuming γ(n) < n, one can view Acomp as producing

a compressed representation of the input, from which Adec is able to compute the output.

We refer to a pair (Acomp, Adec) as a bottleneck algorithm. A refuter for a function f against

1Chen, Tell and Williams [CTW23] state their main result in terms of refuters against efficient prob-
abilistic streaming algorithms that run in small space. We believe, however, that our TICOMP notation
better captures the essential characteristics of the notion of efficient compression that is equivalent to de-
randomization.
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a class A′ is a meta algorithm that, given as input the description of an algorithm A′ ∈ A′

and a length n, finds an input z of length at least n on which A′ fails to compute f . A

list-refuter similarly outputs a list z1, . . . , zτ of inputs of length at least n that contains at

least one zi on which A′ fails to compute f .

Note that item 3 in Theorem 4.1 is a relaxation of item 2. Note also that the exis-

tence of the refuter in item 2 or 3 only guarantees that, for any fixed A′ = (Acomp, Adec)

in prBPTICOMP[t(n)1+ε, nε], there exist infinitely many inputs on which A′ fails to com-

pute the function under consideration. This stands in contrast with the setting of hardness

on almost-all inputs, where A′ can only succeed on finitely many inputs. However, in the

refutation setting the counterexamples need to be found efficiently.

AM setting. In Chapter 2 we established a near-equivalence between whitebox deran-

domization for AM and hardness on almost-all inputs. In one direction, we showed that if

there is a length-preserving function f computable in nondeterministic polynomial time that

is hard on almost-all inputs against faster promise Arthur-Merlin protocols, then prAM ⊆ NP

(Theorem 2.5). In the other direction, assuming prAM ⊆ NP, we observed that there exists

a length-preserving function f computable in nondeterministic polynomial-time with a few

bits of advice that is hard against Arthur-Merlin protocols (Proposition 2.28). Whereas

in the corresponding results in the BPP setting, the remaining gap is an additional depth

restriction in the first direction, here there is the advice required in the second direction and

the distinction between regular and promise Arthur-Merlin protocols.

A more significant difference between the two settings is that, in contrast to prBPP, for

prAM it remains open whether whitebox derandomization is equivalent to targeted hitting-set

generators — a question originally raised by Goldreich in [Gol11]. In Chapter 2, we presented

a first step toward a positive resolution: Any low-end derandomization of prAM implies the

existence of a targeted hitting-set generator that achieves a slightly weaker derandomization

(Theorem 2.7). We also showed, in Chapter 3, that targeted hitting-set generators are
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necessary for mild derandomization of prAM, i.e., simulations on NP-oracle or Σ2 machines

(Theorem 3.5). Along the way, we obtained an equivalence between mild derandomization

of prAM and hardness in the presence of efficiently-computable leakage (Theorem 3.3).

Our results. As our main result of this chapter, we establish a full equivalence between de-

randomization of Arthur-Merlin protocols via targeted hitting-set generators and refutation.

The role of a bottleneck algorithm (Acomp, Adec) in the BPP setting is taken over by a bottle-

neck protocol (Acomp, Pdec), which consists of a probabilistic compressor Acomp followed by an

Arthur-Merlin protocol Pdec on the compressed input. More precisely, we show that targeted

hitting-set generators that suffice to derandomize prAM are equivalent to nondeterministic

refuters for identity against bottleneck Arthur-Merlin protocols that are guaranteed to be

sound for identity, and that identity can be replaced by an existentially quantified function

f computable in nondeterministic polynomial time. Here, soundness of (Acomp, Pdec) for a

function f means that for all inputs z, with high probability, Pdec(Acomp(z)) either correctly

computes f(z) or else indicates failure.

Theorem 4.2. The following are equivalent:

1. There exists a targeted hitting-set generator that achieves the derandomization prAM ⊆

NP.

2. For some constant ε ∈ (0, 1), there exists a nondeterministic polynomial-time list-

refuter for the identity function against prAMTICOMP[n1+ε, nε] protocols with promised

soundness for identity.

3. For some constants a ≥ 1 and ε ∈ (0, 1), there exists a function f computable in

nondeterministic time na that admits a nondeterministic polynomial-time list-refuter

against prAMTICOMP[na+ε, nε] protocols with promised soundness for f .

Consider item 2 in Theorem 4.2. Because of the bottleneck, any protocol (Acomp, Pdec) of

the stated type fails to compute identity on a random input of sufficiently large length. Thus,
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the identity function admits a trivial refuter meeting the requirements of the theorem except

that the refuter is probabilistic instead of deterministic. From this perspective, Theorem 4.2

shows that for derandomizing prAM, it suffices to derandomize trivial refuters for the identity

function. In fact, as the relaxation in item 3 states, it suffices to derandomize trivial refuters

for any function computable in NP.

Theorem 4.2 scales smoothly in terms of the running time for the refuter. A refuter

for the function f that runs in time T results in a targeted hitting-set generator that runs

in time poly(T (poly(n))). Similarly, a targeted hitting-set generator that runs in time T ,

and thus achieves the derandomization prAM ⊆ NTIME[T (poly(n))], results in a refuter for

identity that runs in time T (poly(n)). When the running time of the refuter ranges from

polynomial to subexponential, so does the time needed for the nondeterministic simulations,

covering the entire derandomization spectrum.

In Chapter 3 we showed that mild derandomization for prAM implies the existence of

targeted hitting-set generators achieving the same derandomization result. Taken together

with Theorem 4.2, we obtain an equivalence between mild derandomization and refutation.

As with the equivalence of Theorem 4.2, the equivalence of Theorem 4.2 scales smoothly in

terms of the running time for the refuter.

Theorem 4.3. Let C ∈ {PNP, ZPPNP, Σ2P}. The following are equivalent:

1. prAM ⊆ C.

2. There exists a targeted hitting-set generator for prAM computable in C.

3. For some constant ε ∈ (0, 1), there exists a refuter computable in C for the identity

function against prAMTICOMP[n1+ε, nε].

4. For some constants a ≥ 1 and ε ∈ (0, 1), there exists a function f computable in nonde-

terministic time na that admits a refuter computable in C against prAMTICOMP[na+ε, nε].
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It is worth comparing Theorem 4.3 with Theorem 3.3 and its extension to learn-and-

evaluate protocols (Theorem 3.29). To do so, we recall the discussion in the introduction

that relates refutation to leakage-resilient hardness. Fix a learn-and-evaluate protocol P =

(Plearn, Peval) with compression length γ(n) < n, and an input x ∈ {0, 1}n. Let Px be P

with fixed input x. Finding a value of f(x) such that Px(f(x)) fails to compute f(x) is a

refutation task for the identity function. The connection also holds in the other direction: a

leakage-resilient hard function f gives us a refuter for the identity function that just outputs

f(x). Thus, there is an equivalence between leakage-resilient hard functions/relations and

refuters for the identity function. It follows that Theorem 4.3 generalizes the main result of

Chapter 3 by establishing an equivalence between mild derandomization and the existence

of refuters for any function f ∈ NP instead of only for the identity function.

Also in the mild setting, we connect refutation to the known equivalence between white-

box and blackbox derandomization of prAM at the low end. As seen in Chapter 3, the sim-

ulation prAM ⊆ io-Σ2TIME[2nε]/nε for all ε > 0 is equivalent to the non-uniform lower bound

Σ2E /⊆ NP/poly [AvM17]. We show that those conditions are also equivalent to refuters against

non-adaptive SAT-oracle bottleneck algorithms with polylogarithmic compression length and

with polylogarithmic-time local decompression algorithms, meaning the decompressor Adec

needs to produce each individual bit of the function in polylogarithmic time. Here is an

informal version of the result:

Theorem 4.4 (informal). The following are equivalent.

1. For all ε > 0, prAM ⊆ io-Σ2TIME[2nε]/nε.

2. Σ2EXP /⊆ NP/poly.

3. There exists a low-end io-refuter R for the identity function against polylog(n)-local

prBPTICOMP[n ⋅polylog(n), polylog(n)]SAT
∣∣

that is computable in Σ2P with logarithmic

advice.
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We refer the reader to Section 4.5.3 for the definition of low-end refuters, and for details

on how to quantify the subexponential and polylogarithmic time and compression bounds.

As the equivalence between derandomization and nondeterministic circuit lower bounds

of [AvM17] is only known to apply to the low end of the derandomization spectrum, we

only know Theorem 4.4 for this parameter setting. However, the implications 2 Ô⇒ 3 and

3 Ô⇒ 1 hold also for the high end and for derandomizations that work almost-everywhere.

The targeted hitting-set generators in Theorem 4.2 are multi-valued nondeterministic

algorithms in the sense that they produce a possibly different targeted hitting-set on each

accepting computation path (and have at least one accepting computation path). Earlier

papers on HSGs for prAM considered single-valued constructions. If we restrict the func-

tion f to be computable in deterministic polynomial time, the equivalence of Theorem 4.2

extends to targeted hitting-set generators for prAM that are deterministic, single-valued or

deterministic with (non-adaptive) NP oracle algorithms provided the refuting algorithm is

of the same type.

Multi-valued hitting-set generators for prAM are sufficient for nondeterministic whitebox

simulations and are arguably more natural than single-valued ones. Among other things, for

the multi-valued versions, targeted HSGs for prAM imply regular HSGs for prMA. The result

scales smoothly and can be stated in terms of nondeterministic pseudorandom generators

for prBPP.

Theorem 4.5. If there exists a targeted hitting-set generator for prAM computable in non-

deterministic time T (m), then there exists a pseudorandom generator for prBPP computable

in nondeterministic time poly(T (poly(m))).

Assuming a positive resolution to Goldreich’s question, Theorem 4.5 states that whitebox

derandomization of prAM implies blackbox derandomization of prMA. A related result is that

low-end whitebox derandomization of prMA implies the same derandomization in a blackbox

fashion [IKW02]. A similar implication holds for mild derandomization of prAM [AvM17].
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It is also known that whitebox derandomization of prAM implies a PNP blackbox simulation

of the same strength for prMA [AGH+11].

Building HSGs and PRGs are instantiations of a more general problem of explicit con-

structions. Many objects of interest — including HSGs and PRGs — can be shown to exist

using the probabilistic method. Typically, this yields an efficient randomized algorithm that,

on input 1n, outputs an object of size n that has the desired property Π with high probability.

One approach to obtain an explicit object with property Π is to run a targeted HSG that

fools Π, cycle through the outputs, and either use an algorithm for Π to select an output

that has property Π or else combine the outputs into a single (somewhat larger) object with

property Π. For several objects of interest, the underlying Π is known to be in P, in which

case a targeted HSG for prBPP suffices. For several more, including truth-tables of high

circuit complexity and rigid matrices, Π is known to be in coNP, in which case a targeted

HSG for prAM suffices. Depending on the complexity of the targeted HSG, the resulting ex-

plicit construction may be deterministic, nondeterministic single-valued, non-deterministic

multi-valued, deterministic with an NP oracle, etc. We state the approach in the AM set-

ting assuming nondeterministic multi-valued targeted HSGs. We use the term probabilistic

construction for an efficient incarnation of the probabilistic method, i.e., a polynomial-time

randomized algorithm that, on input 1n, outputs a string x ∈ Π of length at least n with

probability at least 1/2.

Proposition 4.6. Assume there exists a targeted hitting-set generator for prAM computable

in nondeterministic time T and let Π be a property that respects the following conditions:

1. Π is decidable in coNP and admits a probabilistic construction.

2. There exists a polynomial-time algorithm that, given a list x1, . . . , xk of strings in

{0, 1}n containing at least one xi ∈ Π, outputs a string in Π of length at least n.

Then there exists a nondeterministic algorithm that has an accepting computation path on

every input and, on input 1n, runs in time poly(T (poly(n))) and outputs on every accepting
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computation path a string in Π of length at least n.

Explicit constructions for properties Π satisfying the conditions of Proposition 4.6 were

obtained under non-uniform hardness conditions for E in [KvM02; SU06] and under a slight

variation of the uniform hardness assumption E /⊆ io-AMTIME[2εn] for some ε > 0 in [GST03].

By Theorem 4.2 and its extensions, we can obtain such explicit constructions under the

refutation hypothesis of Theorem 4.2.

Techniques. To establish the direction from refutation to derandomization of the main

result for this chapter, we refine the instance-wise transformation of hardness into targeted

hitting sets from Chapter 2. The approach in Chapter 2 extracts hardness from a nonde-

terministic computation on a given input z based on probabilistically checkable proofs, and

employs the recursive Miltersen-Vinodchandran hardness-based HSG construction (RMV)

due to Shaltiel and Umans [SU09]. In order to obtain the desired compression during recon-

struction, we switch from PCPs to PCPs of proximity, among other changes.

In more detail, consider a function f computable in nondeterministic polynomial time

that is hard on almost-all inputs against faster promise Arthur-Merlin protocols. To deran-

domize a prAM protocol P on input x, the approach in Chapter 2 uses the PCP witnesses

asserting the value of f(x) as a basis for the RMV generator. In case the resulting output

fails to be a hitting-set for P on input x, the RMV reconstructor with input D ≐ P (x, ⋅)

allows for compression of the PCP, which ultimately leads to a faster promise Arthur-Merlin

protocol Prec for computing f on any input z. In the refutation setting, we employ a refuter

to obtain an input z such that Prec instantiated with P and x fails to compute f(z). This

way, we can ensure that the hitting-set on input x succeeds. However, the refuter is only

guaranteed to work against bottleneck protocols, and the reconstructor from Theorem 2.24

does not offer the required compression due to the fact that the PCP verifiers need full access

to the input z.

A first idea is to, in addition to the PCP witnesses, use the input z itself as a basis for the



146

RMV generator. In case the resulting generator fails, it is then possible to compress z using

the RMV reconstructor. This allows us to obtain a bottleneck protocol by first compressing

z and then feeding the compressed representation of z into Prec, which computes f(z) from

the compressed representation using the PCP strategy and the RMV evaluator to answer

queries to z. This gives us almost what we need. Due to the need for Prec to run the

polynomial-time PCP verifier, there is a multiplicative polynomial-time overhead (in ∣z∣)

for the reconstructor, which is too inefficient. In order to improve the efficiency, we instead

employ PCPs of proximity (PCPPs) together with an error-correctable encoding of the input

z. As there exist PCPPs that run in subpolynomial time and only require oracle access to

the input, the overhead from running them becomes sublinear in the time for the remaining

steps of the reconstructor.

For the other direction of the equivalence — that targeted generators sufficient for deran-

domizing prAM imply refutation — we employ such generators to derandomize the process

of obtaining a counterexample at random. Straightforwardly, this would require a targeted

generator that fools PprAM rather than prAM because we know how to verify the validity of

a counterexample in the former but not in the latter class. The hypothesis only gives us a

targeted generator that fools prAM, though. To bridge the gap, we make sure our new recon-

structor retains the resilient soundness property of Theorem 2.24. The resilient soundness

property allows us to focus on refuting bottleneck protocols with promised soundness. In

this case, verifying whether a counterexample is valid becomes a prAM computation, so we

can get by with a targeted generator that fools prAM for the derandomization. We similarly

employ targeted generators to obtain explicit constructions from the probabilistic method

(Proposition 4.6), including truth-tables with high circuit complexity.

Organization. In Section 4.2, we develop the ideas behind our main result for this chapter

and relate them to existing techniques. We start the formal treatment in Section 4.3 with

definitions, notation, and other preliminaries. In Section 4.4, we present the details of our
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main result. We develop our results in the mild setting in Section 4.5. In Section 4.6, we

discuss explicit constructions: Proposition 4.6 and examples of conditional explicit construc-

tions, including hard truth-tables, rigid matrices, and Theorem 4.5.

4.2 Technical overview

We start with a recap of the techniques involved in the hardness vs. randomness tradeoffs

for BPP leading up to Theorem 4.2.

BPP setting. The known hardness vs. randomness tradeoffs are based on a pseudorandom

generator construction G that takes a function h and outputs a pseudorandom distribution

Gh. These generators are typically learning, meaning that any statistical test D that dis-

tinguishes Gh from uniform suffices as an oracle to efficiently learn h from a small number

of queries. In case Gh does not “fool” an efficient randomized algorithm A on input x, the

function h can be learned efficiently from the distinguisher D(r) ≐ A(x, r) and a small num-

ber of evaluations of h, where A(x, r) the output of A on input x and random-bit string r.

Given a learning PRG construction G, one can construct a targeted PRG by instantiating

G with an oracle h = hx that depends on x. The question is how to construct hx out of x.

We now survey the known constructions.

Chen and Tell [CT21] use the doubly-efficient proof systems of Goldwasser, Kalai, and

Rothblum [GKR15] (as simplified in [Gol18]) to obtain hx from x and combine it with

the Nisan-Wigderson pseudorandom generator construction [NW94]. Their reconstructor

is based on a bootstrapping strategy similar to [IW01] that uses the NW reconstructor

to obtain, layer-by-layer, small circuits encoding the gate values for the circuit computing

f(x). Because the bootstrapping strategy requires the NW reconstructor to work for all

layers, Chen and Tell only end up with a (targeted) hitting-set generator rather than a

pseudorandom generator.
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The Chen-Tell approach hinges on the speed of the reconstruction process. Subsequent

works exploit the compressed representation that the reconstruction process implicitly builds,

which can be viewed as a bottleneck that the computation goes through. Such approaches

typically allow for a matching implication from derandomization to hardness because a ran-

dom function cannot be compressed and derandomization lets us find such an incompressible

function deterministically.

Liu and Pass also apply the NW generator but obtain hx differently. In [LP22], they use

hx that are the encodings of the outputs π(x) of all small efficient programs π (so the resulting

string has small Kolmogorov-Levin complexity Kt). The answers to the learning queries are

hard-wired into the program that reconstructs hx. The direction from derandomization

to hardness follows from the fact that an efficient algorithm that separates low from high

Kolmogorov-Levin complexity acts as a distinguisher. In [LP23], hx encodes the value of

f(x) itself, where f is an almost-all inputs leakage-resilient hard function (a function that

remains hard even if some efficiently-computable information about f(x) is leaked to an

attacker). The approach leads to a (targeted) pseudorandom generator as it only involves a

single hx. The answers to the learning queries are provided as part of the information about

f(x) that is leaked, and the direction from derandomization to hardness follows the typical

pattern.

Each of the above approaches can be viewed as an explicit construction of one or more

hx from x such that

Arec(hx, D) ≠ hx (4.1)

for at least one hx, where Arec(hx, D) denotes the output of the reconstructor (which only

needs access to D and the answers to the learning queries to hx). Such an explicit construc-

tion suffices because (4.1) means that the reconstruction fails for hx, and whenever that

happens the targeted pseudorandom generator based on hx has to fool D. Prior approaches

all guarantee (4.1) indirectly by constructing the functions hx out of a function f with a

particular hardness property, and showing that if all hx satisfy Arec(hx, D) = hx, then the



149

hardness property for f on input x fails. Prior approaches are also oblivious to D ≐ A(x, ⋅)

but that feature is nothing special as one can always incorporate a description of A as part

of the input x.

Recent approaches take a broader perspective and try to directly construct hx with the

sole requirement that (4.1) holds. Thanks to the bottleneck that the reconstruction process

goes through, we know that a random choice of hx satisfies the requirement. Under the

derandomization hypothesis prBPP ⊆ P, we can efficiently find such an hx deterministically.

Conversely, if we can efficiently find such an hx deterministically, we obtain an efficient

targeted pseudorandom generator in the BPP setting.

Korten [Kor22a] follows this outline, where the circuit Ccomp computes the compressed

representation of a candidate value z for hx based on D, from which the circuit Cdec attempts

to retrieve hx. Korten does not use the full NW construction but only Yao’s predictor,

thereby only achieving a modest compression. Chen, Tell, and Williams [CTW23] achieve

better compression using the full NW construction. They also cast the construction of hx as

a refuter for the identity function f(z) = z against the reconstructor algorithm Arec(z, D),

and show how the identity function can be replaced by any efficiently computable length-

preserving function f . The extension sets hx = f(z) and involves an application of the

Chen-Tell bootstrapping approach (based on the standard circuit simulation of the uniform

computation of f) in order to obtain the answers to the learning queries. As a consequence,

the targeted generator is only hitting. In the special case of identity, the learning queries are

simply bits of z, which obviates the need for Chen-Tell and results in a targeted generator

that is pseudorandom.

AM setting. In Chapter 2, we built a targeted hitting-set generator for AM based on the

recursive Miltersen-Vinodchandran hitting-set generator due to Shaltiel and Umans [SU09].

To obtain hx from x in the setting of hardness on almost-all inputs, we make use of PCPs

for the nondeterministic computation of the string f(x) from x. Let V denote the verifier
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for such a PCP system that uses O(log(T (n)) random bits and polylog(T (n)) queries for

nondeterministic computations that run in time T (n). On input x, our targeted HSG guesses

the value of f(x) and a candidate PCP witness yi for the i-th bit of f(x) for each i, and

runs all the checks of the verifier V on yi (by cycling through all random-bit strings for V ).

If all checks pass, our targeted HSG instantiates RMV with yi for each i as (the truth table

of) the oracle hx, and outputs the union of all the instantiations as the hitting set, provided

those nondeterministic computations all accept; otherwise, the targeted HSG fails.

For the reconstruction of the i-th bit of f(x), Arthur generates the learning queries of

the RMV reconstructor for the oracle yi, and Merlin provides the purported answers as well

as the value of the i-th bit of f(x). Arthur then runs some random checks of the verifier V

on input x, answering the verifier queries by executing the evaluator of the RMV reconstruc-

tor. All the executions of the evaluator can be performed in parallel, ensuring a bounded

number of rounds overall. To guarantee soundness, we rely on a resilience property of the

RMV generator, which was first observed in [GST03] for the Miltersen-Vinodchandran gen-

erator [MV05]. The resilience property guarantees that the verifier queries are all consistent

with some candidate proof ỹi. The completeness and soundness of the PCP then imply the

completeness and soundness of the reconstruction process for our targeted HSG. As V makes

few queries and is very efficient, the running time of the process is dominated by the running

time of the RMV reconstructor.

We saw in Chapter 2 that abstracting out the details of our construction and how the

distinguisher D is obtained, we saw in Chapter 2 that the result can be captured in two

procedures: a nondeterministic one, H, which has at least one successful computation path

for every input and plays the role of a targeted hitting-set generator, and a promise Arthur-

Merlin protocol, Prec, which plays the role of a reconstructor for the targeted hitting-set

generator. The pair (H, Prec) respects the following property:

Property 4.7 (Property 2.10, restated). For every z ∈ {0, 1}∗ and for every co-non-

deterministic circuit D that accepts at least half of its inputs, at least one of the following



151

holds:

1. H(z, D) outputs a hitting set for D on every successful computation path.

2. Prec(z, D) computes f(z) in a complete and sound fashion.

In the setting of hardness on almost-all inputs, the co-nondeterministic circuit D is

obtained as P (x, ⋅), where x is the input for which we want to derandomize an Arthur-

Merlin protocol P . This is, however, not essential for the construction.

From refutation to targeted-generators. In the refutation setting we no longer need

hardness to hold on almost-all inputs but instead need a meta-algorithm that finds inputs

where a given bottleneck protocol fails. We again make use of Property 4.7 but now connect

derandomization to refuters for the function f against bottleneck protocols. In the direction

from refutation to derandomization, we use the refuter to find an input z for which the

reconstructor fails (i.e., the second item in Property 2.10 does not hold). In that case,

H(z, D) must output a hitting set for D (the first item in Property 2.10 holds). A key

property to ensure that the reconstructor behaves like a bottleneck protocol is that the RMV

reconstructor yields a compressed representation of any hx that fails as a basis for obtaining

a hitting set. In our PCP-based construction, we used this property to compress PCPs for

each bit of f(z) to ultimately speed up the computation of f(z). One complication in the

refutation setting is that verifying PCPs requires full access to the input z, which seems to

ruin the potential for compression. We resolve the complication by modifying the generator

and additionally run RMV on z itself. This way, the reconstructor goes through a compressed

representation of z from which it can efficiently recover z. We take the compressor Acomp to

be the algorithm that, on input z, generates and answers the learning queries for z, producing

the compressed representation of z. We then feed the compressed representation of z into

Prec, which uses the RMV evaluator to access z whenever that is necessary. With this

approach, and starting from a function f computable in nondeterministic time na for some
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constant a, we can construct targeted HSGs that achieve the derandomization prAM ⊆ NP

from the existence of a refuter against bottleneck protocols with subpolynomial compression

that run in time na+ε ⋅ poly(n) for some ε > 0, where the poly(n) term comes from the use of

PCPs.

We can do better, and get rid of the multiplicative poly(n) term, by further refining the

approach and employing probabilistically checkable proofs of proximity rather than PCPs.

Given random access to the input z of length n and to a proof, a PCPP verifier runs in

time polylog(n) instead of poly(n). PCPPs, however, are only sound when the input is far

in relative distance from a true instance of the underlying decision problem, which makes

them more suitable to inputs that are in error-correctable form. For this reason, we have the

compressor Acomp first encode the input z with an error-correctable code that is computable

in time n ⋅polylog(n), and have Prec employ the PCPP verifier with the encoded version. The

RMV evaluator allows us to recover individual bits of z very efficiently, in particular in time

that is sublinear in n, which can be absorbed in the na+ε term together with the running

time for the PCPP verifier. This is how we show that item 3 in Theorem 4.2 implies item 1.

Targeted generators to refutation. For the implication from item 1 to item 2 in The-

orem 4.2, assuming the existence of a targeted HSG sufficient for derandomizing prAM, we

need to exhibit a refuter for identity against polynomial-time bottleneck Arthur-Merlin pro-

tocols with subpolynomial compression bottlenecks. Fix such a bottleneck protocol Prec. A

probabilistic argument guarantees that Prec fails to compute identity for most strings z of

length n. Moreover, our use of PCPPs together with the resilience property of the RMV

reconstructor ensures that the reconstruction protocol Prec always meets the soundness re-

quirement, so we only need a refuter against bottleneck protocols that are sound. This

means that a successful refuter provides an input z on which the completeness requirement

fails. The latter property can be verified co-nondeterministically, which allows us to gen-

erate such a z using the presumed targeted HSG and thus obtain a refuter computable in
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nondeterministic polynomial time.

4.3 Preliminaries

In this section, we present preliminary definitions and results that are necessary for devel-

oping our contributions. We start by defining bottleneck algorithms and refuters, and then

define PCPPs. The results in the chapter also rely on the preliminaries from the previous

chapters.

4.3.1 Bottleneck algorithms

The reconstructor algorithms underlying (targeted) generators typically have the property

that they go through a compression phase but eventually produce a potentially long output.

We refer to such algorithms as bottleneck algorithms. We define them generically relative to

any base class A and formalize them as two-phase algorithms: a compression phase Acomp

that is probabilistic, and a decompression phase Adec that is of type A.

Definition 4.8. LetA be a class of promise algorithms, t a time bound and γ ∶ N→ N. We let

ATICOMP[t(n), γ(n)] be the class of computational problems with the following properties

for some probabilistic algorithm Acomp and some Adec ∈ A: For any input x ∈ {0, 1}∗:

○ The process first runs Acomp on input x, yielding a string π, and then runs Adec on

input π.

○ Each of the two phases run in time t(∣x∣).

○ The length of π never exceeds γ(∣x∣).

◂

Note that we impose the resource bounds strictly (not up to a constant factor) and on

all inputs (not just on all but finitely many). The differences do not matter much for the
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resource of time. This is because of constant-factor speedup results and because asymptotic

time bounds can be turned into absolute ones by hard-wiring the behavior on the finitely

many inputs on which the time bound is violated. These transformations do not affect

the input-output behavior of the algorithm, though the second one comes at the cost of a

potentially significant increase in the description length of the algorithm. The differences

do matter for the compression bound γ(n). Constant-factor compression is not possible in

general, and hard-wiring is not an option as it requires access to the full input.

Definition 4.8 applies to promise Arthur-Merlin protocols that output values, yielding

the bottleneck protocol classes prAMTICOMP[t(n), s(n)]. In the completeness and sound-

ness notions of Definition 2.12, for bottleneck protocols, we consider the probabilities over

both the internal randomness of the algorithm Acomp and Arthur’s randomness in the prAM

protocol Pdec.

We similarly extend the notion of a bottleneck protocol computing a given function

f with certain completeness (default 1) and soundness (default 1/3). We say that a pair

(Acomp, Pdec) is sound for a function f if (Acomp, Pdec) computes f on every input with

soundness 1/3 (without any completeness guarantee).

4.3.2 Refuters

Refuters and list-refuters can be defined generically for a total function f against a resource-

bounded semantic class A of algorithms. Such A is defined by an underlying syntactic class

of machines, resource bounds that always hold (for all possible executions on all inputs),

and promises about the behavior of the machine for it to compute a value on a given input.

Definition 4.9. Let f ∶ {0, 1}∗ → {0, 1}∗ be a total function, and A a resource-bounded

semantic class of algorithms. A list-refuter for f against A is a meta-algorithm that on

input 1n and an algorithm A of the syntactic type underlying A, outputs a list of strings

(x1, . . . , xτ), each of length at least n. If A satisfies the resource bounds of A for all inputs
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of length at least n, then there exists i ∈ [τ] for which A fails to compute f(xi). A refuter

is a list-refuter that outputs singleton sets. ◂

Failure for A(x) to compute f(x) means that either A does not satisfy the promise on

input x or else it does but computes a value other than f(x).

Other variants on the formal requirements for a refuter exist in the literature; some

comments on the choices we made are in order. The lower bound n on the length of the

counterexample allows us to avoid irrelevant or useless counterexamples. Such a lower bound

could alternately be enforced by modifying A and hard-wiring the correct output values for

f on inputs of length less than n. However, this comes at an exponential cost in n for the

description length of the algorithm, which is problematic for the efficiency of meta algorithms

like refuters. The hard-wiring fix may also not be possible, e.g., in the case of bottleneck

algorithms.

Imposing a lower bound rather than an exact value on the length of the counterexamples

facilitates handling settings where there are only counterexamples of infinitely many lengths

but not all lengths. Note that the length of the counterexamples is bounded by the running

time of the refuter, which we typically express as a function of both n and the description

length of the algorithm.

In Definition 4.9 the behavior of a refuter is well-defined even for algorithms A that do

not satisfy the resource constraints on all inputs of length less than n. This is consistent

with the requirement that the counterexample be of length at least n. Alternately, one could

only specify the behavior of a refuter on algorithms A that satisfy the resource constraints

everywhere. For constructible resource bounds, the alternate definition can be used in lieu

of ours as one can first modify A into an algorithm A′ that satisfies the resource bounds

everywhere and behaves like A on inputs where A meets the resource bounds. The increase

in description length from A to A′ is not significant from a complexity-theoretic perspective.

Our definition obviates the need for applying the transformation each time we want to run

a refuter.
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The refutation problem can have promises beyond the one that A meets the resource

bounds on all inputs of length at least n. In such cases the refuter only needs to produce a

counterexample when A comes from some restricted subclass of A.

In this work, we mostly use nondeterministic list-refuters against bottleneck Arthur-

Merlin protocols, i.e., against classes prAMTICOMP[t(n), γ(n)]. A nondeterministic list-

refuter is similar to a regular list-refuter, with the difference that it is nondeterministic,

must have at least one accepting computation path on every input, and must output a list

containing a counterexample on every accepting path for every input satisfying the relevant

promise. More precisely, on input 1n and a pair (Acomp, Pdec) consisting of a probabilistic

algorithm Acomp and a prAM protocol Pdec, the refuter must have at least one accepting

computation path and exhibit the following behavior: every accepting path must output

a list (x1, . . . , xτ), each of length at least n. If on inputs of length ` ≥ n both phases of

(Acomp, Pdec) run in time t(`) and the output length of Acomp is bounded by γ(`), then on

every accepting computation path the refuter must output a list of strings (x1, . . . , xτ), each

of length at least n such that for at least one i ∈ [τ], (Acomp, Pdec) fails to compute f on

input xi with completeness 1 and soundness 1/3.

We say that R is a refuter for f against prAMTICOMP[t(n), γ(n)] protocols with promised

soundness for f if R can refute pairs (Acomp, Pdec) that are sound for f . R may fail to refute

protocols that are not sound for f , but still needs to have at least one accepting computation

path on such inputs.

4.3.3 PCPs of proximity and error-correcting codes

PCPs of proximity work with pair languages, i.e., languages of pairs of strings. Intuitively,

we view one part of the input as explicit, to which the PCPP verifier has full access, and

another part of the input as implicit, to which the PCPP verifier has oracle access. Each

query a PCPP verifier makes to the implicit input counts towards its query complexity.

Let L ⊆ {0, 1}∗ × {0, 1}∗ be a pair language. We denote by Lx the set {z ∣ (x, z) ∈ L}.
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The soundness condition for PCPPs requires that z is sufficiently far from strings in Lx in

relative Hamming distance. Let z, z′ ∈ {0, 1}n and d(z, z′) = ∣{i ∣ zi ≠ z′i}∣/n. For z ∈ {0, 1}n

and S ⊆ {0, 1}n, we define d(z, S) =minz′∈S(d(z, z′)). The string z is said to be δ-far from S

if d(z, S) ≥ δ.

Definition 4.10 (PCP of Proximity). Let r, q, t ∶ N × N → N and s, δ ∶ N × N → [0, 1].

Let L ⊆ {0, 1}∗ × {0, 1}∗ be a pair language. We say that L ∈ PCPPs,δ[r, q, t] if there exists

a probabilistic algorithm V (the verifier) that, given a string x ∈ {0, 1}m and an integer n

as regular input, and oracle access to an implicit input z ∈ {0, 1}n and to a proof oracle

y ∈ {0, 1}∗, tosses r(m, n) coins, queries the oracles z and y for a total of q(m, n) bits, runs

in time t(m, n), and either accepts or rejects. Moreover, V has the following properties:

○ Completeness: If (x, z) ∈ L then there exists a y such that Pr[V z,y(x, n) = 1] = 1.

○ Soundness: If (x, z) is such that z is δ(m, n)-far from Lx ∩ {0, 1}n, then for every y′ it

holds that Pr[V z,y′(x, n) = 1] ≤ s(m, n).

◂

We use the following PCPP construction due to Ben-Sasson, Goldreich, Harsha, Sudan,

and Vadhan.

Lemma 4.11 ([BGH+05]). Let T be a time bound and L be a pair language in the class

NTIME[T (m, n)], where m denotes the length for the first (explicit) input and n the length

for the second (implicit) input. Then, for every constant s, we have L ∈ PCPPs,δ[r, q, t], for

○ Proximity parameter δ(m, n) = 1/polylog(m, n).

○ Randomness complexity r(m, n) = log (1/s) ⋅ (log T (m, n) +O(log log T (m, n))).

○ Query complexity q(m, n) = polylog(T (m, n)).

○ Proof length `(m, n) = T (m, n) ⋅ polylog(T (m, n)).
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○ Verification time t(m, n) = poly(m, log n, log T (m, n)).

We also use the following PCPP with a canonical proof strategy due to Paradise. Such a

PCPP has a polynomial-time computable proof strategy that maps pairs of inputs in a pair

language L to a proof. The disadvantage for this result is that it requires the pair language

L to be computable deterministically.

Lemma 4.12 ([Par21]). Let T be a time bound and L be a pair language in the class

DTIME[T (m, n)], where m denotes the length for the first (explicit) input and n the length

for the second (implicit) input. Then, for every constant s, we have L ∈ PCPPs,δ[r, q, t], for

○ Proximity parameter δ = 0.1.

○ Randomness complexity r(m, n) = O(log T (m, n)).

○ Query complexity O(1).

○ Proof length poly(T (m, n)).

○ Verification time t(m, n) = poly(m, log n, log T (m, n)).

Moreover, there exists a polynomial-time computable proof strategy that maps (x, z) ∈ L to y

such that Pr[V z,y(x, n) = 1] = 1 and Pr[V z,y′(x, n) = 1] < 1 for every y′ ≠ y.

In our applications of the above PCPPs the implicit input will be in an error-correcting

format. An error-correcting code (ECC) with distance parameter δ is an algorithm Enc such

that for every n and z, z′ ∈ {0, 1}n for which z ≠ z′, it holds that d(Enc(z), Enc(z′)) ≥ δ. A

decoder Dec for an ECC with distance parameter δ is an algorithm that, on input a possibly

corrupted codeword z̃ in the co-domain of Enc, recovers z as long as d(z̃, Enc(z)) < δ/2. For

our purposes, it suffices that for any constant δ ∈ (0, 1] there exists an ECC with distance

parameter δ that is computable and decodable in time n ⋅ polylog(n) (e.g., see [Jus76] and

the discussion in [Spi96]).
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4.4 Equivalence

In this section, we establish Theorem 4.2. First, in Section 4.4.1, we present the refinement

for the targeted hitting-set generator of Theorem 2.24. In Section 4.4.2, we prove the direc-

tion of refutation to targeted hitting-set generators. In Section 4.4.3, we prove the direction

of targeted hitting-set generators to refutation. Finally, we put everything together to obtain

our equivalence result and extensions in Section 4.4.4.

4.4.1 Targeted generator construction

We develop our targeted HSG as a refinement of Theorem 4.2. First, we describe the

modifications needed to the construction and proof for the result. For completeness, we also

include a full proof after discussing the modifications.

Theorem 4.13. Let T be a time bound and f a function computable in nondeterministic

time T (n). There exists a nondeterministic algorithm H (the generator) that always has at

least one successful computation path per input, and a pair Prec (the reconstructor) consisting

of a probabilistic algorithm Acomp and a promise Arthur-Merlin protocol Pdec such that for

every z ∈ {0, 1}∗ and every co-nondeterministic circuit D that accepts at least half of its

inputs, at least one of the following holds:

1. H(z, D) outputs a hitting set for D on every successful computation path.

2. Pdec(Acomp(z, 1m), D) computes f(z) with completeness 1 and soundness 1/3.

The construction also has the following properties:

○ Compression: On input z of length n and 1m, the string output by Acomp has length

poly(m, log T (n)).

○ Resilient soundness: In both cases 1 and 2 above, the probability that the bottleneck

protocol Pdec(D, Acomp(1m, z)) outputs a value other than f(z) is at most 1/3.
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○ Efficiency: On input z of length n and 1m, Acomp runs in time n ⋅ poly(m, log T (n)).

On inputs z of length n and D of size m, H runs in time poly(T (n), m) and Pdec,

given the output of Acomp(z, 1m) and an additional index i, computes the i-th bit of

f(z) in time (m ⋅ log T (n))O((log r)2) for r = O(log (T (n))/ log m). In particular, Pdec

computes f(z) in time ∣f(z)∣ ⋅ (m ⋅ log T (n))O((log r)2).

○ Input access: H(x, D) only depends on x and the size of D, and the only way Pdec

requires access to D is via blackbox access to the deterministic predicate that underlies

D.

We first describe the differences with relation to the proof of Theorem 2.24:

○ We use PCPPs in place of PCPs.

○ The generator additionally instantiates the RMV generator with an encoding of the

input z.

○ We strengthen the reconstructor to a bottleneck protocol.

Consider the language Lf that consists of strings (z̃, n, i, b) such that z̃ = Enc(z) for some

z ∈ {0, 1}n and f(z)i = b, where Enc is a suitable error-correcting code as in Section 4.3.3.

Note, in particular, that Lf is computable in nondeterministic time n ⋅ polylog(n) + T (n).

Let V be the PCPP verifier for Lf given by Lemma 4.11, where we consider z̃ as an implicit

input and the remaining part of the input as explicit.

The generator H, on input z and a co-nondeterministic circuit D of length m, computes

z̃ = Enc(z), guesses v = f(z) and, for every i, guesses and verifies a PCPP yi that asserts the

i-th bit of f(z). H then computes suitable low-degree extensions ẑ for z̃ and ŷi for each yi,

and outputs RMV(ẑ) ∪ ⋃i∈[∣v∣]RMV(ŷi). The running time for the generator is dominated

by the running time for running the RMV generator.

The reconstructor has two parts, the compressor Acomp and the decompressor Pdec. The

compresso Acomp, on input z ∈ {0, 1}n and 1m, computes z̃ and a commitment/sketch πz for
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the RMV reconstructor for z̃. Due to the inherent compression of the RMV reconstructor, πz

has length poly(m, log T (n)). We now describe Pdec on input πz, a co-nondeterministic circuit

D of size m and an index i. First, the honest Merlin sends a bit b and commits to the low-

degree extension of a PCPP yi asserting that f(z) = i. Since Merlin may be dishonest, let ỹi

denote the value to which Merlin committed. Arthur then computes V z̃,ỹi(n, i, b), employing

Merlin’s help and the RMV evaluator to answer queries to z̃ and ỹi. Finally, Arthur either

succeeds and outputs b, if the verification using V is successful, or fails otherwise. The

resilience property for the RMV reconstructor guarantees that, with high probability, every

execution of the RMV evaluator leads to an evaluation of a fixed string ỹ. Then, soundness for

(Acomp, Pdec) follows from the soundness of V itself. As for completeness, in case H(z, D) fails

to hit D, then the RMV construction instantiated with D allows for compressing both z̃ and

each yi, guaranteeing completeness for our construction. The PCPP verifier is very efficient,

running in time poly(m, log T (n)). For this reason, the running time for our reconstructor

is dominated by the running time for the RMV reconstructor.

We now present a full proof for the result.

Proof of Theorem 4.13. Fix an input z ∈ {0, 1}n. For f computable in nondeterministic time

T (n), we define a language Lf that captures the computation of f on inputs encoded with

an error-correcting code. Let Enc be an ECC with distance parameter 0.1 computable in

time n ⋅ polylog(n) as in Section 4.3.3. Lf consists of strings (z̃, n, i, b), where n and i are

integers given in binary and b ∈ {0, 1}, and z̃ = Enc(z) for z ∈ {0, 1}n such that f(z)i = b.

In particular, Lf is decidable in nondeterministic time n ⋅ polylog(n) + T (n) by guessing

z ∈ {0, 1}n, computing Enc(z), checking that Enc(z) = z̃ and computing f(z)i. Let V be

the PCPP verifier given by Lemma 4.11 where we consider z̃ as an implicit input and the

remaining part of the input as explicit, with soundness parameter 0.01. The proof length of

V is at most poly(T (n), n) = poly(T (n)) since T (n) ≥ n. In the following discussion, we let

yi denote any PCPP witnessing (z̃, n, i, b) ∈ Lf .

We now set parameters for the low-degree extensions that we need. Recall that we wish
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to instantiate the RMV generator with the low-degree extensions of the PCPPs yi as well

as the encoded input z̃. Given our choice of Lf , the proof length of V is poly(T (n)). To

encode the PCPPs, let h = h(m) =m100, r = r(m, n) be the smallest power of two such that

hr is greater than or equal to the proof length of V , and p = p(m, n) the smallest prime

in the interval [∆100, 2∆100] for ∆ = h ⋅ r, found by exhaustive search. Note, in particular,

that hr = poly(T (n), m) and r = O(log (T (n))/ log m). Throughout the rest of the proof, we

denote by ŷi the low-degree extension of each yi with parameters p, h and r.

To obtain the low-degree extension of z̃, we use slightly different settings. We set h and p

as before, but define r′ = r′(m, n) to the smallest power of two such that hr′ ≥ n. We denote

by ẑ the low-degree extension of z̃ with parameters p, h and r′.

Generator. The generator H, on input z and a co-nondeterministic circuit D of size m,

computes z̃ = Enc(z) and the low-degree extension ẑ of z̃ with the parameters above, and

guesses the value of v = f(z) and a PCPP yi witnessing (z̃, n, i, vi) ∈ Lf for each index i

of v. Then H verifies that Pr[V z̃,yi(n, i, vi) = 1] = 1 for every i ∈ [∣v∣] by deterministically

enumerating the poly(T (n), m) random-bit strings for V . If any of the verifications fail, H

fails. Otherwise, H computes the low-degree extension ŷi of yi. Finally, H outputs the union

of RMV(ẑ) and ∪i∈[∣v∣]RMV(ŷi), where each invocation of the RMV generator is instantiated

with the same output length m. Note that the choice of parameters for encoding ẑ and each

ŷi respects the preconditions of Lemma 2.23.

Computing z̃ and the initial verification step takes time poly(T (n), m), computing the

low-degree extensions for the PCPPs also takes time poly(T (n), m) and each execution of

the RMV generator, including the one for ẑ, takes time pO(r) = poly(T (n), m) and outputs

strings of length m. This culminates in a running time of poly(T (n), m). Finally, since for

the correct output v = f(z) there always exist PCPPs y1, . . . , y∣v∣ that are accepted with

probability 1 by V , there always exists a nondeterministic guess that leads H to succeed.

Reconstructor. We describe and analyze the pair (Acomp, Pdec), which uses the commit-and-

evaluate protocol (Pcommit, Peval) of Lemma 2.23 with fixed input p and resilience parameter
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s = s(m, n) = (100q)−1, where q = q(m, n) = polylog(T (n), m) denotes the query complexity

of the PCPP verifier V for Lf on implicit input z̃ and explicit inputs (n, i, b).

On input z and 1m, Acomp first computes z̃ = Enc(z). Then, Acomp tosses the coins

required for Pcommit for the low-degree extension ẑ of z̃ and outputs a commitment πz for

ẑ, which it computes by using the random bits to determine the set S and evaluating ẑ on

every point of S2 as in the moreover part of Lemma 2.23. As for protocol Pdec, on input the

commitment πz and an index i, Arthur first tosses the coins required for executing Pcommit for

ŷi. Merlin then replies with a bit b and a message for Pcommit, which produces a commitment

πyi
. The honest Merlin should send b = f(z)i and commit to the low-degree extension of a

PCPP yi that witnesses f(z)i = b, but a dishonest Merlin may send b ≠ f(z)i and/or commit

to a different function. Let ỹi denote the function that Merlin commits to in the first step,

which may be accessed with high probability by executing the evaluation protocol Peval with

input πyi
. The restriction of ỹi to [h]r defines a candidate PCPP y′i. Arthur then runs the

PCPP verifier V z̃,y′i(n, i, b), employing Merlin’s help to evaluate ẑ and ỹi using Peval and the

respective commitment whenever V makes a query to z̃ or y′i. If V z̃,y′i(n, i, vi) accepts, then

the protocol Pdec succeeds and outputs b, otherwise it fails.

Compression. The output of Acomp consists of ∣S2∣ = log (1/s) ⋅poly(∆, r) = poly(m, log T (n))

points in Fr′ together with evaluations of ẑ on each point, each of which can be described

with log p = polylog(m, log T (n)) bits, resulting in a total output length of poly(m, log T (n)).

Completeness. If D is not hit by H(z, D), then RMV(ẑ) fails to hit D and for all indices i

there exists at least one proof yi that witnesses (z̃, n, i, f(z)i) ∈ Lf and such that RMV(ŷi)

fails to hit D. In that case, an honest Merlin can commit to any such ŷi with probability 1

by the completeness property of Lemma 2.23. The property also allows the algorithm Acomp

to compute a correct commitment πz for z̃ with probability 1. Finally, perfect completeness

of V and Peval guarantees that on input πz and an index i, and when considering an honest

Merlin strategy, Pdec succeeds and outputs f(z)i with probability 1.

(Resilient) soundness. If D accepts at least half of its inputs, then the resilience property of
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the commit-and-evaluate protocol of Lemma 2.23 guarantees that with probability at least

1 − s, the commitment for ỹi is successful, meaning that each execution of the evaluation

protocol with input πyi
has partial single-valuedness s. For ẑ and the commitment πz, this

implies that with probability at least 1− s, the evaluation protocol with commitment πz has

soundness s for ẑ, as Acomp always computes the honest commitment. By a union bound, the

commit phase is successful for ẑ and ỹi with probability at least 1− 2s ≥ 0.99 for sufficiently

large m and n. Let the first “bad” event be the event that at least one of the commitments

is unsuccessful. If the first “bad” event does not happen, then by a union bound over the

at most q queries made by V to one of ẑ or some ỹi, with probability at least 0.99, every

execution of the evaluation protocol results in the evaluation of the respective fixed function.

Call the complement of this event the second “bad” event.

Assuming the first two “bad” events do not happen, the only way Merlin could try to have

Arthur output a wrong value is if he sends some b ≠ f(z)i in the first round. If this happens,

then (z̃, n, i, b) ∉ Lf , and moreover any w̃ such that (w̃, n, i, b) ∈ Lf is at relative distance

at least 0.1 from z̃. Thus the soundness property of V in Lemma 4.11 guarantees that Pdec

fails with probability at least 0.99. Let the third “bad” event be the event that V outputs

an incorrect value when the first two “bad” events do not occur. By a union bound over the

three “bad” events, all of which have probability at most 0.99, Pdec(D, (Acomp(1m, z))) either

fails or outputs a bit of f(z) with probability at least 2/3. In particular, if completeness

also holds then Pdec(D, (Acomp(1m, z))) computes individual bits of f(z) with completeness

1 and soundness 1/3.

Reconstructor efficiency. The running time for Acomp is the time required to compute z̃ =

Enc(z) plus the time required to compute at most log (1/s) ⋅ poly(∆, r) = poly(m, log T (n))

evaluations of ẑ. Computing z̃ takes time n ⋅ polylog(n) = n ⋅ polylog(T (n)), and computing

each evaluation of ẑ takes time n ⋅ poly(h, log p, r, log n) = n ⋅ poly(m, log T (n)), resulting in a

total running time of n ⋅ poly(m, log T (n)).

As for Pdec, the commit phase takes time log (1/s) ⋅ poly(∆, r) = poly(m, log T (n)) and
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two rounds of communication. Afterwards, evaluating each query made by V with Peval

takes time (log (1/s))2 ⋅∆O((log r)2) = (m ⋅polylog(T (n)))O((log r)2). The verification step for V

takes time poly(m, log T (n)), and it makes at most q = polylog(m, T (n)) queries, resulting

in a total running time of (m ⋅ log T (n))O((log r)2). Moreover, because V ’s queries are fully

determined by its input and random bits, each execution of the evaluation protocol can

be carried out in parallel, and thus the total number of rounds is four. Collapsing this

protocol into two rounds using standard techniques [BM88] leads to a prAM protocol with

running time (m ⋅ log T (n))O((log r)2) with the same completeness and soundness parameters.

To compute the entirety of f(z) all at once, we can amplify soundness for Pdec by parallel

repetition [BM88] so that we still get soundness 1/3 for computing every bit of f(z) in

parallel. This introduces a multiplicative overhead of polylog(T (n)) for each execution of

Pdec, resulting in a total running time of ∣f(z)∣ ⋅ (m ⋅ log T (n))O((log r)2).

Input access. We observe that the only information about D required for computing RMV(ẑ)

and RMV(ŷi) is its size m, and thus the generator H also only requires knowledge of the size

of D. Similarly, the commit-and-evaluate protocol in Lemma 2.23 only requires blackbox

access to the deterministic predicate that underlies the circuit D instead of to the description

of D, and thus so does Pdec since it just passes D as input to the commit-and-evaluate

protocol. ∎

If the function f in Theorem 4.13 is computable in deterministic time T , then we can

modify the construction so that the generator H runs in deterministic time poly(T (n), m).

To do so, we similarly define Lf as the set of (z̃, n, i, b) such that Dec(z̃) = z for some

z ∈ {0, 1}n and f(z)i = b, and employ the canonical PCPP construction of Lemma 4.12,

interpreting (n, i, b) as the explicit input and z̃ as the implicit input. With these changes, it

follows that Lf ∈ DTIME[n⋅polylog(n)+T (n)], and employing a canonical PCPP construction

implies that the generator H can deterministically compute, for each i, the only PCPP yi

that is accepted with probability 1 by the PCPP verifier, ultimately obtaining a deterministic

H. We thus establish Corollary 4.14.
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Corollary 4.14. Let T (n) be a time bound and f a function computable in determinis-

tic time T (n). There exists a deterministic algorithm H and a pair Prec consisting of a

probabilistic algorithm Acomp and a promise Arthur-Merlin protocol Pdec that have the same

properties as in Theorem 4.13, with the only difference being that H is deterministic instead

of nondeterministic.

4.4.2 From refutation to derandomization

We now show that the third item in Theorem 4.2 implies the first one. Here is the outline

for the construction of the targeted hitting-set generator for prAM, assuming a refuter for a

function f computable in nondeterministic time na. On input a co-nondeterministic circuit

D of size m, we first run the assumed list-refuter on the input consisting of 1n for a sufficiently

large n and the reconstructor protocol Prec from Theorem 4.13 with D fixed. This produces

a list of strings z1, . . . , zτ , each of length at least n. We use each of them as an input for the

generator H of Theorem 4.13 and output the union of the sets obtained. Provided that n is

a sufficiently large polynomial in m, the reconstructor meets the resource and compression

bounds for a prAMTICOMP[na+ε, nε] protocol at length n. The defining property of the

list-refuter then guarantees that for at least one zi, the reconstructor fails to compute f(zi)

(item 2 in Theorem 4.13 fails for zi). It follows that H(zi, D) hits D (item 1 in Theorem 4.13

holds).

Theorem 4.15. Let T be a time bound, a a constant and f a function computable in

nondeterministic time na. If for some constant ε ∈ (0, 1) there is a nondeterministic list-

refuter R for f against prAMTICOMP[na+ε, nε] protocols with promised soundness for f

such that R runs in time T , then there is a targeted hitting-set generator for prAM that is

computable in nondeterministic time poly(T (poly(n))).

Proof. Let (Acomp, Pdec) be the reconstructor of Theorem 4.13 instantiated with f . We first

describe the operation of the targeted HSG, then we analyze its correctness and running
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time.

Generator. The generator, on input a co-nondeterministic circuit D of size m, first sets

n = n(m) to be determined later. Let Acomp(⋅, 1m) denote algorithm Acomp with 1m fixed as

its second input and similarly let Pdec(⋅, D) be the protocol Pdec with the circuit D fixed as

its second input. The generator then feeds inputs 1n and (Acomp(⋅, 1m), Pdec(⋅, D)) into the

refuter R to obtain a list of inputs (z1, . . . , zτ). Finally, the generator outputs ∪i∈[τ]H(zi, D),

where H is the generator of Theorem 4.13 instantiated with f . Observe that the generator

always has a successful computation path for every input since so does the refuter R.

Correctness. Note that as long as D accepts at least half of its inputs, the resilient soundness

property in Theorem 4.13 guarantees that (Acomp(⋅, 1m), Pdec(⋅, D)) is sound for f . To ensure

correctness of the generator, we set the value of n sufficiently large such that Acomp(⋅, 1m)

and Pdec(⋅, D) run in time at most na+ε and such that the output length of Acomp(⋅, 1m) is

at most nε. In this case, the refuter must output, on every accepting computation path,

a list of strings (z1, . . . , zτ) that contains at least one zi such that (Acomp(⋅, 1m), Pdec(⋅, D))

fails to compute f(zi) with completeness 1 and soundness 1/3. This means that item 2 in

Theorem 4.13 fails for z = zi, and therefore item 1 must hold, which implies that our targeted

generator hits D.

We now set the value of n. We set n =mk, where k is a constant that respects the lower

bounds we set in the following discussion. Recall that, on input z ∈ {0, 1}n, Acomp(⋅, 1m)

outputs a string of length poly(m, a log n) ≤ (m ⋅ log n)k1 for a fixed constant k1. Moreover,

the running time for Acomp(⋅, 1m) is n ⋅ poly(m, a log n) = n ⋅ poly(m, log n) ≤ n ⋅ (m ⋅ log n)k2

for some constant k2, and the running time for Pdec(⋅, D) is na ⋅ (m ⋅ a log n)O((log r)2) for

r = O(a log n/ log m), and thus upper bounded by na ⋅ (m ⋅ log n)k3⋅(log (a log n/ log m))2 for some

constant k3.

By setting k ≥ 2k1/ε, it holds for sufficiently large m and any input of length ` ≥ n =mk

that the string output by Acomp(⋅, 1m) has length at most `ε. Similarly, setting k ≥ 2k2/ε,

it holds for sufficiently large m and any input of length ` ≥ n = mk that the running time
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of Acomp(⋅, 1m) is at most `1+ε ≤ `a+ε. Finally, setting k ≥ 2k3 ⋅ (log (ak))2/ε, which holds

for sufficiently large constant k, guarantees that Pdec(⋅, D) runs in time at most `a+ε for

` ≥ n =mk and sufficiently large m.

Running time. Let the constant c denote the description length of (Acomp, Pdec). It fol-

lows that (Acomp(⋅, 1m), Pdec(⋅, D)) has description length at most m′ = c + Θ(m log m) =

Θ(m log m). Computing the list of inputs (z1, . . . , zτ) using the refuter R takes time T (n +

m′) = T (poly(m)), which also serves as an upper bound for the length of each zi. Finally,

computing H(zi, D) for all zi takes time poly(T (poly(m))), which dominates the running

time for the generator. ∎

In contrast to the corresponding result of [CTW23] in the BPP setting, Theorem 4.15

scales very smoothly with respect to the time T for computing the refuter. In particular, it

allows us to obtain equivalences at the low end of the derandomization spectrum. The time

T arguably is the most natural choice of scaling parameter since it translates directly into

slower hitting-set generators without any extra steps such as increasing the input length.

One can also consider scaling with respect to secondary parameters, namely the time for

computing f as well as the compression length for the bottleneck protocols. Increasing the

time required for computing f leads to a similar increase in the time bound for the class

against which we require refuters. Decreasing the compression length requires the targeted

hitting-set generator to run the refuter with a larger input length n. Due to the sub-optimal

behavior of the RMV reconstructor at the low end, our approach does not reach the low

end when scaling those secondary parameters. It does work for intermediate ranges, e.g., for

running time bounds of the form 2polylog(n) and compression lengths of the form 2(log n)ε for

ε ∈ (0, 1).

Theorem 4.16. Let a be a constant and f a function computable in nondeterministic time

2(log n)a. If for some constant ε ∈ (0, 1) there is a nondeterministic list-refuter R for f against

protocols in prAMTICOMP[2(log n)a+ε
, 2(log n)ε] with promised soundness for f such that R runs



169

in time 2polylog(n), then there is a targeted hitting-set generator for prAM that is computable

in nondeterministic time 2polylog(n).

4.4.3 From derandomization to refutation

Next, we prove that the first item in Theorem 4.2 implies the second one. In fact, we es-

tablish something stronger: Assuming the existence of a targeted hitting-set generator as

in the first item, every function f that is computable in nondeterministic polynomial-time

and has a probabilistic polynomial-time refuter against bottleneck protocols with imperfect

completeness and promised soundness for f , also has a nondeterministic polynomial-time

list-refuter against the same class but with the standard perfect completeness level (Theo-

rem 4.17). The second item then follows as the identity function has such a probabilistic

refuter (Proposition 4.18).

A probabilistic refuter is a refuter that produces a counterexample with constant prob-

ability over its internal randomness. In the case of the class prAMTICOMP[t(n), γ(n)] with

imperfect completeness level c = 2/3 (and default soundness level s = 1/3), this means the

following: On input 1n and a pair (Acomp, Pdec) consisting of a probabilistic algorithm Acomp

and a prAM protocol Pdec, a probabilistic refuter for a function f outputs a string z of length

at least n such that the following holds with probability Ω(1). If on inputs of length ` ≥ n

both phases of (Acomp, Pdec) run in time t(`) and the output length of Acomp is bounded by

γ(`), then (Acomp, Pdec) fails to compute f on input z with completeness 2/3 and soundness

1/3. Note that if (Acomp, Pdec) is promised to be sound for f and to obey the time and

compression requirements, then it must be the case that (Acomp, Pdec) fails to compute f(z)

with completeness 2/3.

Here is the intuition for the stronger statement (Theorem 4.17). To derandomize the

given probabilistic refuter, we set up a co-nondeterministic circuit D that verifies that a

random bit-string leads to a counterexample for a given bottleneck Arthur-Merlin protocol

(Acomp, Pdec) with promised soundness for f . On input a string (r1, r2, r3) where r1 represents
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the randomness for the probabilistic refuter Rpr, r2 the randomness for Acomp and r3 the

randomness for Pdec, D first computes the candidate counterexample z by running Rpr and

uses co-nondeterminism to determine f(z). D then co-nondeterministically verifies that all

possible replies from Merlin would lead Pdec with input Acomp(z, r2) and randomness r3 to

fail or output something other than f(z). If (Acomp, Pdec) is sound for f and obeys the time

and compression requirements, the only way the refuter can succeed is when (Acomp, Pdec)

fails the completeness requirement on z. Since the refuter succeeds with probability Ω(1)

and the completeness level is bounded below 1, this means that the circuit D accepts a Ω(1)

fraction of its inputs. Thus, when we apply the assumed targeted hitting-set generator to

D, it has to output at least one (r1, r2, r3) on which D succeeds. For such a (r1, r2, r3),

(Acomp, Pdec) does not have perfect completeness on the input z that Rpr produces with

random-bit string r1 because (Acomp, Pdec) does not output f(z) on random bit-string (r2, r3).

Thus, outputting the strings z over all (r1, r2, r3) that the targeted HSG produces yields the

desired nondeterministic polynomial-time list-refuter.

Note the increase in the completeness level from c = 2/3 for a probabilistic refuter to

c = 1 in the corresponding item for a nondeterministic refuter as in Section 4.3.2. On

the one hand, the gap in completeness for the counterexample output by a probabilistic

refuter allows the co-nondeterministic circuit D to accept a constant fraction of its inputs,

which is needed to guarantee success for the derandomization. On the other hand, the

nondeterministic refuter we obtain from the probabilistic refuter only guarantees that the

completeness on the counterexample is not perfect. The latter guarantee suffices for the

direction from refutation to derandomization because the reconstructor in Theorem 4.13 has

perfect completeness. The resilient soundness property of the reconstructor in Theorem 4.13

ensures that we only need to worry about refuting pairs (Acomp, Pdec) that are sound for f .

Theorem 4.17. Assume there exists a targeted hitting-set generator for prAM computable

in nondeterministic time T . Let f be a function computable in nondeterministic polyno-

mial time that has a probabilistic polynomial-time refuter against prAMTICOMP[t(n), γ(n)]
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protocols with promised soundness for f . Then there exists a list-refuter R for f against

prAMTICOMP[t(n), γ(n)] protocols with promised soundness for f such that R is computable

in nondeterministic time T (poly(m, t(poly(n)))), where m denotes the description length of

the protocol to be refuted and n the lower bound for the length of the counterexamples.

We observe that in case the function f in Theorem 4.17 is computable in polynomial

time, as is the case with identity, the list-refuter R runs in polynomial time in its input

length, i.e., in time poly(m, n).

Proof of Theorem 4.17. Let H be the hypothesized targeted hitting-set generator. H always

has an accepting computation path for any input, and on input a co-nondeterministic circuit

D of size m′ that accepts at least 1/2 of its inputs, H runs in time T (m′) and outputs, on

every accepting computation path, a set S that hits D. Let Rpr be the hypothesized prob-

abilistic refuter for f against prAMTICOMP[t(n), γ(n)] protocols with promised soundness

for f , and assume w.l.o.g. that Rpr only outputs strings of length at least n and succeeds in

outputting a counterexample with constant probability δ > 0.

We now describe the nondeterministic list-refuter R. The input comprises of 1n and a

pair (Acomp, Pdec) consisting of a probabilistic algorithm Acomp and a prAM protocol Pdec. R

constructs a co-nondeterministic circuit D as follows: On input a random string (r1, r2, r3),

which is interpreted as randomness for Rpr, randomness for Acomp and randomness for Pdec,

respectively, D first runs Rpr(1n, (Acomp, Pdec); r1) to obtain an input z of length ` with

n ≤ ` = O(poly(n)). Then, using the fact that f is computable in polynomial time on

a nondeterministic machine, D computes f(z) using co-nondeterminism. Let A′comp and

P ′dec denote the versions of Acomp and Pdec, respectively, clocked to run in time t. Finally,

the circuit D computes A′comp(z, r2), co-nondeterministically verifies that there is no Merlin

message that would lead P ′dec with input A′comp(z, r2) and randomness r3 to output f(z),

and accepts if and only if the verification succeeds.

Before moving further, we observe that, if the pair (Acomp, Pdec) is sound for f and obeys
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the running time and compression bounds, then D accepts at least a constant fraction of its

inputs. This holds because for such n, Rpr(1n, (Acomp, Pdec); r1) outputs, with probability at

least δ over a random choice of r1, an input z of length ` ≥ n such that (Acomp, Pdec) fails

to compute f(z) with completeness 2/3. For those z, it holds for a fraction of at least 1/3

of strings (r2, r3) that there is no Merlin message that leads Pdec(Acomp(z, r2); r3) to output

f(z). Thus, with probability at least δ′ = δ/3, D accepts a triple (r1, r2, r3).

After constructing D, R constructs a new co-nondeterministic circuit D′ composed of k

copies of D, which accepts if and only if any of the copies accept, for a constant k to be defined

next. R then computes H(D′), obtaining a set S of strings of the form ρ = (ρ1, ρ2, . . . , ρk),

where each ρi is of the form (r1, r2, r3). Finally, R outputs Rpr(1n, Acomp, Pdec; r1) for all

r1 that appear in S. R always has an accepting computation path for every input since

so does the generator H. Recall that if (Acomp, Pdec) is sound for f , then the acceptance

probability of D is at least δ′. This means that the acceptance probability of D′ is at least

1−(1−δ′)k ≥ 1−exp(−δ′k), which can be made at least 1/2 by setting k = Θ(1/δ). In this case,

H(D′) outputs a hitting-set for D′ on every accepting computation path. Let ρ be a string

that hits D′. In that case, there must be some ρi = (r1, r2, r3) that hits D, which means that

Pdec fails to compute f(z) with perfect completeness on input z = Rpr(1n, Acomp, Pdec; r1). As

such a z is on the list output by R on every accepting computation path, R is a list-refuter

for f against prAMTICOMP[t(n), γ(n)] protocols with promised soundness for f .

Let m denote the description length of (Acomp, Pdec). The co-nondeterministic cir-

cuit D′ constructed by R on inputs 1n and (Acomp, Pdec) has size poly(m, n, t(poly(n))) =

poly(m, t(poly(n))) since t(n) ≥ n, and thus the time required for computing H(D′) is

T (poly(m, t(poly(n)))). Finally, R needs to compute Rpr(1n, Acomp, Pdec; r1) for at most

T (poly(m, t(poly(n)))) strings r1, and each such execution takes time poly(m, n). The fi-

nal running time is thus T (poly(m, t(poly(n)))) + poly(m, n) = T (poly(m, t(poly(n)))) since

T (n) ≥ n. ∎

We now exhibit a probabilistic polynomial-time refuter for the identity function against
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bottleneck protocols with imperfect completeness. The intuition is that strings z for which

a bottleneck protocol computes identity correctly with completeness 2/3 and soundness 1/3

can be described succinctly via the output of the compression phase. Thus, the protocol

must fail to compute identity for most z, as most z do not admit a succinct representation.

Proposition 4.18. For every constant ε ∈ (0, 1), there exists a probabilistic polynomial-time

refuter for the identity function against prAMTICOMP[∞, nε] with completeness 2/3 and

soundness 1/3.

Proof. Fix ε ∈ (0, 1). The probabilistic polynomial-time refuter Rpr, on input 1n and a pair

(Acomp, Pdec) of description length m just outputs a random string z of length ` = Θ(n) to

be defined precisely in the next paragraph.

Assume that (Acomp, Pdec) computes the identity function with completeness 2/3 and

soundness 1/3 on an input z of length `, and that ∣Acomp(z)∣ ≤ `ε. By an averaging argument,

there exists a random sequence r1 for Acomp such that the following property holds with

probability at least 1/3 over a random sequence r2 for Pdec: Any reply from Merlin for the

protocol Pdec(Acomp(z; r1); r2) leads to either acceptance or the correct output z, and there

exists a Merlin reply that leads to the correct output z. If we let πz = Acomp(z; r1) and fix

(Acomp, Pdec), we can describe z as one of the only three possible outputs of Pdec(πz) for

which the property above holds. This description for z has length at most `ε + c for some

constant c, and thus at most 2`ε+c+1 out of the 2` strings of length ` can have such a short

description. We then set ` = max(n, n0) = Θ(n), where n0 is the smallest integer such that

2nε
0+c+1/2n0 ≤ 1/3. With ` as the output length, the probability that the refuter succeeds is

at least 2/3. ∎

4.4.4 Proof of equivalence result

We now have all the steps involved in Theorem 4.2; we just need to tie them together.
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Proof of Theorem 4.2. The implication 2 Ô⇒ 3 holds trivially by taking the identity for f .

The implication 3 Ô⇒ 1 is Theorem 4.15. The implication 1 Ô⇒ 2 follows by combining

Theorem 4.17 and Proposition 4.18 with polynomial time bounds. ∎

When the function f is computable deterministically, the strategy also applies to other

types of targeted hitting-set generators such as deterministic, single-valued and deterministic

with parallel NP oracle. We present a general version of Theorem 4.2 that applies to different

types of targeted hitting-set generators for prAM, and is useful for obtaining our explicit

construction results.

Theorem 4.19. Let C ∈ {P, (NP ∩ coNP), PNP
∣∣
}. The following are equivalent:

1. There exists a targeted hitting-set generator for prAM computable in C.

2. For some constant ε ∈ (0, 1), there exists a list-refuter computable in C for the identity

function against prAMTICOMP[n1+ε, nε] protocols with promised soundness for identity.

3. For some constants a ≥ 1 and ε ∈ (0, 1), there exists a function f computable in deter-

ministic time na that admits a list-refuter computable in C against prAMTICOMP[na+ε, nε]

protocols with promised soundness for f .

Proof (sketch). The equivalence goes along the same lines as that of Theorem 4.2, using

Corollary 4.14 following the observation after Theorem 4.13 that if the algorithm computing

f is deterministic, then the targeted hitting-set generator construction of Theorem 4.13 is also

deterministic. In this case, assuming a refuter computable in C and following Theorem 4.15,

we obtain a targeted hitting-set generator that is also computable in C. Similarly and

following Theorem 4.17, a targeted hitting-set generator computable in C leads to a refuter

computable in C. ∎

The equivalence of Theorem 4.19 scales in the same way as that of Theorem 4.2, and in

particular holds for quasipolynomial and subexponential time bounds.
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4.5 Mild derandomization

In this section, we prove the more general equivalence of Theorem 4.3 in the setting of mild

derandomization.

4.5.1 From refutation to derandomization

We start by proving a generic version for the implication of refutation to derandomization.

We show that derandomization follows from the existence of the same type of (weaker)

refuter considered for Theorem 4.2: List-refuters that are only guaranteed to produce a

counterexample for sound bottleneck protocols.

Theorem 4.20. Let T be a time bound, C a machine class in {PNP, ZPPNP, Σ2P}, a a constant

and f a function computable in nondeterministic time na. If for some constant ε ∈ (0, 1)

there is a list-refuter R for f against prAMTICOMP[na+ε, nε] with promised soundness for f

such that R is computable in time T by machines of type C, then there is a targeted hitting-set

generator for prAM that is computable in time poly(T (poly(m))) by machines of type C.

Proof (sketch). The argument for Theorem 4.15 assumes that the refuter is computable in

nondeterministic time T and concludes the existence of a targeted hitting-set generator that

runs in nondeterministic time poly(T (poly(n))). To obtain the targeted hitting-set generator

of Theorem 4.15, we run the refuter to obtain a list of inputs of length n = poly(m) (where

m is the size of the co-nondeterministic circuit given as input to the targeted generator)

and then use each input as a basis for the construction of Theorem 4.13, which runs in

nondeterministic time polynomial in T (n). For a refuter computable by a Σ2 algorithm,

we can have the targeted generator guess the output of the refuter and of the generator

construction, and then verify with a nondeterministic and universal guess that the outputs

of the refuter and the generator construction were guessed correctly. For deterministic and

zero-error probabilistic algorithms with oracle access to SAT, we can use the SAT oracle

to compute, after obtaining the output of the refuter, the lexicographically least output of
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the nondeterministic generator construction. In either case, the final running time for the

targeted HSG is poly(T (poly(m))). ∎

4.5.2 From derandomization to refutation

We show that a more general version of the implication of derandomization to refutation

of Theorem 4.3 holds. For this version, we now consider stronger refuters than those of

Theorem 4.2: Refuters that output a single counterexample and that are guaranteed to work

against every bottleneck protocol. This implication essentially follows from the equivalence

between leakage-resilient hardness and the existence of refuters against the identity function,

together with the results in Chapter 3. Formally establishing the equivalence, however,

involves some technical details that we believe detracts from the main idea, and thus we

present a direct proof using the techniques in Chapter 3.

Theorem 4.21. Let T be a time bound and C denote a machine class in {PNP, ZPPNP, Σ2P}.

If prAMTIME[n] can be simulated by algorithms of type C in time T , then for any constant

ε ∈ (0, 1) there exists a refuter computable in time poly(m, n) ⋅T (poly(m, n)) for the identity

function against prAMTICOMP[n1+ε, nε].

Proof. Following the strategy of Section 3.5.2, we describe a prBPPSAT
∣∣ -search problem that

captures the refutation task, and then derandomize it using the derandomization assumption.

Fix ε ∈ (0, 1) and let 1n and (Acomp, Pdec) of description length m be inputs for the refuter.

We define the following search problem (RY , RN):

○ (1n, Acomp, Pdec, z) ∈ RY if and only if ∣z∣ ≥ n and (A′comp, P ′dec) fails to output z with

completeness 3/4 and soundness 1/4.

○ (1n, Acomp, Pdec, z) ∈ RN if and only if ∣z∣ ≥ n and (A′comp, P ′dec) outputs z with com-

pleteness 1 and soundness 1/3.
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Where A′comp and P ′dec denote, respectively, Acomp and Pdec clocked to run in time `1+ε and

with enforced compression length `ε on inputs of length `. Note that any z such that

(1n, Acomp, Pdec, z) ∉ RN serves as counterexample for (Acomp, Pdec).

To compute a solution, following Proposition 4.18, it suffices to output a random string

z of length ` = Θ(n).

To distinguish between yes and no instances, a probabilistic algorithm with non-adaptive

oracle access to SAT can estimate the completeness and soundness by asking the following

queries for constantly many random pairs of random strings (r1, r2):

1. Is there a Merlin response that would lead P ′dec(A′comp(z; r1); r2) to succeed and output

z?

2. Is there a Merlin response that would lead P ′dec(A′comp(z; r1); r2) to succeed and output

a string different than z?

With a constant number of queries of each type, it is possible to attain high constant prob-

ability of success and small constant error, say, δ = 0.01. Let c̃, s̃ be the completeness and

soundness estimates, respectively. If c̃ ≤ 0.9 or s̃ ≥ 0.1, then the verification algorithm ac-

cepts, otherwise it rejects. The running time for the verification algorithm is polynomial in

n and the description length m for the given bottleneck protocol.

We now argue the result for deterministic and zero-error probabilistic algorithms with

oracle access to SAT. By Proposition 3.21, there exists a polynomial-time (in m and

n) deterministic algorithm with oracle access to a problem in prBPPSAT
∣∣ that, on input

(1n, Acomp, Pdec), outputs a counterexample z of length greater than or equal to n. Since

prBPPSAT
∣∣ ⊆ PprAM

∣∣
and due to the derandomization assumption for prAM, the oracle can be

simulated in DTIME[T ]SAT (or ZPTIME[T ]SAT), and thus the entire procedure can be exe-

cuted in DTIME[poly(m, n) ⋅T (poly(m, n))]SAT (or ZPTIME[poly(m, n) ⋅T (poly(m, n))]SAT).

For the Σ2 machine model, the part of the proof that shows (RY , RN) is a prBPPSAT
∣∣ -

search problem shows, in particular, that for all (1n, Acomp, Pdec) such that (Acomp, Pdec)
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respect the time and compression upper bounds, there exists a “good” counterexample z,

and that verifying whether a z is “good” can be done in prBPPSAT
∣∣ . Thus, under the deran-

domization assumption and using Proposition 3.24, a Σ2 algorithm can guess a candidate z

and then verify that it is a “good” counterexample set in time poly(m, n)⋅T (poly(m, n)). ∎

As we now have all the steps involved in Theorem 4.3, we provide a proof for it.

Proof of Theorem 4.3. We established the equivalence 1 ⇐⇒ 2 in Theorem 4.3. That

1 Ô⇒ 3 follows from Theorem 4.21 with polynomial time bounds. That 3 Ô⇒ 4 is trivial,

and the implication 4 Ô⇒ 1 follows from Theorem 4.20 with polynomial time bounds. ∎

4.5.3 Extreme compression and circuit lower bounds

To formally state Theorem 4.4, we need the notion of a low-end io-refuter. To ease into

the definition of such a refuter and the proof of Theorem 4.4, we first state and prove a

simpler version of the theorem. In the simpler version, we assume the existence of refuters

that work almost-everywhere, and conclude derandomization that works almost-everywhere.

In contrast, the refuters and derandomization of Theorem 4.4 are only guaranteed to work

for infinitely-many inputs. For a time bound t(n), we define the t(n)-local bottleneck algo-

rithms as pairs (Acomp, Adec) where Adec computes each bit of its output in time t(n). To

capture the notion of a refuter against polylog(n) compression length and derandomization

in subexponential time 2nε for all ε > 0, we allow for multiple refuters, one for each ε and

constant k capturing compression length and local time (log n)k. Recall that a refuter re-

ceives as input 1n and an algorithm of description length m, and is supposed to output a

counterexample of length at least n.

Theorem 4.22. Assume there exists a constant c such that for all k > 0, there exists a refuter

Rk for the identity function against (log n)k-local prBPTICOMP[n ⋅ (log n)k, (log n)k]SAT
∣∣

, and

that each Rk is computable in Σ2TIME[(m ⋅ n)c]. Then, for all ε > 0, prAM ⊆ Σ2TIME[2nε].
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Proof. We show, under the assumption, that for all ε > 0 there exists a targeted hitting-set

generator for prAM that runs in Σ2-time 2O(mε), and the derandomization result follows.

Fix ε > 0 and let k = Θ(1/ε) be a constant to be determined later. Let (Acomp, Adec) be

the reconstructor of Lemma 3.10. We first describe the operation of the targeted hitting-set

generator, then we analyze its correctness and running time.

Generator. Let Acomp(⋅, 1m) denote algorithm Acomp with 1m fixed as its second input and

similarly let Adec(⋅, D) be the algorithm Adec with the circuit D fixed as its second input.

The generator, on input a co-nondeterministic circuit D of size m, first sets n = 2mε . The

generator then feeds inputs 1n and (Acomp(⋅, 1m), Pdec(⋅, D)) into the refuter Rε,k to obtain

z ∈ {0, 1}` for ` ≥ n. Finally, the generator outputs Hdet(z, 1m), where Hdet is the generator

of Lemma 3.10.

Correctness. To ensure correctness of the generator, we set the value of k such that, on

inputs of length ` ≥ n, Acomp(⋅, 1m) and Adec(⋅, D) run in time at most ` ⋅ (log `)k and such

that the output length of Acomp(⋅, 1m) is at most (log `)k. In this case, the refuter must

output a string z such that (Acomp(⋅, 1m), Adec(⋅, D)) fails to compute identity on z. This

means that item 2 in Lemma 3.10 fails for z, and therefore item 1 must hold, and thus our

targeted generator hits D.

We now set the value of k. On input z ∈ {0, 1}`, Acomp(⋅, 1m) outputs a string of length

poly(m, log `). Moreover, the running time for Acomp(⋅, 1m) is ` ⋅ poly(m, log `), and the

running time for Adec(⋅, D) is ` ⋅ poly(m, log `). Let k′ be a constant such that Acomp(⋅, 1m)

outputs a string of length at most (m ⋅ log `)k′ , and such that the running time for both

Acomp(⋅, 1m) and Adec(⋅, D) is at most ` ⋅ (m ⋅ log `)k′ . By setting k = 2k′/ε, it holds for

sufficiently large m and any input of length ` ≥ n = 2mε that the string output by Acomp(⋅, 1m)

has length at most (log `)k. Similarly, it holds for sufficiently large m and any input of length

` ≥ n = 2mε that the running time of Acomp(⋅, 1m) and Adec(⋅, D) is at most ` ⋅ (log `)k.

Running time. Let d(m) = Θ(m ⋅ log m) denote the description length of (Acomp, Adec).

Computing the output z of the refuter Rk takes Σ2-time nc ⋅ 2c⋅d(m)ε = 2mO(ε) , which also
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serves as an upper bound for the length of z. Then, computing H(z, 1m) takes deterministic

time poly(2mO(ε)
, m) = 2mO(ε) , which dominates the running time for the generator. ∎

We observe that the refuter assumed in Theorem 4.22 is overkill for the derandomization

task. Notice that, in the proof of Theorem 4.22, the targeted hitting-set generator sets

n = 2mε when running the refuter. In the low end and using Lemma 3.10, this is necessary

since the compression length for the reconstructor of Lemma 3.10 is polynomial in m, and

thus we cannot hope to obtain polylogarithmic compression length with n closer to m. In

that case, it makes sense to consider refuters that are only guaranteed to work when n is

sufficiently large in relation to m, which is what we do with low-end refuters.

In the infinitely-often setting of Theorem 4.4, we would like the targeted hitting-set

generator to work for infinitely-many circuit sizes m. Following the same strategy as the

proof of Theorem 4.22, this requires a refuter with the following behavior: For infinitely m,

the refuter outputs a valid counterexample on input a bottleneck algorithm of description

length m and 1n for n around 2mε . Motivated by this application to low-end derandomization,

we define low-end io-refuters.

Definition 4.23. Let f ∶ {0, 1}∗ → {0, 1}∗ be a total function, A a resource-bounded se-

mantic class of algorithms and ε a constant. A low-end io-refuter R with parameter ε for

f against A is an algorithm that on input 1n and an algorithm A of the syntactic type

underlying A, outputs a string z of length at least n. For infinitely many description lengths

m, the following holds: There exists n ∈ [2mε
, 2(m+1)ε] such that, if A satisfies the resource

bounds of A for all inputs of length at least n, then A fails to compute f(z). ◂

Since we only care about the case n ≥ 2mε , we measure the running time for the refuters

in terms of n only, assuming implicitly that n ≥ 2mε .

We are now able to formally state Theorem 4.4.

Theorem 4.24 (Formal version of Theorem 4.4). The following are equivalent.

1. For all ε > 0, prAM ⊆ io-Σ2TIME[2nε]/nε.
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2. Σ2EXP /⊆ NP/poly.

3. There exists a constant c such that for all ε, k > 0, there exists a low-end io-refuter

Rk,ε with parameter ε for the identity function against (log n)k-local prBPTICOMP[n ⋅

(log n)k, (log n)k]SAT
∣∣

. Each Rk,ε is computable in Σ2-time nc with log n bits of advice.

We prove that2 Ô⇒ 3 in Lemma 4.25, and that 3 Ô⇒ 1 in Lemma 4.26. That 1 and

2 are equivalent follows from [AvM17].

Given the equivalence between leakage-resilient hardness and refuters for the identity

function, the intuition for the proof of Theorem 4.24 is very similar to that for Theorem 3.7.

As a first step, we show the lower bound Σ2E /⊆ NP/poly implies the existence of refuters

for the identity function against non-adaptive SAT-oracle bottleneck algorithms. First, by

Lemma 3.35, the non-uniform lower bound above implies that Σ2E /⊆ PSAT
∣∣
/poly. The refuter,

on input 1n and any bottleneck algorithm (Acomp, Adec), outputs the truth-table z of a

language L ∈ Σ2E with high circuit complexity at input length log n. With log n bits of advice

(indicating how many strings of length log n are in L), the refuter can be computed in Σ2-

time 2O(log n) = poly(n). Assume that, for n around 2mε , the compression and time bounds

hold for (Acomp, Adec) on inputs of length at least n, yet z is not a good counterexample

for (Acomp, Adec). By fixing a “good” output πz of Acomp(z) into Adec, as well as a “good”

random string for Adec and following Adleman’s argument [Adl78], we get a polynomial-

size probabilistic non-adaptive SAT-oracle circuit of size poly(m) that computes L on input

length log n. Given the assumed circuit lower bound, it follows that the refuter must output

valid counterexamples for infinitely-many m (and n around 2mε). We now formalize this

argument.

Lemma 4.25. Assume Σ2E /⊆ NP/poly. Then for all ε, k > 0, there exists a low-end io-

refuter Rk,ε with parameter ε for the identity function against the class of (log n)k-local

prBPTICOMP[∞, (log n)k]SAT
∣∣

algorithms. Each Rk,ε is computable in Σ2-time nc with log n

bits of advice, for a fixed constant c.
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Proof. Let L ∈ Σ2E / NP/poly and fix ε, k > 0. On input (Acomp, Adec) of description length

m and 1n (with n ≥ 2mε), the refuter Rε,k outputs the truth-table of L at input length log n.

First, notice that, assuming n ≥ 2mε , Rε,k can be computed with log n bits of advice,

indicating how many strings of length n are in L, in Σ2-time nc, where c is the constant such

that L ∈ Σ2TIME[2cn].

Now, assume that for almost-all m and all n ∈ [2mε
, 2(m+1)ε], the string z output by

Rε,k on input 1n and (Acomp, Adec) of description length m fails as a counterexample, i.e.,

the compression and time bounds hold for every string of length ` ≥ n, yet it holds that

(Acomp, Adec) computes the identity function on input z. By an averaging argument, for all

n ∈ [2mε
, 2(m+1)ε], there exists an output πz of Acomp(z) of length at most (log n)k such that

Adec(πz) computes individual bits of z, i.e., decides the language L on input length log n,

with high probability in time (log n)k. Since n ≥ 2mε and Adec(πz) can be transformed into a

circuit of size poly(m, (log n)k), we get that L ∈ BPPSAT
∣∣ /poly, and thus L ∈ PSAT

∣∣
/poly [Adl78].

By Lemma 3.35, L ∈ NP/poly. As this is a contradiction, it follows that for infinitely many m

there must exist n ∈ [2mε
, 2(m+1)ε] such that the counterexample z output by Rε,k is valid. ∎

Now, we show that a slightly weaker hardness assumption, where the refuter only needs to

provide counterexamples against (log n)k-local prBPTICOMP[n⋅(log n)k, (log n)k]SAT
∣∣

, suffices

to obtain low-end derandomization of prAM.

Lemma 4.26. Assume there exists a constant c such that for all ε, k > 0, there exists

a low-end io-refuter Rk,ε with parameter ε for the identity function against (log n)k-local

prBPTICOMP[n ⋅ (log n)k, (log n)k]SAT
∣∣

, and that each Rk,ε is computable in Σ2-time nc with

log n bits of advice. Then, prAM ⊆ io-Σ2TIME[2nε]/nε.

Proof. The proof follows the proof of Theorem 4.22 closely, with just a few differences. The

main difference is that now, after fixing ε > 0, our objective is to obtain a targeted hitting-set

generator H for prAM that runs in Σ2TIME[2O(mε)]/mO(ε).
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On input a co-nondeterministic circuit D of size m, let d(m) = Θ(m ⋅ log m) denote the

description length of (Acomp(⋅, 1m), Adec(⋅, D)). Let also k be the same constant as in the

proof of Theorem 4.22. If there exists m′ ∈ [d(m), d(m+1)] and n ∈ [2(m′)ε , 2(m′+1)ε] such that

the refuter Rε,k outputs a valid counterexample on input 1n and any bottleneck protocol of

description length m′ (that is, m′ is one of the infinitely-many “good” input lengths for the

refuter), then H pads (Acomp(⋅, 1m), Adec(⋅, D)) to length exactly m′ and operates exactly as

in Theorem 4.22: It computes z = Rε,k(1n, (Acomp(⋅, 1m), Adec(⋅, D))) and uses z as the input

for the generator of Lemma 3.10. Otherwise, H outputs {0n}.

Because the intervals [d(m), d(m+1)] for all m cover all but finitely-many input lengths,

and Rε,k is guaranteed to output valid counterexamples for some n in the considered range for

infinitely many m′, H is guaranteed to work for infinitely many circuit sizes m. Identifying

m′ and n requires O(log m + log n) = mO(ε) bits of advice, and the running time for H is

2O(mε), which concludes the proof. ∎

4.6 Explicit constructions

In this section, we establish a connection between targeted generators for prAM and explicit

constructions. We first establish our general result in Section 4.6.1 and then highlight some

applications in Section 4.6.2.

4.6.1 General statement

We prove a more general version of Proposition 4.6 that applies to different types of targeted

generators for prAM. For the upcoming statement, recall that a probabilistic construction

for a property Π is a polynomial-time randomized algorithm that, on input 1n, outputs a

string x ∈ Π of length at least n with probability at least 1/2.

Proposition 4.27. Let T be a time bound and C ∈ {P, (NP∩coNP), NP, PNP
∣∣
}. Assume there

exists a targeted hitting-set generator for prAM of type C that is computable in time T and
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let Π be a property that respects the following conditions:

1. Π is decidable in coNP and admits a probabilistic construction.

2. There exists a polynomial time algorithm of type C that given a list x1, . . . , xk of strings

in {0, 1}n containing some xi ∈ Π outputs a string in Π of length at least n.

Then there exists an algorithm of type C that, on input 1n, runs in time poly(T (poly(n)))

and outputs a string in Π of length at least n.

Proof. Let A′ be a probabilistic construction for Π, B the algorithm in the second item and

H the assumed targeted generator for prAM. We describe an explicit construction A for

Π: On input 1n, A first constructs a co-nondeterministic circuit D that, on input a random

sequence r for A′, computes v ≐ A′(1n, r) and co-nondeterministically verifies that v ∈ Π.

Then, A computes H(D), obtaining a list of strings r1, . . . , rk. Finally, A runs algorithm B

on inputs A′(1n, r1), . . . , A′(1n, rk) and outputs whatever B does.

To see that A is correct, we note that because Π has a probabilistic construction and

Π ∈ coNP, it follows that D accepts at least a half of its inputs, while only accepting strings

r such that A′(1n, r) ∈ Π. In that case, the generator H on input D is guaranteed to output

a list r1, . . . , rk such that there exists ri for which A′(1n, ri) ∈ Π. Then, the guarantee on B

implies that A outputs a string in Π of length at least n. The circuit D has size m = poly(n),

and it can be constructed in that time. Then, computing H(D) takes time T (poly(n)), and

thus produces a list of strings of size at most T (poly(n)). Finally, running B on the resulting

list takes time poly(T (poly(n))).

For the case C = PNP
∣∣

, the construction above has two rounds of non-adaptive NP queries.

Using Fact 3.22, we can obtain a construction with a single round of non-adaptive NP queries

while incurring a polynomial time overhead. ∎
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4.6.2 Instantiations

In this section, we provide examples of explicit constructions that can be obtained by ap-

plying Proposition 4.27.

Nondeterministic construction of hard truth-tables. We show how to construct

truth-tables of high circuit complexity assuming the existence of targeted generators suffi-

cient to derandomize prAM. Then, using the construction, we prove Theorem 4.5.

Theorem 4.28. Assume there exists a targeted hitting-set generator for prAM computable

in nondeterministic time T (m). Then, there exists a nondeterministic algorithm that always

has an accepting computation path and, on input 1m, runs in time T (poly(m)) and outputs,

on every accepting computation path, the truth-table of a function with circuit complexity at

least m.

Proof. Assume there is a targeted hitting-set generator for prAM that is computable in

nondeterministic time T . It suffices to show that truth-tables of high circuit complexity

respect the first and second items in Proposition 4.27. Testing whether a truth-table x

has high circuit complexity can be done in coNP by universally guessing a circuit of size s

and checking that the guessed circuit fails to compute x. We now describe a probabilistic

construction A′ for the property: On input 1s, the algorithm A′ outputs a random truth-

table of a Boolean function on 2⌈log s⌉ input bits. Since there are at least 2s2 possible such

truth-tables but only 2O(s log s) circuits of size at most s, A′ succeeds with probability at

least 1/2 for sufficiently large s. For the second item, we note that one can just concatenate

(padding with zeroes in the end if necessary) a list x1, . . . , xk of truth tables that contains a

xi of circuit complexity at least s to obtain a single truth-table of circuit complexity greater

than or equal to s. ∎

Theorem 4.5 follows from Theorem 4.28 and traditional hardness vs. randomness trade-

offs [Uma03]. The conclusion of Theorem 4.28 together with the construction in [Uma03]
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results in a nondeterministic PRG that, on input 1m, runs in time poly(T (poly(m)) and

fools every circuit of size m, as desired.

Deterministic construction of rigid matrices. The rank-r rigidity of a matrix M over

a ring S, which we denote by RS
M(r), is the minimum number of entries of M that must

be changed so that the rank of M becomes r or below. The maximum r-rigidity of an

n × n matrix M is (n − r)2, and in [Val77], Valiant showed that most matrices have very

high rigidity (n − r)2/ log n. However, known deterministic explicit constructions do not

achieve this rigidity (see [Ram20] for some recent progress). We show that a deterministic

construction of matrices with very high rigidity follows from the existence of deterministic

refuters for a function f computable in deterministic polynomial-time against bottleneck

protocols.

Theorem 4.29. Assume that for some constants a ≥ 1 and ε ∈ (0, 1), there exists a function

f computable in deterministic time na that admits a deterministic polynomial time list-

refuter against prAMTICOMP[na+ε, nε] protocols with promised soundness for f . Then, for

any prime p, there is a deterministic polynomial-time algorithm that, on input n, outputs a

matrix Mn over the polynomial ring Fp[x] such that R
Fp[x]
Mn

= Ω((n − r)2/ log n).

Proof (sketch). We first use Theorem 4.19 to conclude the existence of a deterministic

polynomial-time targeted hitting-set generator for prAM. We now argue that the rigidity

property for matrices obeys the conditions of Proposition 4.27. Testing if a matrix is rigid

is in coNP by universally guessing a matrix A with “few” entries and verifying that the rank

of M +A is larger than r. The result of Valiant [Val77] implies a probabilistic construction

of rigid matrices over Fp for any prime p, and Klivans and van Melkebeek [KvM02] show

how to obtain a single rigid matrix (though over the polynomial ring Fp[x]) from a list of

matrices that is guaranteed to contain a rigid matrix. ∎

The reason we present the precondition of Theorem 4.29 in terms of the existence of

refuters is to provide a (constructive) hardness condition under which constructing rigid
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matrices is possible, following other works that construct rigid matrices under similar as-

sumptions [KvM02; GST03].

4.7 Further research

In this chapter, we fully characterized derandomization of prAM via targeted generators in

terms of a refutation task against protocols that go through a compression phase. With

the goal of characterizing any whitebox derandomization for prAM, the most important

problem that is left open is obtaining an equivalence between derandomization and targeted

generators for prAM. As mentioned in the introduction, the techniques employed to obtain

such an equivalence for prBPP [Gol11], which are also used in all equivalences involving

derandomization for prBPP [LP22; LP23; Kor22a; CTW23], do not seem compatible with

the prAM setting. The reason for this is that a major component for these arguments is

employing a derandomized algorithm as an oracle, which is fine for prBPP since P = coP, but

does not work for prAM since it is unknown whether NP = coNP.

We do remark, however, that we were able to avoid the complementation issue above in

some settings. In Chapter 3, we did so by relaxing the derandomization and uniformizing

a classical pseudorandom generator construction. In this chapter, we were able to do so by

relying on the resilient soundness property of the reconstructor for our targeted hitting-set

generator construction.

In the next chapter, we obtain further applications of the refutation and compression

framework in the space-bounded setting.
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Chapter 5

Space-Bounded Computation

5.1 Introduction

In this chapter, we apply the techniques we have developed in the previous chapters to

space-bounded computation in the settings of isolation and catalytic algorithms.

Isolation involves pinpointing a solution to a problem, out of the many that it could

have. In a computational context, isolation refers to efficient simulations by unambiguous

algorithms: nondeterministic algorithms that either have a unique accepting computational

path or none. For a resource-bounded class C, we typically aim for isolations where the

unambiguous algorithm is also in C. In this chapter we focus on isolation for two classes:

○ The class NL of logspace nondeterministic algorithms.

○ The class CNL of the so-called logspace nondeterministic catalytic algorithms.

Space-bounded isolation. In the space-bounded setting, the main open problem is

whether NL = UL, where NL denotes the class of problems decidable by nondeterministic

logspace algorithms, and UL the class of problems decidable by unambiguous logspace algo-

rithms. The question is equivalent to obtaining a UL-algorithm for the NL-complete problem

of Reachability: Given a digraph G and two vertices s and t, is there a path from s to t?
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It is known that NL ⊆ UL/poly [RA00]. In fact, they show that NL is in a randomized ver-

sion of UL, where the UL algorithm has two-way access to a random string, and may err with

low probability. The underlying algorithm is unambiguous regardless of the choice of random

string. For this reason, a common non-uniform hardness assumption for space-bounded com-

putations (SPACE[n] /⊆ io-SIZE[2ε⋅n] for some constant ε > 0) implies that NL ⊆ UL [ARZ99].

The way randomness is used in these works is via the Isolation Lemma [MVV87]: For any

set system F over a finite universe U , a random assignment of integer weights in the range

{1, . . . , 2 ⋅ ∣U ∣} to the elements in U makes the set of minimum weight in F unique with high

probability. In the context of space-bounded isolation, U may refer to the set of edges or

the set of vertices for the Reachability instances, and the set F refers to the set of paths

from s to t. Notice, however, that the isolation only guarantees, with high probability, that

the minimum-weight path between s and t is unique, whereas we wish that there either is

a unique path or none. To bridge this gap, Reinhardt and Allender [RA00] develop two

unambiguous logspace algorithms: One for testing whether a weighted graph is min-unique,

i.e., whether there exists a unique minimum-weight path between every pair of reachable

vertices, and one for determining whether there exists a path from s to t in a min-unique

graph.

There are also unconditional results on space-bounded isolation. Van Melkebeek and

Prakriya proved that NL ⊆ UL1.5, that is, that there exists an unambiguous algorithm that

decides Reachability while using O(log1.5 n) space [vMP19]. In fact, they show the

stronger result that there exists an unambiguous algorithm for Reachability that runs

in polynomial time and O(log1.5 n). Their result works by constructing a pseudorandom

weight-assignment generator, an algorithm that, on input 1n, outputs a sequence of weight

functions such that for every instance G of Reachability of description length n, there

exists at least one weight function that is min-isolating for G. In fact, constructing a suitable

targeted weight-assignment generator is equivalent to the inclusion NL ⊆ UL [PTV12]. By

a suitable targeted weight-assignment generator, we mean an unambiguous logspace algo-
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rithm that, on input an instance (G, s, t) of Reachability, outputs a weight function that

is min-isolating for G.

Catalytic algorithms. A catalytic algorithm has access to a limited amount of regular

read-write memory, while also having access to a potentially much larger catalytic memory

that can be modified, but must be restored to its initial configuration when the computation

ends [BCK+14]. A common setting is when the catalytic algorithm has O(log n) bits of

regular memory and poly(n) bits of catalytic memory, which is captured by the complexity

class CL. In the nondeterministic setting, the catalytic algorithm must restore the catalytic

tape on all computation paths.

As previously mentioned, isolation is also interesting in the setting of catalytic com-

putation, and the main open problem is whether CNL, the class of problems decided by

nondeterministic logspace catalytic algorithms, is in CUL, the catalytic logspace analogue

of UL. Until this work, as far as we know, the only result surrounding isolation in the

catalytic setting is that under the same derandomization assumption that implies NL = UL

(SPACE[n] /⊆ io-SIZE[2ε⋅n] for some constant ε > 0), it holds that CNL = CUL [GJS+19].

Whereas in the logspace setting it is known that NL = coNL [Imm88; Sze88], the analogous

result in the catalytic setting, CNL = coCNL, is only known under the same derandomization

assumption [BKL+17].

Our results. Our first contribution is a refutation and compression condition under which

space-bounded isolation can be achieved.

Theorem 5.1. There exists a universal constant c such that the following holds for all

ε ∈ (0, 1). If there exists a refuter computable in FUL for the identity function against

USPCOMP[(c/ε) ⋅ log n, nε], then NL = UL.

Where USPCOMP[s(n), γ(n)] denotes the class of bottleneck algorithms (see Section 4.3.1)

with compression length γ(n) and space bound s(n), where the decompression phase is an
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unambiguous algorithm.

We remark that the hypothesis of Theorem 5.1 follows from the non-uniform hardness

assumption from which space-bounded isolation is known to follow, and is seemingly weaker.

We also consider it to be more natural, since it concludes space-bounded isolation from a

constructive hardness assumption against space-bounded unambiguous algorithms.

Proposition 5.2. If SPACE[n] /⊆ io-SIZE[2ε⋅n] for some constant ε > 0, then the hypothesis

of Theorem 5.1 is true.

We also show that the hardness assumption of Theorem 5.1 is equivalent to a derandom-

ization task surrounding the search version of unambiguous algorithms.

Theorem 5.3. The following are equivalent:

1. For a a universal constant c and some ε ∈ (0, 1), there exists a refuter computable in

FUL for the identity function against USPCOMP[(c/ε) ⋅ log n, nε].

2. There exists a targeted pseudorandom generator for (UL ∩ coUL) computable in FUL.

3. Search−prBP ⋅ (UL ∩ coUL) ⊆ Search−pr(UL ∩ coUL).

Here, Search−prBP ⋅ (UL ∩ coUL) and Search−pr(UL ∩ coUL) are search-problem versions

of the promise-problem classes prBP ⋅ (UL∩ coUL) and pr(UL∩ coUL), respectively. We refer

the reader to Section 5.4.1 for their definitions.

In the catalytic setting, we show completely analogous results to those of the space-

bounded setting. In particular, we show how to obtain isolation from weaker assumptions

than previously known [GJS+19].

Theorem 5.4. There exists a universal constant c such that the following holds for all

ε ∈ (0, 1). If there exists a refuter computable in FCUL for the identity function against

CUSPCOMP[(c/ε) ⋅ log n, nε], then CNL = CUL.
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CUSPCOMP[s(n), γ(n)] denotes the class of bottleneck algorithms with space bound

s(n) and length compression γ(n), where the decompression phase is an unambiguous cat-

alytic algorithm.

The derandomization/refutation equivalence also extends to the catalytic setting, and

we show a different, more technical condition under which isolation follows (Theorem 5.21).

Finally, we show that a probabilistic version of the class NL, similar in spirit to the class

AM that is the focus of this dissertation, is in CL, i.e., every problem in the class admits a

logarithmic space catalytic algorithm.

Theorem 5.5. BPNL ⊆ CL.

The class BPNL is the class of problems admitting the following type of Arthur-Merlin

protocol: On input x, Arthur first selects a random string r, but does not read it. Merlin

then replies with a message y. Finally, Arthur runs a logarithmic space computation that has

two-way read only access to x and one-way read-only access to (r, y). We remark that similar

classes were studied before (see [Con93]), however, among other differences, the classes in

these works allow for an unbounded number of rounds of communication between Arthur

and Merlin.

Organization. In Section 5.2, we present an overview of the ideas underlying our results.

In Section 5.3, we present definitions, notation, and other preliminaries. In Section 5.4, we

establish our conditional space-bounded isolation result (Theorem 5.13). We establish the

equivalence of Theorem 5.3 in Section 5.4.1. In Section 5.5, we establish our results in the

catalytic setting (Theorems 5.4 and 5.5).

5.2 Technical overview

Our refutation-based results follow the techniques that we developed in Chapter 4, and make

use of recent space-efficient instantiations of the Nisan-Wigderson generator [NW94] due to
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Doron and Tell [DT23].

Following Reinhardt and Allender [RA00], let UReach be an unambiguous algorithm that,

on input an instance (G, s, t) of Reachability and a random string r of polynomial length

in ∣(G, s, t)∣ (representing a weight function w), runs the algorithms that check whether w

is min-isolating for G and, if it is, outputs whether there is a path between s and t in G.

By the Isolation Lemma, for each fixed (G, s, t), UReach accepts most of its random inputs.

Our goal is to derandomize UReach to show that NL = UL.

Let (G, R) be the pair of generator/reconstructor due to Doron and Tell [DT23]. Fix a

basis string z and a potential distinguisher D. Then one of the following must hold:

1. G(z) fools D.

2. RD(z) first compresses z to a smaller string, say of length ∣z∣1/2, and then restores z

from this compressed representation with high probability.

Moreover, both G and R run in space O(log ∣z∣).

As with our other results based on refutation, the idea for derandomizing UReach is to

use the refuter to obtain a string z such that item 2 above fails, in which case the output for

the corresponding generator must be pseudorandom for UReach(G, s, t; ⋅) (item 1 holds). For

the equivalences, we cast the refutation problem as a probabilistic search problem, which

can be derandomized under the refutation assumption in the same way. This is how we

obtain Theorems 5.13 and 5.3. Theorem 5.4 is completely analogous, where we derandomize

a catalytic unambiguous algorithm CUReach with a similar behavior to UReach.

The remaining results in the catalytic setting follow a similar strategy, though using the

catalytic tape as a source of pseudorandomness (a technique named compress-or-random

in [Mer23]). Let D be a randomized catalytic algorithm we wish to fool, such as CUReach.

In the random case, the pseudorandom set resulting from the catalytic tape fools D, and

we are done. In the compress case, the resulting set fails to fool D. Then, using a de-

terministic logspace variant of the Nisan-Wigderson reconstructor, due to Doron, Pyne and
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Tell [DPT24], it is possible to compress a portion of the catalytic tape. By setting the param-

eters accordingly, this process frees up enough space to carry out a trivial derandomization

for D, and we are done as well.

The proof that BPNL ⊆ CL follows the compress-or-random technique, and develops a

deterministic distinguisher-to-predictor reduction for nondeterministic read-once branching

programs (NROBPs) following a similar transformation for read-once branching programs

(ROBPs) due to Doron, Pyne and Tell [DPT24].

5.3 Preliminaries

5.3.1 Unambiguous computation

We define a machine model for the functional version of unambiguous computations.

Definition 5.6. Let A be a nondeterministic algorithm. We say that A is an FU algorithm

if, for every input x, there is exactly one succeeding computation path for A that outputs a

value, which we denote by A(x). We say that A computes a language L if A(x) = L(x) for

every input x. FUL algorithms are defined analogously. ◂

5.3.2 Catalytic computation

We first define catalytic and nondeterministic catalytic algorithms.

Definition 5.7. A catalytic algorithm M is defined as an algorithm in the usual sense, i.e.,

a Turing machine with a read-only input tape, a write-only output tape, and a read-write

work tape — with an additional read-write tape known as the catalytic tape. The catalytic

tape is initialized to hold an arbitrary string w, and M has the restriction that for any

initial setting of the catalytic tape, at the end of its computation the catalytic tape must be

returned to the original state w.
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A catalytic nondeterministic algorithm M is the nondeterministic variant of a catalytic

deterministic algorithm, and similar to a nondeterministic algorithm accepts if and only if

there exists a sequence of nondeterministic choices such that it accepts. Additionally, M is

required to restore its catalytic tape irrespective of its nondeterministic choices. ◂

Next, we define complexity classes that are based on catalytic algorithms.

Definition 5.8. Let s be a space bound. CSPACE[s] is the class of languages decidable by a

catalytic algorithm using s bits of regular workspace and 2s bits of catalytic workspace. The

class CL is defined as CSPACE[O(log n)]. CNSPACE[s] and CNL are the analogous classes for

catalytic nondeterministic algorithms, and CUSPACE[s] and CUL are the analogous classes

for catalytic unambiguous algorithms. ◂

The restriction to 2s bits of catalytic space is natural as otherwise storing the information

of the current position of the catalytic tape already requires more space than what the regular

worktape can accommodate.

We extend the definition of FU algorithms to catalytic logspace algorithms as well, ob-

taining the machine class FCUL.

5.3.3 Space-bounded bottleneck algorithms

Similar to the time-bounded bottleneck algorithms of Chapter 4, we define bottleneck algo-

rithms that have space bounds.

Definition 5.9. Let A be a class of promise algorithms, s a space bound and γ ∶ N → N.

We let ASPCOMP[s(n), γ(n)] be the class of computational problems with the following

properties for some probabilistic algorithm Acomp and some Adec ∈ A. For any input x ∈

{0, 1}∗:

○ The process first runs Acomp on input x, yielding a string π, and then runs Adec on

input π.
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○ Each of the two phases run in space s(∣x∣), and Acomp has two-way access to its random

bits.

○ The length of π never exceeds γ(∣x∣).

◂

To obtain derandomization, we are mostly interested in refuters against space-bounded

unambiguous algorithms, i.e., against classes USPCOMP[s(n), γ(n)]. Algorithms in this

class are pairs (Acomp, Adec) where Adec is a nondeterministic algorithm that always has a

unique succeeding path on any input. For our catalytic space results, we also employ refuters

against algorithms in classes CUSPCOMP[s(n), γ(n)], where the decompressor is a catalytic

nondeterministic algorithm that always has a unique succeeding path on any input.

5.3.4 Implicit oracle access

The reconstructors that we consider all need oracle access to a distinguisher. To make sure

that the overall simulations remain space-bounded once the oracles are replaced by actual

space-bounded algorithms, we make sure that the reconstructors access the distinguisher in

the following implicit way.

Definition 5.10. Let A be an algorithm and D ⊆ {0, 1}∗ an oracle. Giving A implicit oracle

access to D allows the algorithm to interact with D in the following way:

○ A can invoke the oracle D, which passes control to the oracle.

○ D can read the i-th bit of its input x, by feeding i to A. This passes control back to

the algorithm A.

○ A can give the oracle D a query value in {0, 1,�}, where � indicates that ∣x∣ < i. This

passes control back to D.
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○ D can give the algorithm A a Boolean answer value. This passes control back to the

algorithm.

At any moment in time, there is at most one unresolved oracle or input query. Moreover,

for any input x ∈ {0, 1}n the oracle D is guaranteed to only make input queries in [n+1]. ◂

5.4 Space-bounded isolation

In this section, we show that the existence of unambiguous space-bounded refuters for the

identity function against unambiguous space-bounded bottleneck algorithms implies space-

bounded isolation.

We need the following randomized unambiguous algorithm for reachability, due to Rein-

hardt and Allender:

Lemma 5.11 ([RA00], see also [vMP19]). There exists a probabilistic FUL algorithm,

which we denote by UReach that, on input a digraph G = (V, E) on n vertices, s, t ∈ V , and

two-way access to a random string r, either outputs � (indicating a “bad” random string)

or succeeds and outputs a bit indicating whether there is a path from s to t in G. UReach

requires poly(n) random bits and succeeds with probability at least 2/3.

Notice that, regardless whether UReach succeeds or fails there is always only a single

computation path that leads to this outcome.

We also need the following variant of the Nisan-Wigderson generator/reconstructor due

to Doron and Tell:

Lemma 5.12 (Follows from [DT23]). There exist a constant cNW, an algorithm NW

(the generator) and a pair Arec (the reconstructor) consisting of a probabilistic algorithm

Acomp and an oracle algorithm Adec such that for every z ∈ {0, 1}∗, δ ∈ (0, 1) and algorithm

D ∶ {0, 1}m → {0, 1}, where m = ∣z∣δ, at least one of the following holds.

1. NW(z, 1m) 1/m-fools D.
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2. AD
dec(Acomp(z, 1m)) outputs z with probability at least 2/3.

The construction also has the following properties:

○ Compression: On input z of length n and 1m, the output of Acomp has length at most

mδ⋅cNW.

○ Space efficiency: On input z of length n and 1m, NW, Acomp and Adec, ignoring the

space used by the oracle calls, run in space (cNW/δ) ⋅ log n.

○ Oracle access: Adec has implicit access to D (see Definition 5.10).

In the original phrasing of the Doron-Tell result, their reconstructor outputs a TC0 circuit

of size ∣z∣δ⋅cNW that makes non-adaptive queries to the distinguisher D. In our case, we take

Acomp to be their reconstructor, and Adec to be an algorithm that evaluates D on all indices

to recover z, and instantiate their reconstructor with a slightly smaller value of δ so that

the description for this circuit has length ∣z∣δ⋅cNW . In the same work, and using similar ideas

as the ones underlying the inclusions TC0 ⊆ NC1 ⊆ L, they also show how to adapt the

DFS-style logspace simulation for NC1 circuits to accommodate oracle-TC0 circuits. As the

circuit is non-adaptive, whenever the DFS-style simulation reaches an oracle gate and starts

simulating D, no other oracle calls to D are made until the oracle gate is fully evaluated,

resulting in the type of oracle access in our statement.

We are now ready to state and prove the main result for this section.

Theorem 5.13 (Theorem 5.1, restated). There exists a universal constant c such that

the following holds for all ε ∈ (0, 1). If there exists a refuter computable in FUL for the

identity function against USPCOMP[(c/ε) ⋅ log n, nε], then NL = UL.

Proof. We show that, under the assumption, there exists an unambiguous algorithm AU

that solves the Reachability problem using logarithmic space. It then follows by the

NL-completeness of Reachability that NL = UL.
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Let NW be the generator and Arec = (Acomp, Adec) be the reconstructor from Lemma 5.12.

Let ε be the constant in the statement, and R be the refuter against USPCOMP[(c/ε) ⋅

log n, nε]. On input an instance (G, s, t) of Reachability of length n, the high-level idea is

as follow: First, recall that our objective is to derandomize UReach. To do so, AU computes

the output for the refuter on input 1n′ for a sufficiently large n′ to be defined next and

the bottleneck algorithm (Acomp, A
UReach(G,s,t;⋅)
dec ), where (Acomp, Adec) is the reconstructor of

Lemma 5.12. By setting n′ correctly, the refuter must output z of length at least n′ such

that A
UReach(G,s,t;⋅)
dec (Acomp(z, 1m)) fails to output z with high probability, in which case NW

with input z must fool UReach(G, s, t; ⋅), achieving our objective. Details follow.

Let k be a constant such that UReach(G, s, t; ⋅) needs m = nk random bits on inputs

of length n. We set n′ = m1/δ, for a value of δ to be defined next. Recall that, if the

generator of Lemma 5.12 fails with string z, then the reconstructor compresses z to length

∣z∣δ⋅cNW , where cNW is a universal constant. We thus set δ = ε/cNW, getting compression

length ∣z∣ε as in the theorem statement. To guarantee that the refuter is successful on input

1n′ and (Acomp, A
UReach(G,s,t;⋅)
dec ), it still remains to analyze the space complexity for Acomp and

A
UReach(G,s,t;⋅)
dec on inputs of length ` ≥ n′, and to argue that A

UReach(G,s,t;⋅)
dec is an FU algorithm.

By Lemma 5.12, the space complexity of Acomp on an input of length ` is (cNW/δ) ⋅

log ` = (c2
NW/ε) ⋅ log n, which is also a space-bound for Adec ignoring the oracle calls to

UReach(G, s, t; ⋅). We now analyze A
UReach(G,s,t;⋅)
dec . Given the type of oracle access that Adec

has to UReach(G, s, t; ⋅), its space-complexity is upper-bounded, up to a constant, by the

sum of the space-complexities of Adec and UReach(G, s, t; ⋅). As the space complexity of

UReach(G, s, t; ⋅) is O(log n), and the input length for (Acomp, Adec) is ` ≥ poly(n), there

exists a constant c > c2
NW such that both Acomp and A

UReach(G,s,t;⋅)
dec run in space (c/ε) ⋅ log `.

Since Adec is deterministic apart from the oracle calls to UReach(G, s, t; ⋅), it follows that

A
UReach(G,s,t;⋅)
dec is an FU algorithm.

It remains to analyze AU . First, AU computes the refuter on an input of length n′+O(n) =

poly(n), where the O(n) term captures the description length of (Acomp, A
UReach(G,s,t;⋅)
dec ).
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Thus, this first step requires unambiguous space O(log n), and produces a string z of length

poly(n). Then, AU computes UReach(G, s, t; ρ) for each ρ output by NW(z, 1m) until obtain-

ing a success, which is guaranteed by the discussion above. Using standard space-efficient

composition, and under the usual rule for composing unambiguous algorithms where the

overall computation rejects if a computation path for either unambiguous algorithm rejects,

the overall space-complexity for AU is O(log n). ∎

We believe that isolation is indeed equivalent to the refutation assumption of Theo-

rem 5.13, but we were unable to prove this equivalence so far. In the next section, we

present a derandomization assumption that captures this refutation task.

5.4.1 An equivalence between refutation and derandomization

Toward obtaining an equivalence, and following Definition 3.20, we introduce the search

version of the class prBP ⋅ (UL ∩ coUL).

Definition 5.14. Let RY and RN be two disjoint binary relations. We say that (RY , RN)

is in Search−prBP ⋅ (UL ∩ coUL) if the following two conditions hold.

1. The decisional problem represented by (RY , RN) is in prBP ⋅ (UL∩coUL); that is, there

exists a (UL ∩ coUL) algorithm V such that for every (x, y) ∈ RY , Prr[V (x, y; r) = 1] ≥

2/3 and for every (x, y) ∈ RN , Prr[V (x, y; r) = 1] ≤ 1/3.

2. There exists an FUL algorithm G such that, for every x for which RY (x) ≠ ∅, it holds

that Prr[G(x; r) ∈ RY (x)] ≥ 2/3, where RY (x) = {y ∣ (x, y) ∈ RY }.

Both V and G are allowed two-way access to their random bits. ◂

We similarly define the search version of Search−pr(UL∩coUL), where the solution finding

algorithm G and the verifier V are both (UL ∩ coUL) algorithms.

First, we show that the refutation assumption of Theorem 5.13 implies derandomization

for the class Search−prBP ⋅ (UL ∩ coUL).
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Lemma 5.15. There exists a universal constant c such that the following holds for all

ε ∈ (0, 1). If there exists a refuter computable in FUL for the identity function against

USPCOMP[(c/ε) ⋅ log n, nε], then Search−prBP ⋅ (UL ∩ coUL) ⊆ Search−pr(UL ∩ coUL).

Proof. By replacing UReach by a generic (UL ∩ coUL) algorithm with two-way access to its

random bits, the argument of Theorem 5.13 shows that, under the refutation assumption

in the theorem statement, there exists a targeted pseudorandom generator for (UL ∩ coUL)

that is itself computable in FUL.

Let (RY , RN) ∈ Search−prBP ⋅ (UL ∩ coUL). First, notice that the existence of a targeted

generator as in the previous paragraph implies that prBP ⋅ (UL ∩ coUL) ⊆ pr(UL ∩ coUL),

and thus there exists an unambiguous verifier Vderand for (RY , RN) that runs in logarithmic

space, requiring no randomness. Let G be the solution-finding algorithm for (RY , RN)

and fix an input x ∈ {0, 1}n. Note that for any r such that Vderand(x, G(x; r)) = 1, we

have that G(x; r) is a valid solution for the input x. Therefore, it suffices to compute the

multi-set S output by the targeted PRG on input x and the algorithm Vderand(x, G(x; ⋅)),

compute Vderand(x, G(x; r)) for each r ∈ S, and output G(x; r) for the first r that is accepted.

The entire procedure runs in unambiguous logarithmic space by standard space-efficient

composition results, and thus (RY , RN) ∈ Search−pr(UL ∩ coUL). ∎

We are now able to prove the equivalence of Theorem 5.3.

Proof of Theorem 5.3. That 1 Ô⇒ 2 and 2 Ô⇒ 3 both follow from the proof of

Lemma 5.15. To see that 3 Ô⇒ 1, we show that computing a refuter as in the first item is

a Search−prBP ⋅ (UL∩coUL) problem. The argument is very similar to that of Theorem 4.21.

We include the details for completeness.

Consider an input (1n, Acomp, Adec) for the refutation task, and fix a value of ε ∈ (0, 1).

Let A′comp be the version of Acomp with a (c/ε) ⋅ log n space bound, and similarly let A′dec be

the version of Adec that has a (c/ε) ⋅ log n space bound and outputs 0n in case its input has

length greater than nε. Define (RY , RN) as follows:
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○ (1n, Acomp, Adec, z) ∈ RY if and only if ∣z∣ ≥ n and Pr[(A′comp, A′dec(z)) = z] ≤ 1/3.

○ (1n, Acomp, Pdec, z) ∈ RN if and only if ∣z∣ ≥ n and Pr[(A′comp, A′dec(z)) = z] ≥ 2/3.

We first show how to obtain a counterexample with high probability. Assume that

(A′comp, A′dec) computes the identity function with probability at least 1/3 on an input z of

length `, and that ∣A′comp(z)∣ ≤ `ε. By an averaging argument, there exists a random sequence

r1 for A′comp such that A′dec(A′comp(z; r1); r2) outputs z with probability at least 1/3 (over

r2). If we let πz = A′comp(z; r1) and fix (A′comp, A′dec), we can describe z as one of the only

three possible strings that A′dec(πz) outputs with probability at least 1/3. This description

for z has length at most `ε + c for some constant c, and thus at most 2`ε+c+1 out of the 2`

strings of length ` can have such a short description. We then set ` = max(n, n0) = Θ(n),

where n0 is the smallest integer such that 2nε
0+c+1/2n0 ≤ 1/3. In this case, it suffices for

the solution-finding algorithm to output a random string of length `, which will be a good

counterexample with probability at least 2/3.

As for verifying a solution, on input (1n, Acomp, Adec) and a candidate counterexample z, it

suffices to approximate, via sampling up to error 0.1 and with confidence 0.9, the probability

that A′dec(A′comp(z)) = z, and accept if it is lower than 0.5. The process only requires a

constant number of samples/simulations, and thus can be performed in (UL ∩ coUL). ∎

We finish this section by observing how the previously-known assumption for isolation is

stronger than the assumption of Theorem 5.13.

Proof (Sketch) of Proposition 5.2. The assumption of Theorem 5.13 is equivalent to the ex-

istence of targeted pseudorandom generators for unambiguous logspace computations that

are themselves computable in unambiguous logspace, while the assumption SPACE[n] /⊆

io-SIZE[2ε⋅n] for some ε > 0 is equivalent the existence of regular (oblivious) pseudorandom

generators for polynomial-size circuits, computable in logarithmic space. As oblivious PRGs

are a specific type of targeted PRG, and UL ⊆ P/poly, the result follows. ∎
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5.5 Space-bounded catalytic computation

In this section, we explore the previously-developed techniques relating refutation and com-

pression to the catalytic setting.

We need the following randomized unambiguous algorithm for nondeterministic catalytic

computations, due to Gupta, Jain, Sharma and Tewari.

Lemma 5.16 ([GJS+19]). There exists a probabilistic FCUL algorithm, denoted CUReach

that, on input the description of a CNL algorithm M , x ∈ {0, 1}n, catalytic tape contents

w ∈ {0, 1}poly(n), and two-way access to a random string r, either outputs � (indicating

a “bad” random string) or succeeds and outputs M(x, w). The machine requires poly(n)

random bits and succeeds with probability at least 2/3.

We remark that the hidden constants in the time, catalytic space, and randomness com-

plexity of CUReach depend on the particular machine M it receives as input.

Following the same strategy as with Theorem 5.13, it is possible to conclude that CNL =

CUL from the existence of a refuter against bottleneck catalytic unambiguous algorithms.

Theorem 5.17 (Theorem 5.4, restated). There exists a universal constant c such that

the following holds. If for a sufficiently small constant ε ∈ (0, 1) there exists an FCUL

unambiguous refuter for the identity function against CUSPCOMP[(c/ε) ⋅ log n, nε], then

CNL = CUL.

Proof (sketch). The proof is almost identical to that of Theorem 5.13, though this time

the potential distinguisher is an FCUL algorithm (the algorithm CUReach of Lemma 5.16).

Given the way Adec in Lemma 5.12 accesses its oracle, and the fact that the same strategy for

achieving space-efficient composition works for catalytic computations, it follows similarly

that ACUReach
dec is an FCUL algorithm. The same strategy is used to guarantee that the final

simulation for a CNL language runs in (CUL ∩ coCUL). ∎
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Also similar to the regular space-bounded setting, we can obtain an equivalence with

derandomizing the search version of prBP⋅(CUL∩coCUL). We refrain from formally presenting

this equivalence as it does not introduce any new ideas. We do mention, however, that

the refutation assumption of Theorem 5.4, while incomparable to that of Theorem 5.13

(since it has a more relaxed requirement for the computability of the refuter while also

strengthening the class of algorithms to be refuted), is also weaker than the previously-

known assumption from which CNL = CUL follows, that of linear-exponential circuit lower

bounds for SPACE[n] [GJS+19]. This is the case because since CUL ⊆ CNL ⊆ ZPP [BKL+17],

a pseudorandom generator for polynomial-size circuits suffices to derandomize the search

version of prBP ⋅ (CUL ∩ coCUL) that is equivalent to the refutation task.

5.5.1 Isolation via the compress-or-random framework

In this section, we present another condition under which CNL = CUL. Toward developing

this result, we formally introduce the notion of a predictor, we used before in Section 3.4.

Many pseudorandom generator constructions, and in particular the Nisan-Wigderson con-

struction [NW94], which we use heavily in this chapter, rely on transforming a distinguisher

for the generator into a previous bit predictor.1

We have already defined to notion of δ-fooling in Section 3.5.5. We now define the notion

of δ-predicting.

Definition 5.18. Let G be a distribution over {0, 1}m, δ ∈ [0, 1/2] and P an algorithm/or-

acle. We say that P is a δ-previous bit predictor for G if there exists i ∈ {1, . . . , m} such

that

Pr
r←G
[P (r>i) = ri] ≥

1
2 + δ,

that is, P , when receiving the last m − i bits of a random sample r of G, outputs the i-th

bit of r with probability at least 1/2 + δ. ◂
1For the Nisan-Wigderson construction, it does not matter whether the transformation is to a previous-

bit predictor or a next-bit predictor.
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When considering a predictor for a pseudorandom generator G, the advantage of the

predictor is measured with respect to a randomly selected element in the multi-set output

by G.

We also introduce the notion of a distinguisher-to-predictor transformation.

Definition 5.19. We say that a class of algorithms A has a distinguisher-to-predictor trans-

formation if there is a meta-algorithm that, given A(⋅, ⋅) ∈ A, an input x of length n and 1m,

outputs a collection of A algorithms (that also get input access to x) P1, . . . , Ppoly(m,n) such

that for every distribution G over {0, 1}m, one of the following occurs:

1. G (1/m)-fools A(x, ⋅).

2. There is i such that Pi(x, ⋅) is a (1/m2)-previous-bit-predictor for G.

◂

The choice of 1/m2 for the advantage for the predictor stems from the hybrid argument

which, starting from a distinguisher on m input bits that is not 1/m-fooled by G, probabilis-

tically constructs a 1/m2 previous-bit predictor.

Finally, we introduce another variant of the Nisan-Wigderon generator/reconstructor,

due to Doron, Pyne and Tell (though stated in this format by Cook, Li, Mertz and Pyne):

Lemma 5.20 ([CLM+24], following [DPT24]). There exist universal constants cNW > 1

and cNW > γ > 0 such that the following holds. There exists algorithms NW, Aerase and

Arecover such that for any m ∈ N and z ∈ {0, 1}mcNW , we have the following:

1. Efficiency. NW(z) runs in space O(log m) and outputs a set of m-bit strings.

2. Deterministic Reconstruction. Aerase and Arecover describe a reconstruction process that

act as follows:
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○ Aerase, given oracle access to z and implicit oracle access to a (1/m2)-previous bit

predictor P for NW(z), returns h ∈ {0, 1}O(log m) and the endpoints of an interval

I ⊆ [mcNW] of length mγ.

○ Arecover, given implicit oracle access to P and oracle access to z̃ such that z̃ agrees

with z on every position outside of I, satisfies for every j ∈ I:

Az̃,P
recover(h, j) = zj.

We are now ready to state and prove the other condition under which we may conclude

that CNL = CUL.

Theorem 5.21. Assume that there exists a distinguisher-to-predictor transformation for

(CUL ∩ coCUL) computable in FCUL, then CNL = CUL.

Proof. Let L ∈ CNL and M a nondeterministic catalytic machine that decides L in catalytic

space c ⋅ log n for some constant c. Let CUReach be the algorithm from Lemma 5.16.

The high-level strategy is to use an additional catalytic tape v of sufficiently large length

poly(n) as a basis for the generator of Lemma 5.20 to attempt to hit the algorithm CUReach

with regular inputs M and x and catalytic tape w. If that fails, then we run the distinguisher-

to-predictor reduction for CUReach, obtaining a list of candidate predictors with which to

run the reconstructor for Lemma 5.20. Because the compression achieved by the recon-

structor allows for describing a significant interval of the catalytic tape via the remaining

contents, the algorithm can test the reconstruction with each predictor until it finds one that

works. When it finds one that works, it erases the interval and uses the space that was freed

to run a trivial polynomial-space algorithm for L, using the fact that CNL ⊆ ZPP ⊆ PSPACE.

Details follow.

Let c′ be a sufficiently large constant such that L is decidable in space nc′ and CUReach

requires at most nc′ random bits on input the algorithm M and a string of length n. Let

x ∈ {0, 1}n be an input and w ∈ {0, 1}nc be the initial contents for the catalytic tape of M .
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The unambiguous catalytic algorithm AU for L has access to a catalytic tape consisting of

(w, v), where v has length ∣v∣ = nc′⋅cNW/γ, for the constants cNW and γ of Lemma 5.20.

The operation of AU is as follows: First, it computes the multi-set S output by generator

NW from Lemma 5.20 instantiated with the string v. Then, for each string r in S, it

computes the value of CUReach(x, w; r). If any of the executions succeeds, then it outputs

whatever CUReach does for that value of r. In this case, we are guaranteed that the output

equals M(x, w). The computation until this point runs in (CUL ∩ coCUL) using standard

space-efficient composition.

In case none of the executions succeed, AU runs the assumed distinguisher-to-predictor

reduction for CUReach(x, w; ⋅), obtaining a list of candidate predictors P1, . . . , Ppoly(n). Let

Aerase and Arecover be the algorithms from Lemma 5.20. For each predictor Pi, U performs the

following actions: First, it computes Av,Pi
erase, obtaining a string hi of length O(log n) and the

endpoints of an interval Ii of length ∣v∣γ/cNW = nc′ . Then, it checks whether Av,Pi
recover(hi, j) = vj

for all j ∈ Ii. Because CUReach(x, w; ⋅) succeeds on most random inputs yet fails on every

output of NW(v), and given the assumed distinguisher-to-predictor reduction, there must be

some Pi such that Av,Pi
recover(hi, j) = vj for all j ∈ Ii. For the first i such that this test succeeds,

AU sets the part of v indexed by Ii as 0nc′ and uses it as a regular read-write memory to run

the nc′-space algorithm for L, obtaining the value of M(x, w) and finishing with catalytic

tape (w, v′), where v′ agrees with v on every bit except for the ones in interval Ii. It then

restores v by running Av′,Pi
recover(hi, j) for every j ∈ Ii and outputs M(x, w). Because of the way

Arecover accesses its oracle and just like in the proof of Theorem 5.13, Av′,Pi
recover(⋅) is an FCUL

algorithm. By reusing the space for storing each string hi and interval Ii, and computing

the description for each predictor bit-by-bit space-efficiently, the entire simulation runs in

(CUL ∩ coCUL). ∎

We remark that the standard randomized distinguisher-to-predictor reduction implies

that, for a distribution computable in FCUL, computing a distinguisher-to-prediction re-

duction can be solved in Search−pr(CUL ∩ coCUL). As this relaxation suffices to establish
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Theorem 5.21, it follows that the hypothesis of Theorem 5.21 is no stronger than that of

Theorem 5.4.

5.5.2 Probabilistic NL is in CL

We conclude with another application of the compress-or-random framework together with

distinguisher-to-predictor reductions, by showing the inclusion BPNL ⊆ CL. We start by

defining the class BPNL.

Definition 5.22. BPNL contains languages L ∈ {0, 1}∗ for which there exists a deterministic

algorithm M running in space O(log n) such that:

x ∈ L Ô⇒ Pr
r
[∃y M(x, y; r) = 1] ≥ 2/3

x ∉ L Ô⇒ Pr
r
[∃y M(x, y; r) = 1] ≤ 1/3.

M has two-way read access to x, and one-way read access to both y and r. It also first reads

the entirety of r and only after that starts reading y. ◂

The class BPNL differs from the randomized logspace classes considered until now such as

BP ⋅ (UL∩ coUL) because the underlying machines for problems in BPNL only have one-way

access to their random bits, while the other classes considered all require two-way access

to the random bits. Note a direct comparison with the class AM that was a major focus

for this dissertation: We can view the process underlying a BPNL algorithm as first having

Arthur select a random string (without looking at it) and then Merlin providing a reply. In

the end, Arthur reads his random string, followed by Merlin’s response, and then makes a

decision, all the while being limited to logarithmic space. By enumerating the polynomially-

many random and nondeterministic guesses and simulating the process, we remark that

BPNL ⊆ PSPACE (though our result implies, in particular, that BPNL ⊆ ZPP).

It is worth mentioning that even slight modifications to BPNL make it potentially much

larger. For example, having Merlin go first in the interactive proof definition above leads to

the class NP [Lip90].
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The computation of a BPNL algorithm M on input x can be described via a nonde-

terministic read-once branching program (NROBP) of polynomial width, which we define

next.

Definition 5.23. A nondeterministic read-once branching program (NROBP) of width w

is specified by an initial state vs ∈ [w], an accepting state va ∈ [w] and a sequence of

transition functions Bi ∶ [w] × {0, 1} → [w] for i ∈ [2m]. The NROBP defines a function

B ∶ {0, 1}2m → {0, 1} as follows. On input (r, y), start at vs. Then for i = 1, . . . , n, read the

symbol ri and transition to the state vi = Bi(vi−1, ri). After that, do the same for y, ending

at some state in [w]. We generally only consider r as the actual input for the NROBP B,

and say that it accepts r, i.e., B(r) = 1, if and only if there exists y such that the process

above with (r, y) ends at state va. ◂

The conversion from a BPNL algorithm M on input x ∈ {0, 1}n into an NROBP can

be performed in deterministic space O(log n) by following the standard transformation for

logspace algorithms into Read-once branching programs (ROBPs), where the hidden con-

stant depends on M . We develop a distinguisher-to-predictor transformation for NROBPs

along the lines of the same transformation for ROBPs by Doron, Pyne and Tell [DPT24].

To state and prove this result, we first introduce subprograms for NROBPs

Definition 5.24. For an NROBP B ∶ {0, 1}2m → {0, 1} of length n and width w, let Bi,j be

the subprogram of length m − i and width w defined as follows. We let Bi,j be B with the

first i layers removed, and vertex j in layer i is marked as the new start vertex. Note that

Bi,j can be described with log (nw) bits given B, and can be constructed in logspace given

B. ◂

We now show that NROBPs admit a logspace distinguisher-to-predictor reduction.

Lemma 5.25. Given an NROBP B of length 2m and width w, for every i ∈ [m] (representing

an index into the random string it reads), j ∈ [w], and b ∈ {0, 1}, let Pi,j,b ∶ {0, 1}m−i → {0, 1}
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be defined as Pi,j,b(r) = Bi,j(r) ⊕ b. Then for every δ > 0, for every NROBP B, for every

distribution G over {0, 1}m, at least one of two events occurs:

1. G δ-fools B, or

2. there is i, j, b such that Pi,j,b is a δ/m-previous-bit predictor for G.

Proof. We assume that the first item does not occur and show that the second item must

then hold. For i ∈ {0, . . . , m}, let Zi denote the hybrid distribution where the first i bits

are uniform and the remaining ones are sampled according to G. By assumption, we have

∣E[B(G)] − E[B(Um)]∣ > δ, where Um denotes the uniform distribution on m bits. By the

standard transformation from distinguishability to predictability, there is z ∈ {0, 1}i and

b ∈ {0, 1} such that

Pr
r←G
[B(z ○ r>i) ⊕ b = ri] >

1
2 +

δ

m
.

But observe that B(z ○ r>i) = Bi,j(r>i) for some j ∈ [w], as fixing the first i bits to z is

equivalent to starting the computation from the state j that B reaches after processing z.

This concludes the proof since Pi,j,b(r) = Bi,j(r) ⊕ b = B(z ○ r>i) ⊕ b. ∎

We remark that, since NL = coNL, the construction of Lemma 5.25 can be evaluated in

NL even if b = 1, which requires negating the computation. Now are ready to show that

BPNL ⊆ CL.

Proof of Theorem 5.5. The proof is similar to that of Theorem 5.21, so we focus on the

differences. Let L ∈ BPNL and M be a logspace nondeterministic algorithm witnessing this

containment that requires space c ⋅ log n and m = nc random/nondeterministic bits. We

describe a catalytic logspace algorithm AC that decides L. AC receives as input x ∈ {0, 1}n

and has access to a catalytic tape (w, v) of sufficiently large length poly(n).

As in Theorem 5.21, AC computes the generator NW of Lemma 5.20 with input v.

However, before trying to use NW(v) to derandomize M(x; ⋅), AC runs the predictor-to-

distinguisher transformation underlying Lemma 5.25, obtaining a list of candidate predictors.



211

In more detail, note that the computation of M(x; ⋅) can be captured by an NROBP B of

length 2m and width m. AC can then enumerate values of i ∈ [m], j ∈ [m] and b ∈ {0, 1},

where each one describes (with O(log m) = O(log n) bits) a candidate predictor Pi,j,b out

of poly(n) many. Then AC checks, in the same way as in Theorem 5.21, whether there is

a “good” predictor by checking whether the reconstructor (Aerase, Arecover) of Lemma 5.20

achieves the compression it is supposed to in case some Pi,j,b is a previous-bit predictor with

sufficient advantage. To evaluate the P ′i,j,bs, we use the fact that NL ⊆ CL [BCK+14], and

have AC use the w portion of its catalytic tape as the catalytic tape for the NL simulation.

If any of the predictors achieves enough compression, then we can free enough space to run a

trivial space simulation for L, as in Theorem 5.21 and using the fact that BPNL ⊆ PSPACE.

Otherwise, it must be the case that NW(v) 1/m-fools M(x; ⋅), in which case AC can compute

NW(v), use each string in the result multi-set as the randomness for M(x; ⋅) and output the

majority answer, again using the fact that NL ⊆ CL to simulate M .

Correctness follows from the discussion above. That AC requires only regular workspace

O(log n) follows from standard space-efficient composition results. ∎

5.6 Further research

In this chapter, we explored applications of the compression and refutation ideas of the

previous chapters to the settings of space-bounded isolation and catalytic computation.

A recent result in the setting of catalytic computation unconditionally derandomizes the

class of probabilistic logspace catalytic algorithms [CLM+24] by further expanding on some

of the same ideas that are present in this chapter. We believe that the new techniques

introduced by [CLM+24] can be leveraged to obtain unconditional results for space-bounded

catalytic computations, such as showing that CNL = coCNL and CNL = CUL.
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