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Abstract

Blackbox derandomization of probabilistic decision algorithms (the class BPP) or Arthur-
Merlin protocols (the class AM) work through the construction of pseudo-random generators
or hitting-set generators. Their existence is well-known to be equivalent to lower bounds for
decision problems against circuits or nondeterministic circuits.

Whitebox derandomization in the BPP setting has been shown equivalent to the existence of
targeted pseudo-random generators (Goldreich, LNCS). Chen and Tell (FOCS’21) established
a near-equivalence with lower bounds for multi-bit functions against algorithms on almost-
all inputs. Recently, Chen, Tell and Williams (FOCS’23) obtained a full equivalence with
deterministic refuters for functions computable in P against probabilistic algorithms that go
through a compression phase.

In the AM setting, Van Melkebeek and Sdroievski (CCC’23) established that targeted hitting-
set generators are near-equivalent with lower bounds for multi-bit functions against algorithms
on almost-all inputs. In this paper, we establish a full equivalence with nondeterministic refuters
for functions computable in NP against Arthur-Merlin protocols that go through a compression
phase. We also investigate applications of targeted hitting-set generators in the AM setting to
explicit constructions, and argue that they imply regular hitting-set generators for MA.
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1 Introduction

A central problem in the theory of computing is whether bounded-error probabilistic algorithms can
be simulated deterministically with a polynomial overhead in time (the BPP versus P problem). In
the context of interactive proofs, the corresponding problem is whether constant-round interactive
proofs, commonly referred to as Arthur-Merlin protocols, can be simulated nondeterministically
with a polynomial overhead in time (the AM versus NP problem). Classical hardness vs. random-
ness tradeoffs conclude derandomization from lower bounds, and in some cases equivalences are
known. As the lower bound hypotheses are conjectured to hold, so are the conclusions BPP = P
and AM = NP. However, in both settings even subexponential derandomizations remain open.

BPP setting. Linear-exponential circuit lower bounds for E
.
= DTIME[2O(n)] imply the existence

of pseudo-random generators (PRGs) that achieve the derandomization prBPP ⊆ P, where prBPP
denotes the promise problem version of BPP [NW94, IW97]. Weaker circuit lower bounds yield
PRGs achieving weaker derandomization results. At the low end of the derandomization spectrum,
polynomial circuit lower bounds for EXP result in subexponential-time simulations for prBPP.
PRGs lead to blackbox derandomization as they produce a small set of random-bit strings on which
the acceptance probability of the randomized process under consideration is approximately the same
as on all random-bit strings, for any input of a given length. In fact, blackbox derandomization
is equivalent to circuit lower bounds, and the equivalence holds over the entire derandomization
spectrum [SU05, Uma03].

It is open whether blackbox derandomization is as powerful as general, so-called whitebox, de-
randomization. Goldreich [Gol11] argued that whitebox derandomization of prBPP is equivalent
to seemingly weaker objects than PRGs, namely targeted PRGs, which take an input x for the
underlying randomized process and produce a small set of random-bit strings on which the ac-
ceptance probability approximates the true acceptance probability on that specific input x. Chen
and Tell [CT21] raised the question of an equivalent lower bound and presented a near-equivalence
in terms of uniform lower bounds for multi-bit functions that hold on almost-all inputs, in the
sense that every algorithm in the class for which the lower bound holds can only compute the hard
function on finitely many inputs. Their result falls short of a full-fledged equivalence due to an
additional depth restriction in the direction from hardness to derandomization.

Later works managed to obtain full-fledged equivalences with other hardness conditions, all
related to compression. Liu and Pass did so for hardness of separating high from low Levin-
Kolmogorov complexity [LP22] as well as for hardness in the presence of efficiently-computable
leakage [LP23]. Korten [Kor22] established an equivalence with the existence of a determinis-
tic polynomial-time algorithm for the following problem: Given a probabilistic circuit Ccomp :
{0, 1}n → {0, 1}n−1 and a deterministic circuit Cdec : {0, 1}n−1 → {0, 1}n, find a string z ∈ {0, 1}n
such that Cdec(Ccomp(z)) differs from z with high probability. Chen, Tell, and Williams [CTW23]
viewed such an algorithm as a refuter for the identity function against a class A of algorithms
that go through a compression phase, reduced the class A, and extended the result to efficiently
computable multi-bit functions other than identity. Their framework also captures the equivalences
from [LP22] and [LP23]. For future reference, we state their main result in our notation (explained
after the statement).1

1Chen, Tell and Williams [CTW23] state their main result in terms of refuters against efficient probabilistic
streaming algorithms that run in small space. We believe, however, that our TICOMP notation better captures the
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Theorem 1 ([CTW23]). The following are equivalent:

1. For some constant ϵ ∈ (0, 1), there exists a polynomial-time list-refuter for the identity func-
tion against prBPTICOMP[n1+ϵ, nϵ].

2. For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a function computable in deter-
ministic time na that admits a deterministic polynomial-time list-refuter against the class
prBPTICOMP[na+ϵ, nϵ].

3. prBPP ⊆ P.

For a class A of algorithms, ATICOMP[t(n), s(n)] denotes the class of computational processes
obtained by first running a probabilistic algorithm Acomp and then an algorithm Adec ∈ A on the
output of Acomp such that both Acomp and Adec run in time t(n) and Acomp outputs a string of length
at most s(n). Assuming s(n) < n, one can view Acomp as producing a compressed representation
of the input, from which Adec is able to compute the output. We refer to a pair (Acomp, Adec) as a
bottleneck algorithm. A refuter for a function f against a class A′ is a meta algorithm that, given
as input the description of an algorithm A′ ∈ A′ and a length n, finds an input z of length at least n
on which A′ fails to compute f . A list-refuter similarly outputs a list z1, . . . , zτ of inputs of length
at least n that contains at least one zi on which A′ fails to compute f .

Note that item 2 in Theorem 1 is a relaxation of item 1. Note also that the existence of the refuter
in item 1 or 2 only guarantees that, for any fixed A′ = (Acomp, Adec) in prBPTICOMP[t(n)1+ϵ, nϵ],
there exist infinitely many inputs on which A′ fails to compute the function under consideration.
This stands in contrast with the setting of hardness on almost-all inputs, where A′ can only succeed
on finitely many inputs. However, in the refutation setting the counterexamples need to be found
efficiently.

AM setting. An equivalence between circuit lower bounds and blackbox derandomization is
known throughout the entire spectrum [KvM02, MV05, SU05]. The role of EXP is now taken over
by NEXP ∩ coNEXP, and the circuits are nondeterministic (or single-valued nondeterministic, or
deterministic with oracle access to an NP-complete problem like SAT). The simulations use hitting-
set generators for AM that are efficiently computable nondeterministically. Hitting-set generators
are the natural constructs in the AM setting because every Arthur-Merlin protocol can be efficiently
transformed into an equivalent one with perfect completeness. As in the BPP setting, the lower
bound equivalences for blackbox derandomization of prAM scale smoothly.

Until recently, not much was known in the whitebox setting for AM. In [vMMS23a] we estab-
lished a near-equivalence with hardness on almost-all inputs. In one direction, we showed that
if there is a length-preserving function f computable in nondeterministic polynomial time that is
hard on almost-all inputs against faster promise Arthur-Merlin protocols, then prAM ⊆ NP. In the
other direction, assuming prAM ⊆ NP, we observed that there exists a length-preserving function
f computable in nondeterministic polynomial-time with a few bits of advice that is hard against
Arthur-Merlin protocols. Whereas in the corresponding results in the BPP setting, the remaining
gap is an additional depth restriction in the first direction, here there is the advice required in the
second direction and the distinction between regular and promise Arthur-Merlin protocols.

essential characteristics of the notion of efficient compression that is equivalent to derandomization.
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A more significant difference between the two settings is that, in contrast to prBPP, for prAM
it remains open whether whitebox derandomization is equivalent to targeted hitting-set genera-
tors — a question originally raised by Goldreich in [Gol11]. As a byproduct to our prior results
[vMMS23a], we presented a first step toward a positive resolution: Any low-end derandomization
of prAM implies the existence of a targeted hitting-set generator that achieves a slightly weaker
derandomization. We also showed that targeted hitting-set generators are necessary for mild de-
randomization of prAM, i.e., simulations on NP-oracle or Σ2 machines [vMMS23b]. Along the way,
we obtained an equivalence between mild derandomization of prAM and hardness in the presence
of efficiently-computable leakage.

Our results. As our main result, we establish a full equivalence between derandomization of
Arthur-Merlin protocols via targeted hitting-set generators and refutation. The role of a bottleneck
algorithm (Acomp, Adec) in the BPP setting is taken over by a bottleneck protocol (Acomp, Pdec),
which consists of a probabilistic compressor Acomp followed by an Arthur-Merlin protocol Pdec on
the compressed input. More precisely, we show that targeted hitting-set generators that suffice
to derandomize prAM are equivalent to nondeterministic refuters for identity against bottleneck
Arthur-Merlin protocols that are guaranteed to be sound for identity, and that identity can be
replaced by an existentially quantified function f computable in nondeterministic polynomial time.
Here, soundness of (Acomp, Pdec) for a function f means that for all inputs z, with high probability,
Pdec(Acomp(z)) either correctly computes f(z) or else indicates failure.

Theorem 2 (Main result). The following are equivalent:

1. For some constant ϵ ∈ (0, 1), there exists a nondeterministic polynomial-time list-refuter for
the identity function against prAMTICOMP[n1+ϵ, nϵ] protocols with promised soundness for
identity.

2. For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a function f computable in non-
deterministic time na that admits a nondeterministic polynomial-time list-refuter against
prAMTICOMP[na+ϵ, nϵ] protocols with promised soundness for f .

3. There exists a targeted hitting-set generator that achieves the derandomization prAM ⊆ NP.

Consider item 1 in Theorem 2. Because of the bottleneck, any fixed protocol (Acomp, Pdec) of
the stated type fails to compute identity on a random input of sufficiently large length. Thus,
the identity function admits a trivial refuter meeting the requirements of the theorem except that
the refuter is probabilistic instead of deterministic. From this perspective, Theorem 2 shows that
for derandomizing prAM, it suffices to derandomize trivial refuters for the identity function. In
fact, as the relaxation in item 2 states, it suffices to derandomize trivial refuters for any function
computable in NP.

Theorem 2 scales smoothly in terms of the running time for the refuter. A refuter for the function
f that runs in time T results in a targeted hitting-set generator that runs in time poly(T (poly(n))).
Similarly, a targeted hitting-set generator that runs in time T , and thus achieves the derandom-
ization prAM ⊆ NTIME[T (poly(n))], results in a refuter for identity that runs in time T (poly(n)).
When the running time of the refuter ranges from polynomial to subexponential, so does the time
needed for the nondeterministic simulations, covering the entire derandomization spectrum.

As mentioned before, in [vMMS23b] we showed that mild derandomization for prAM implies
the existence of targeted hitting-set generators achieving the same derandomization result. Taken
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together with Theorem 2, we obtain an equivalence between mild derandomization and refutation.
As with the equivalence of Theorem 2, the equivalence of Corollary 3 scales smoothly in terms of
the running time for the refuter.

Corollary 3. Let C ∈ {PNP,ZPPNP,Σ2P}. The following are equivalent:

1. For some constant ϵ ∈ (0, 1), there exists a list-refuter computable in C for the identity function
against prAMTICOMP[n1+ϵ, nϵ] protocols with promised soundness for identity.

2. For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a function f computable in nondeter-
ministic time na that admits a list-refuter computable in C against prAMTICOMP[na+ϵ, nϵ]
protocols with promised soundness for f .

3. There exists a targeted hitting-set generator for prAM computable in C.

4. prAM ⊆ C.

The targeted HSGs in Theorem 2 are multi-valued nondeterministic algorithms in the sense that
they produce a possibly different targeted hitting-set on each accepting computation path (and have
at least one accepting computation path). Earlier papers on HSGs for prAM considered single-
valued constructions. If we restrict the function f to be computable in deterministic polynomial
time, the equivalence of Theorem 2 extends to targeted hitting-set generators for prAM that are
deterministic, single-valued or deterministic with (non-adaptive) NP oracle algorithms provided the
refuting algorithm is of the same type.

Multi-valued HSGs for prAM are sufficient for nondeterministic whitebox simulations and are
arguably more natural than single-valued ones. Among other things, for the multi-valued versions,
targeted HSGs for prAM imply regular HSGs for prMA. The result scales smoothly and can be
stated in terms of nondeterministic PRGs for prBPP.

Theorem 4. If there exists a targeted hitting-set generator for prAM computable in nondetermin-
istic time T (m), then there exists a pseudo-random generator for prBPP computable in nondeter-
ministic time poly(T (poly(m))).

Assuming a positive resolution to Goldreich’s question, Theorem 4 states that whitebox de-
randomization of prAM implies blackbox derandomization of prMA. A related result is that low-
end whitebox derandomization of prMA implies the same derandomization in a blackbox fash-
ion [IKW02]. A similar implication holds for mild derandomization of prAM [AvM17]. It is also
known that whitebox derandomization of prAM implies a PNP blackbox simulation of the same
strength for prMA [AGHK11].

Building HSGs and PRGs are instantiations of a more general problem of explicit construc-
tions. Many objects of interest — including HSGs and PRGs — can be shown to exist using the
probabilistic method. Typically, this yields an efficient randomized algorithm that, on input 1n,
outputs an object of size n that has the desired property Π with high probability. One approach to
obtain an explicit object with property Π is to run a targeted HSG that fools Π, cycle through the
outputs, and either use an algorithm for Π to select an output that has property Π or else combine
the outputs into a single (somewhat larger) object with property Π. For several objects of interest,
the underlying Π is known to be in P, in which case a targeted HSG for prBPP suffices. For several
more, including truth-tables of high circuit complexity and rigid matrices, Π is known to be in
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coNP, in which case a targeted HSG for prAM suffices. Depending on the complexity of the tar-
geted HSG, the resulting explicit construction may be deterministic, nondeterministic single-valued,
non-deterministic multi-valued, deterministic with an NP oracle, etc. We state the approach in the
AM setting assuming nondeterministic multi-valued targeted HSGs. We use the term probabilistic
construction for an efficient incarnation of the probabilistic method, i.e., a polynomial-time ran-
domized algorithm that, on input 1n, outputs a string x ∈ Π of length at least n with probability
at least 1/2.

Proposition 5. Assume there exists a targeted hitting-set generator for prAM computable in non-
deterministic time T and let Π be a property that respects the following conditions:

1. Π is decidable in coNP and admits a probabilistic construction.

2. There exists a polynomial-time algorithm that, given a list x1, . . . , xk of strings in {0, 1}n
containing at least one xi ∈ Π, outputs a string in Π of length at least n.

Then there exists a nondeterministic algorithm that has an accepting computation path on every
input and, on input 1n, runs in time poly(T (poly(n))) and outputs on every accepting computation
path a string in Π of length at least n.

Explicit constructions for properties Π satisfying the conditions of Proposition 5 were obtained
under non-uniform hardness conditions for E in [KvM02, SU06] and under a slight variation of the
uniform hardness assumption E ̸⊆ io-AMTIME[2ϵn] for some ϵ > 0 in [GSTS03]. By Theorem 2
and its extensions, we can obtain such explicit constructions under the refutation hypothesis of
Theorem 2.

Techniques. To establish the direction from refutation to derandomization of our main result, we
refine the instance-wise transformation of hardness into targeted hitting sets from our earlier work
[vMMS23a]. The approach in [vMMS23a] extracts hardness from a nondeterministic computation
on a given input z based on probabilistically checkable proofs, and employs the recursive Miltersen-
Vinodchandran hardness-based HSG construction (RMV) due to Shaltiel and Umans [SU09]. In
order to obtain the desired compression during reconstruction, we switch from PCPs to PCPs of
proximity, among other changes.

In more detail, consider a function f computable in nondeterministic polynomial time that is
hard on almost-all inputs against faster promise Arthur-Merlin protocols. To derandomize a prAM
protocol P on input x, the approach in [vMMS23a] uses the PCP witnesses asserting the value of
f(x) as a basis for the RMV generator. In case the resulting output fails to be a hitting-set for P on
input x, the RMV reconstructor with input D

.
= P (x, ·) allows for compression of the PCP, which

ultimately leads to a fast promise Arthur-Merlin protocol Prec for computing f on any input z. In
the refutation setting, we employ a refuter to obtain an input z such that Prec instantiated with
P and x fails to compute f(z). This way, we can ensure that the hitting-set on input x succeeds.
The refuter is only guaranteed to work against bottleneck protocols, though, and the reconstructor
from [vMMS23a] does not offer the required compression due to the fact that the PCP verifiers
need full access to the input z. A first idea is to, in addition to the PCP witnesses, use the input
z itself as a basis for the RMV generator. In case the resulting generator fails, it is then possible
to compress z using the RMV reconstructor. This allows us to obtain a bottleneck protocol by
first compressing z and then feeding the compressed representation of z into Prec, which computes
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f(z) from the compressed representation using the PCP strategy and the RMV evaluator to answer
queries to z.

This gives us almost what we need. Due to the need for Prec to run the polynomial-time PCP
verifier, there is a multiplicative polynomial-time overhead (in |z|) for the reconstructor, which is
too inefficient. In order to improve the efficiency, we instead employ PCPs of proximity (PCPPs)
together with an error-correctable encoding of the input z. As there exist PCPPs that run in
subpolynomial time and only require oracle access to the input, the overhead from running them
becomes sublinear in the time for the remaining steps of the reconstructor.

For the other direction of the equivalence — that targeted generators sufficient for derandomiz-
ing prAM imply refutation — we employ such generators to derandomize the process of obtaining
a counterexample at random. Straightforwardly, this would require a targeted generator that fools
PprAM rather than prAM because we know how to verify the validity of a counterexample in the for-
mer but not in the latter class. The hypothesis only gives us a targeted generator that fools prAM,
though. To bridge the gap, we make sure our reconstructor possesses a strong form of soundness,
which we dubbed resilient soundness and established for our regular reconstructor in [vMMS23a].
The resilient soundness property allows us to focus on refuting bottleneck protocols with promised
soundness. In this case, verifying whether a counterexample is valid becomes a prAM computa-
tion, so we can get by with a targeted generator that fools prAM for the derandomization. We
similarly employ targeted generators to obtain explicit constructions from the probabilistic method
(Proposition 5), including truth-tables with high circuit complexity.

Organization. In Section 2, we develop the ideas behind our main result and relate them to
existing techniques. We start the formal treatment in Section 3 with definitions, notation, and
other preliminaries. In Section 4, we present the details of our main result. In Section 5, we discuss
explicit constructions: Proposition 5 and examples of conditional explicit constructions, including
hard truth-tables, rigid matrices, and Theorem 4.

2 Technical overview

We start with a recap of the techniques involved in the hardness vs. randomness tradeoffs for BPP
leading up to Theorem 2.

BPP setting. The known hardness vs. randomness tradeoffs are based on a pseudo-random
generator construction G that takes a function h and outputs a pseudo-random distribution Gh.
These generators are typically learning, meaning that any statistical test D that distinguishes Gh

from uniform suffices as an oracle to efficiently learn h from a small number of queries. In case
Gh does not “fool” an efficient randomized algorithm A on input x, the function h can be learned
efficiently from the distinguisher D(r)

.
= A(x, r) and a small number of evaluations of h, where

A(x, r) the output of A on input x and random-bit string r. Given a learning PRG construction
G, one can construct a targeted PRG by instantiating G with an oracle h = hx that depends on x.
The question is how to construct hx out of x. We now survey the known constructions.

Chen and Tell [CT21] use the doubly-efficient proof systems of Goldwasser, Kalai, and Roth-
blum [GKR15] (as simplified in [Gol18]) to obtain hx from x and combine it with the Nisan-
Wigderson pseudo-random generator construction [NW94]. Their reconstructor is based on a boot-
strapping strategy similar to [IW01] that uses the NW reconstructor to obtain, layer-by-layer,
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small circuits encoding the gate values for the circuit computing f(x). Because the bootstrapping
strategy requires the NW reconstructor to work for all layers, Chen and Tell only end up with a
(targeted) hitting-set generator rather than a pseudo-random generator.

The Chen-Tell approach hinges on the speed of the reconstruction process. Subsequent works
exploit the compressed representation that the reconstruction process implicitly builds, which can
be viewed as a bottleneck that the computation goes through. Such approaches typically allow for
a matching implication from derandomization to hardness because a random function cannot be
compressed and derandomization lets us find such an incompressible function deterministically.

Liu and Pass also apply the NW generator but obtain hx differently. In [LP22], they use hx that
are the encodings of the outputs π(x) of all small efficient programs π (so the resulting string has
small Kolmogorov-Levin complexity Kt). The answers to the learning queries are hard-wired into
the program that reconstructs hx. The direction from derandomization to hardness follows from
the fact that an efficient algorithm that separates low from high Kolmogorov-Levin complexity acts
as a distinguisher. In [LP23], hx encodes the value of f(x) itself, where f is an almost-all inputs
leakage-resilient hard function (a function that remains hard even if some efficiently-computable
information about f(x) is leaked to an attacker). The approach leads to a (targeted) pseudo-random
generator as it only involves a single hx. The answers to the learning queries are provided as part
of the information about f(x) that is leaked, and the direction from derandomization to hardness
follows the typical pattern.

Each of the above approaches can be viewed as an explicit construction of one or more hx from
x such that

Arec(hx, D) ̸= hx (1)

for at least one hx, where Arec denotes the output of the reconstructor (which only needs access to
D and the answers to the learning queries to hx). Such an explicit construction suffices because (1)
means that the reconstruction fails for hx, and whenever that happens the targeted pseudo-random
generator based on hx has to fool D. Prior approaches all guarantee (1) indirectly by constructing
the functions hx out of a function f with a particular hardness property, and showing that if all
hx satisfy Arec(hx, D) = hx, then the hardness property for f on input x fails. Prior approaches
are also oblivious to D

.
= A(x, ·) but that feature is nothing special as one can always incorporate

a description of A as part of the input x.
Recent approaches take a broader perspective and try to directly construct hx with the sole

requirement that (1) holds. Thanks to the bottleneck that the reconstruction process goes through,
we know that a random choice of hx satisfies the requirement. Under the derandomization hypothe-
sis prBPP ⊆ P, we can efficiently find such an hx deterministically. Conversely, if we can efficiently
find such an hx deterministically, we obtain an efficient targeted pseudo-random generator in the
BPP setting.

Korten [Kor22] follows this outline, where the circuit Ccomp computes the compressed represen-
tation of a candidate value z for hx based on D, from which the circuit Cdec attempts to retrieve
hx. Korten does not use the full NW construction but only Yao’s predictor, thereby only achieving
a modest compression. Chen, Tell, and Williams [CTW23] achieve better compression using the
full NW construction. They also cast the construction of hx as a refuter for the identity function
f(z) = z against the reconstructor algorithm Arec(z,D), and show how the identity function can be
replaced by any efficiently computable length-preserving function f . The extension sets hx = f(z)
and involves an application of the Chen-Tell bootstrapping approach (based on the standard cir-
cuit simulation of the uniform computation of f) in order to obtain the answers to the learning
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queries. As a consequence, the targeted generator is only hitting. In the special case of identity,
the learning queries are simply bits of z, which obviates the need for Chen-Tell and results in a
targeted generator that is pseudo-random.

AM setting. Some changes are needed when making the transition to the AM setting. We
need to handle co-nondeterministic distinguisher circuits D instead of deterministic ones. Co-
nondeterministic circuits suffice because Arthur-Merlin protocols can be assumed to have perfect
completeness. The only requirement for a correct derandomization is in the case of negative in-
stances, in which case we want to hit the set of Arthur’s random-bit strings for which Merlin cannot
produce a witness. By the soundness property of the Arthur-Merlin protocol, the set contains at
least half of the random-bit strings. Moreover, since the objective is to obtain a nondeterministic
simulation for prAM, the algorithms for computing f , the refuters and the targeted generators are
all allowed to be nondeterministic

In [vMMS23a], we built a targeted hitting-set generator for AM based on the recursive Miltersen-
Vinodchandran hitting-set generator due to Shaltiel and Umans [SU09]. To obtain hx from x in the
setting of hardness on almost-all inputs, we make use of PCPs for the nondeterministic computation
of the string f(x) from x. Let V denote the verifier for such a PCP system that uses O(log(T (n))
random bits and polylog(T (n)) queries for nondeterministic computations that run in time T (n).
On input x, our targeted HSG guesses the value of f(x) and a candidate PCP witness yi for the
i-th bit of f(x) for each i, and runs all the checks of the verifier V on yi (by cycling through all
random-bit strings for V ). If all checks pass, our targeted HSG instantiates RMV with yi for each
i as (the truth table of) the oracle hx, and outputs the union of all the instantiations as the hitting
set, provided those nondeterministic computations all accept; otherwise, the targeted HSG fails.

For the reconstruction of the i-th bit of f(x), Arthur generates the learning queries of the RMV
reconstructor for the oracle yi, and Merlin provides the purported answers as well as the value of
the i-th bit of f(x). Arthur then runs some random checks of the verifier V on input x, answering
the verifier queries by executing the evaluator of the RMV reconstructor. All the executions of the
evaluator can be performed in parallel, ensuring a bounded number of rounds overall. To guar-
antee soundness, we rely on a resilience property of the RMV generator, which was first observed
in [GSTS03] for the Miltersen-Vinodchandran generator [MV05]. The resilience property guaran-
tees that the verifier queries are all consistent with some candidate proof ỹi. The completeness and
soundness of the PCP then imply the completeness and soundness of the reconstruction process for
our targeted HSG. As V makes few queries and is very efficient, the running time of the process is
dominated by the running time of the RMV reconstructor.

Abstracting out the details of our construction and how the distinguisher D is obtained, the
result can be captured in two procedures: a nondeterministic one, H, which has at least one
successful computation path for every input and plays the role of a targeted hitting-set generator,
and a promise Arthur-Merlin protocol, Prec, which plays the role of a reconstructor for the targeted
hitting-set generator.

Property 6. For every z ∈ {0, 1}∗ and for every co-nondeterministic circuit D that accepts at least
half of its inputs, at least one of the following holds:

1. H(z,D) outputs a hitting set for D on every successful computation path.

2. Prec(z,D) computes f(z) in a complete and sound fashion.
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In the setting of hardness on almost-all inputs, the co-nondeterministic circuit D is obtained as
P (x, ·), where x is the input for which we want to derandomize an Arthur-Merlin protocol P . This
is, however, not essential for the construction.

From refutation to targeted-generators. In the refutation setting we no longer need hardness
to hold on almost-all inputs but instead need a meta-algorithm that finds inputs where a given
bottleneck protocol fails. We again make use of Property 6 but now connect derandomization
to refuters for the function f against bottleneck protocols. In the direction from refutation to
derandomization, we use the refuter to find an input z for which the reconstructor fails (i.e., the
second item in Property 6 does not hold). In that case, H(z,D) must output a hitting set for
D (the first item in Property 6 holds). A key property to ensure that the reconstructor behaves
like a bottleneck protocol is that the RMV reconstructor yields a compressed representation of any
hx that fails as a basis for obtaining a hitting set. In our PCP-based construction, we used this
property to compress PCPs for each bit of f(z) to ultimately speed up the computation of f(z).
One complication in the refutation setting is that verifying PCPs requires full access to the input
z, which seems to ruin the potential for compression. We resolve the complication by modifying
the generator and additionally run RMV on z itself. This way, the reconstructor goes through a
compressed representation of z from which it can efficiently recover z. We take the compressor
Acomp to be the algorithm that, on input z, generates and answers the learning queries for z,
producing the compressed representation of z. We then feed the compressed representation of z
into Prec, which uses the RMV evaluator to access z whenever that is necessary. With this approach,
and starting from a function f computable in nondeterministic time na for some constant a, we can
construct targeted HSGs that achieve the derandomization prAM ⊆ NP from the existence of a
refuter against bottleneck protocols with subpolynomial compression that run in time na+ϵ ·poly(n)
for some ϵ > 0, where the poly(n) term comes from the use of PCPs.

We can do better, and get rid of the multiplicative poly(n) term, by further refining the approach
and employing probabilistically checkable proofs of proximity rather than PCPs. Given random
access to the input z of length n and to a proof, a PCPP verifier runs in time polylog(n) instead
of poly(n). PCPPs, however, are only sound when the input is far in relative distance from a true
instance of the underlying decision problem, which makes them more suitable to inputs that are
in error-correctable form. For this reason, we have the compressor Acomp first encode the input z
with an error-correctable code that is computable in time n · polylog(n), and have Prec employ the
PCPP verifier with the encoded version. The RMV evaluator allows us to recover individual bits
of z very efficiently, in particular in time that is sublinear in n, which can be absorbed in the na+ϵ

term together with the running time for the PCPP verifier. This is how we show that item 2 in
Theorem 2 implies item 3.

Targeted generators to refutation. For the implication from item 3 to item 1 in Theorem 2,
assuming the existence of a targeted HSG sufficient for derandomizing prAM, we need to exhibit a
refuter for identity against polynomial-time bottleneck Arthur-Merlin protocols with subpolynomial
compression bottlenecks. Fix such a bottleneck protocol Prec. A probabilistic argument guarantees
that Prec fails to compute identity for most strings z of length n. Moreover, our use of PCPPs
together with the resilience property of the RMV reconstructor ensures that the reconstruction
protocol Prec always meets the soundness requirement, so we only need a refuter against bottleneck
protocols that are sound. This means that a successful refuter provides an input z on which
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the completeness requirement fails. The latter property can be verified co-nondeterministically,
which allows us to generate such a z using the presumed targeted HSG and thus obtain a refuter
computable in nondeterministic polynomial time.

3 Preliminaries

We assume familiarity with standard complexity classes such as NP, AM, and prAM. As is cus-
tomary, all time bounds t are implicitly assumed to be time-constructible and satisfy t(n) ≥ n.

3.1 Nondeterministic and co-nondeterministic computation

Wemake use of nondeterministic and co-nondeterministic circuits in our results. A nondeterministic
circuit is a Boolean circuit C with two sets of inputs, x and y. We say that C accepts x if there
exists some y such that C(x, y) = 1, and that C rejects x otherwise. A co-nondeterministic circuit
has a symmetric acceptance criterion: It accepts x if for all y it holds that C(x, y) = 1, and rejects
x otherwise.

We are also interested in nondeterministic algorithms that compute total relations R ⊆ {0, 1}∗×
{0, 1}∗. Let T be a time bound. We say that a nondeterministic algorithm N computes R if for
all x ∈ {0, 1}∗, there exists at least one computation path on which N(x) succeeds, and on all
successful computation paths, N(x) outputs some y such that R(x, y) holds, where y can depend
on the computation path. Note, in particular, that if a function f : {0, 1}∗ → {0, 1}∗ is computable
in nondeterministic time T (n), then the language Lf = {(x, i, b) | f(x)i = b} is in NTIME[T (n)].

3.2 Arthur-Merlin protocols

A promise Arthur-Merlin protocol P is a computational process in which Arthur and Merlin receive
a common input x and operate as follows in alternate rounds for a bounded number of rounds.
Arthur selects a random string and sends it to Merlin. Merlin sends a string that depends on
the input x and all prior communication from Arthur; the underlying function is referred to as
Merlin’s strategy, which is computationally unrestricted. At the end of the process, a deterministic
computation on the input x and all communication determines acceptance. The running time of
the process is the running time of the final deterministic computation.

Any promise Arthur-Merlin protocol can be transformed into an equivalent one with just two
rounds and Arthur going first, at the cost of a polynomial blow-up in running time, where the
degree of the polynomial depends on the number of rounds [BM88]. As such, we often use the
notation prAM to refer to promise Arthur-Merlin protocols with any bounded number of rounds,
even though, strictly speaking, the notation refers to a two-round protocol with Arthur going first.

Arthur-Merlin protocols that output values. A promise Arthur-Merlin protocol P may also
output a value. In this case, at the end of the interaction, the deterministic computation determines
success/failure and, in case of success, an output value. We denote this value by P (x,M), which is
a random variable defined relative to a strategy M for Merlin. Similar to the setting of circuits, we
indicate failure by setting P (x,M) = ⊥, a symbol disjoint from the set of intended output values.
Our choice of using success and failure for protocols that output values is to avoid confusion with
the decisional notions of acceptance and rejection.
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Definition 7 (Arthur-Merlin protocol with output). Let P be a promise Arthur-Merlin pro-
tocol. We say that on a given input x ∈ {0, 1}∗:

◦ P outputs v with completeness c if there exists a Merlin strategy such that the probability that
P succeeds and outputs v is at least c. In symbols: (∃M) Pr[P (x,M) = v] ≥ c.

◦ P outputs v with soundness s if, no matter what strategy Merlin uses, the probability that
P succeeds and outputs a value other than v is at most s. In symbols: (∀M) Pr[P (x,M) ̸∈
{v,⊥}] ≤ s.

If we omit c and s, then they take their default values of c = 1 (perfect completeness) and
s = 1/3. For a given function f : X → {0, 1}∗ where X ⊆ {0, 1}∗, we say that P computes f with
completeness c(n) and soundness s(n) if on every input x ∈ X, P outputs f(x) with completeness
c(|x|) and soundness s(|x|).

3.3 Bottleneck algorithms

The reconstructor algorithms underlying (targeted) generators typically have the property that
they go through a compression phase but eventually produce a potentially long output. We refer to
such algorithms as ”bottleneck algorithms.” We define them generically relative to any base class
A and formalize them as two-phase algorithms: a compression phase Acomp that is probabilistic,
and a decompression phase Adec that is of type A.

Definition 8. Let A be a class of promise algorithms, t a time bound and s : N → N. We let
ATICOMP[t(n), s(n)] be the class of computational problems with the following properties for some
probabilistic algorithm Acomp and some Adec ∈ A: For any input x ∈ {0, 1}∗:

◦ The process first runs Acomp on input x, yielding a string Acomp(x), and then runs Adec on
input Acomp(x).

◦ Each of the two phases run in time t(|x|).

◦ The length of Acomp(x) never exceeds s(|x|).

Note that we impose the resource bounds strictly (not up to a constant factor) and on all inputs
(not just on all but finitely many). The differences do not matter much for the resource of time. This
is because of constant-factor speedup results and because asymptotic time bounds can be turned
into absolute ones by hard-wiring the behavior on the finitely many inputs on which the time bound
is violated. These transformations do not affect the input-output behavior of the algorithm, though
the second one comes at the cost of a potentially significant increase in the description length of the
algorithm. For the compression bound s(n) the differences do matter. Constant-factor compression
is not possible in general, and hard-wiring is not an option as it requires access to the full input.

Definition 8 applies to promise Arthur-Merlin protocols that output values, yielding the bot-
tleneck protocol classes prAMTICOMP[t(n), s(n)]. In the completeness and soundness notions of
Definition 7, for bottleneck protocols, we consider the probabilities over both the internal random-
ness of the algorithm Acomp and Arthur’s randomness in the prAM protocol Pdec.

We similarly extend the notion of a bottleneck protocol computing a given function f with
certain completeness (default 1) and soundness (default 1/3). We say that a pair (Acomp, Pdec) is
sound for a function f if (Acomp, Pdec) computes f on every input with soundness 1/3 (without any
completeness guarantee).
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3.4 Refuters

Refuters and list-refuters can be defined generically for a total function f against a resource-bounded
semantic class A of algorithms. Such A is defined by an underlying syntactic class of machines,
resource bounds that always hold (for all possible executions on all inputs), and promises about
the behavior of the machine for it to compute a value on a given input.

Definition 9. Let f : {0, 1}∗ → {0, 1}∗ be a total function, and A a resource-bounded semantic
class of algorithms. A list-refuter R for f against A is an algorithm that on input 1n and an
algorithm A of the syntactic type underlying A, outputs a list of strings (x1, . . . , xτ ), each of length
at least n. If A satisfies the resource bounds of A for all inputs of length at least n, then there exists
i ∈ [τ ] for which A fails to compute f(xi). A refuter is a list-refuter that outputs singleton sets.

Failure for A(x) to compute f(x) means that either A does not satisfy the promise on input x
or else it does but computes a value other than f(x).

Other variants on the formal requirements for a refuter exist in the literature; some comments
on the choices we made are in order. The lower bound n on the length of the counterexample allows
us to avoid irrelevant or useless counterexamples. Such a lower bound could alternately be enforced
by modifying A and hard-wiring the correct output values for f on inputs of length less than n.
However, this comes at an exponential cost in n for the description length of the algorithm, which
is problematic for the efficiency of meta algorithms like refuters. The hard-wiring fix may also not
be possible, e.g., in the case of bottleneck algorithms.

Imposing a lower bound rather than an exact value on the length of the counterexamples
facilitates handling settings where there are only counterexamples of infinitely many lengths but
not all lengths. Note that the length of the counterexamples is bounded by the running time of
the refuter, which we typically express as a function of both n and the description length of the
algorithm.

In Definition 9 the behavior of a refuter R is well-defined even for algorithms A that do not
satisfy the resource constraints on all inputs of length less than n. This is consistent with the
requirement that the counterexample be of length at least n. Alternately, one could only specify
the behavior of a refuter on algorithms A that satisfy the resource constraints everywhere. For
constructible resource bounds, the alternate definition can be used in lieu of ours as one can first
modify A into an algorithm A′ that satisfies the resource bounds everywhere and behaves like A on
inputs where A meets the resource bounds. The increase in description length from A to A′ is not
significant from a complexity-theoretic perspective. Our definition obviates the need for applying
the transformation each time we want to run a refuter.

The refutation problem can have promises beyond the one that A meets the resource bounds
on all inputs of length at least n. In such cases the refuter only needs to produce a counterexample
when A comes from some restricted subclass of A.

In this work, we mostly use nondeterministic list-refuters against bottleneck Arthur-Merlin
protocols, i.e., against classes prAMTICOMP[t(n), s(n)]. A nondeterministic list-refuter is similar
to a regular list-refuter, with the difference that it is nondeterministic, must have at least one
accepting computation path on every input, and must output a list containing a counterexample
on every accepting path for every input satisfying the relevant promise. More precisely, on input
1n and a pair (Acomp, Pdec) consisting of a probabilistic algorithm Acomp and a prAM protocol Pdec,
the refuter must have at least one accepting computation path and exhibit the following behavior:
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every accepting path must output a list (x1, . . . , xτ ), each of length at least n. If on inputs of length
ℓ ≥ n both phases of (Acomp, Pdec) run in time t(ℓ) and the output length of Acomp is bounded by
s(ℓ), then on every accepting computation path the refuter must output a list of strings (x1, . . . , xτ ),
each of length at least n such that for at least one i ∈ [τ ], (Acomp, Pdec) fails to compute f on input
xi with completeness 1 and soundness 1/3.

We say that R is a refuter for f against prAMTICOMP[t(n), s(n)] protocols with promised
soundness for f if R can refute pairs (Acomp, Pdec) that are sound for f . R may fail to refute
protocols that are not sound for f , but still needs to have at least one accepting computation path
on such inputs.

3.5 Hitting-set generators and targeted hitting-set generators

Targeted generators typically either receive an input x and produce a set that (for sufficiently
large |x|) is pseudo-random for every algorithm A with input x; or receive as input a circuit D
(usually taken to be A(x, ·)) and produce a set that is pseudorandom for D. Both definitions
are equivalent [Gol20], and we might as well give the targeted generator access to both x and
a circuit C representing A such that D = C(x, ·) [vMMS23a]. In the setting of prAM, without
loss of generality, we can assume that promise Arthur-Merlin protocols have perfect completeness.
Therefore, we only need to consider targeted hitting-set generators, the variant of targeted PRGs
for one-sided error.

We start by defining hitting sets for co-nondeterministic circuits.

Definition 10 (Hitting set for co-nondeterministic circuits). Let D be a co-nondeterministic
circuit of size m. A set S of strings of length m is a hitting set for D if there exists at least one
z ∈ S such that D(z) = 1 (where D might take a prefix of z as input if necessary). In that case,
we say that S hits D.

The notion allows us to define targeted hitting-set generators for prAM as follows, where we
assume, without loss of generality, perfect completeness and soundness 1/2. Regular hitting-set
generators are viewed as a special case.

Definition 11 (Regular and targeted hitting-set generator for prAM). A targeted hitting-
set generator for prAM is a nondeterministic algorithm that, on input x ∈ {0, 1}∗ and a co-
nondeterministic circuit C, has at least one successful computation path, and if Prr[C(x, r) = 1] ≥
1/2, outputs a hitting set for D(r)

.
= C(x, r) on every successful computation path. A regular

hitting-set generator for prAM is a targeted hitting-set generator where the output only depends on
the size of C.

We measure the running time of a targeted hitting-set generator in terms of both the length
n of the string x and the size m of the co-nondeterministic circuit C. In some cases, it is more
convenient to work with generators that only take a co-nondeterministic circuit D as input. By the
above discussion, such generators suffice for derandomizing prAM.

3.6 PCPs of proximity, error-correcting codes and low-degree extensions

PCPs of proximity work with pair languages, i.e., languages of pairs of strings. Intuitively, we view
one part of the input as explicit, to which the PCPP verifier has full access, and another part of
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the input as implicit, to which the PCPP verifier has oracle access. Each query a PCPP verifier
makes to the implicit input counts towards its query complexity.

Let L ⊆ {0, 1}∗ × {0, 1}∗ be a pair language. We denote by Lx the set {z | (x, z) ∈ L}. The
soundness condition for PCPPs requires that z is sufficiently far from strings in Lx in relative
Hamming distance. Let z, z′ ∈ {0, 1}n and d(z, z′) = |{i | zi ̸= z′i}|/n. For z ∈ {0, 1}n and
S ⊆ {0, 1}n, we define d(z, S) = minz′∈S(d(z, z

′)). The string z is said to be δ-far from S if
d(z, S) ≥ δ.

Definition 12 (PCP of Proximity). Let r, q, t : N × N → N and s, δ : N × N → [0, 1]. Let
L ⊆ {0, 1}∗×{0, 1}∗ be a pair language. We say that L ∈ PCPPs,δ[r, q, t] if there exists a probabilistic
algorithm V (the verifier) that, given a string x ∈ {0, 1}m and an integer n as regular input, and
oracle access to an implicit input z ∈ {0, 1}n and to a proof oracle y ∈ {0, 1}∗, tosses r(m,n) coins,
queries the oracles z and y for a total of q(m,n) bits, runs in time t(m,n), and either accepts or
rejects. Moreover, V has the following properties:

◦ Completeness: If (x, z) ∈ L then there exists a y such that Pr[V z,y(x, n) = 1] = 1.

◦ Soundness: If (x, z) is such that z is δ(m,n)-far from Lx ∩ {0, 1}n, then for every y′ it holds
that Pr[V z,y′(x, n) = 1] ≤ s(m,n).

We use the following PCPP construction due to Ben-Sasson, Goldreich, Harsha, Sudan, and
Vadhan.

Lemma 13 ([BGH+05]). Let T be a time bound and L be a pair language in NTIME[T (m,n)],
where m denotes the length for the first (explicit) input and n the length for the second (implicit)
input. Then, for every constant s, we have L ∈ PCPPs,δ[r, q, t], for

◦ Proximity parameter δ(m,n) = 1/polylog(m,n),

◦ Randomness complexity r(m,n) = log (1/s) · log T (m,n) +O(log log T (m,n)),

◦ Query complexity q(m,n) = polylog(T (m,n)),

◦ Proof length ℓ(m,n) = T (m,n) · polylog(T (m,n)),

◦ Verification time t(m,n) = poly(m, log n, log T (m,n)).

In our applications of the above PCPP the implicit input will be in an error-correcting format.
An error-correcting code (ECC) with distance parameter δ is an algorithm Enc such that for every
n and z, z′ ∈ {0, 1}n for which z ̸= z′, it holds that d(Enc(z),Enc(z′)) ≥ δ. A decoder Dec for an
ECC with distance parameter δ is an algorithm that, on input a possibly corrupted codeword z̃ in
the co-domain of Enc, recovers z as long as d(z̃,Enc(z)) < δ/2. For our purposes, it suffices that
for any constant δ ∈ (0, 1] there exists an ECC with distance parameter δ that is computable and
decodable in time n · polylog(n) (e.g., see [Jus76] and the discussion in [Spi96]).

A particular type of ECCs are low-degree extensions. Let x ∈ {0, 1}n, F = Fp be the field with
p elements (for prime p) and h and r integers such that hr ≥ n. The low-degree extension of x
with respect to p, h, r is the unique r-variate polynomial x̂ : Fr → F with degree h − 1 in each
variable, for which x̂(v⃗) = xi for all v⃗ ∈ [h]r representing a i ∈ [n] and x̂(v⃗) = 0 for the v⃗ ∈ [h]r

that do not represent an index i ∈ [n]. The total degree of x̂ is ∆ = hr and x̂ is computable in
time n · poly(h, log p, r) given oracle access to x.
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4 Equivalence result

In this section, we establish Theorem 2. First, in Section 4.1, we present the refinement for the
targeted hitting-set generator of [vMMS23a]. In Section 4.2, we prove the direction of refutation
to targeted hitting-set generators. In Section 4.3, we prove the direction of targeted hitting-set
generators to refutation. Finally, we put everything together to obtain our equivalence result and
extensions in Section 4.4

4.1 Targeted generator construction

We develop our targeted HSG as a refinement of our earlier work. In this section, we describe the
modifications needed to the construction and proof in [vMMS23a, Theorem 24]. For completeness
and for readers not familiar with our earlier work, we include a full proof in the appendix.

Theorem 14. Let T be a time bound and f a function computable in nondeterministic time T (n).
There exists a nondeterministic algorithm H (the generator) that always has at least one successful
computation path per input, and a pair Prec (the reconstructor) consisting of a probabilistic algorithm
Acomp and a promise Arthur-Merlin protocol Pdec such that for every z ∈ {0, 1}∗ and every co-
nondeterministic circuit D that accepts at least half of its inputs, at least one of the following
holds.

1. H(z,D) outputs a hitting set for D on every successful computation path.

2. Pdec(Acomp(z, 1
m), D) computes f(z) with completeness 1 and soundness 1/3.

The construction also has the following properties:

◦ Compression: On input z of length n and 1m, the output of Acomp has length poly(m, log T (n)).

◦ Resilient soundness: In both cases 1 and 2 above, the probability that Pdec(D,Acomp(1
m, z))

outputs a value other than f(z) is at most 1/3.

◦ Efficiency: On input z of length n and 1m, Acomp runs in time n · poly(m, log T (n)). On
inputs z of length n and D of size m, H runs in time poly(T (n),m) and Pdec, given the
output of Acomp(z, 1

m) and an additional index i, computes the i-th bit of f(z) in time (m ·
log T (n))O((log r)2) for r = O(log (T (n))/ logm). In particular, Pdec computes f(z) in time
|f(z)| · (m · log T (n))O((log r)2).

Moreover, H(z,D) only depends on z and the size of D, and the only way Pdec requires access to
D is via blackbox access to the deterministic predicate that underlies D.

Proof (sketch). The proof is similar to [vMMS23a, Theorem 24], with the following differences:

◦ We use PCPPs in place of PCPs.

◦ The generator additionally instantiates the RMV generator with an encoding of the input z.

◦ We strengthen the reconstructor to a bottleneck protocol.
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Consider the language Lf that consists of strings (z̃, n, i, b) such that z̃ = Enc(z) for some
z ∈ {0, 1}n and f(z)i = b, where Enc is a suitable error-correcting code as in Section 3.6. Note,
in particular, that Lf is computable in nondeterministic time n · polylog(n) + T (n). Let V be
the PCPP verifier for Lf given by Lemma 13, where we consider z̃ as an implicit input and the
remaining part of the input as explicit.

The generator H, on input z and a co-nondeterministic circuit D of length m, computes z̃ =
Enc(z), guesses v = f(z) and, for every i, guesses and verifies a PCPP yi that asserts the i-th bit
of f(z). H then computes suitable low-degree extensions ẑ for z̃ and ŷi for each yi, and outputs
RMV(ẑ)∪

⋃
i∈[|v|]RMV(ŷi). The running time for the generator is dominated by the running time

for running the RMV generator.
The reconstructor has two parts, the compressor Acomp and the decompressor Pdec. Acomp, on

input z ∈ {0, 1}n and 1m, computes z̃ and a commitment/sketch πz for the RMV reconstructor for
z̃. Due to the inherent compression of the RMV reconstructor, πz has length poly(m, log T (n)).
We now describe Pdec on input πz, a co-nondeterministic circuit D of size m and an index i. First,
the honest Merlin sends a bit b and commits to the low-degree extension of a PCPP yi asserting
that f(z) = i. Since Merlin may be dishonest, let ỹi denote the value Merlin committed to. Arthur
then computes V z̃,ỹi(n, i, b), employing Merlin’s help and the RMV evaluator to answer queries to
z̃ and ỹi. Finally, Arthur either succeeds and outputs b, if the verification using V is successful,
or fails otherwise. The resilience property for the RMV reconstructor guarantees that, with high
probability, every execution of the RMV evaluator leads to an evaluation of a fixed string ỹ. Then,
soundness for (Acomp, Pdec) follows from the soundness of V itself. As for completeness, in case
H(z,D) fails to hit D, then the RMV construction instantiated with D allows for compressing
both z̃ and each yi, guaranteeing completeness for our construction. The PCPP verifier is very
efficient, running in time poly(m, log T (n)). For this reason, the running time for our reconstructor
is dominated by the running time for the RMV reconstructor.

We remark that if the function f in Theorem 14 is computable in deterministic time T , then
we can modify the construction so that the generator H runs in deterministic time poly(T (n),m).
To do so, we similarly define Lf as the set of (z̃, n, i, b) such that Dec(z̃) = z for some z ∈ {0, 1}n
and f(z)i = b, and employ a canonical PCPP construction as in [Par21] interpreting (n, i, b) as the
explicit input and z̃ as the implicit input. With these changes, it follows that Lf ∈ DTIME[n ·
polylog(n) + T (n)], and employing a canonical PCPP construction implies that the generator H
can deterministically compute, for each i, the only PCPP yi that is accepted with probability 1 by
the PCPP verifier, ultimately obtaining a deterministic H.

4.2 From refutation to derandomization

We now show that the second item in Theorem 2 implies the third one. Here is the outline for the
construction of the targeted hitting-set generator for prAM, assuming a refuter for a function f
computable in nondeterministic time na. On input a co-nondeterministic circuit D of size m, we
first run the assumed list-refuter on the input consisting of 1n for a sufficiently large n and the
reconstructor protocol Prec from Theorem 14 with D fixed. This produces a list of strings z1, . . . , zτ ,
each of length at least n. We use each of them as an input for the generator H of Theorem 14 and
output the union of the sets obtained. Provided that n is a sufficiently large polynomial in m, the
reconstructor meets the resource bounds for a prAMTICOMP[na+ϵ, nϵ] protocol at length n. The
defining property of the list-refuter then guarantees that for at least one zi, the reconstructor fails
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to compute f(zi) (item 2 in Theorem 14 fails for zi). It follows that H(zi, D) hits D (item 1 in
Theorem 14 holds).

Theorem 15. Let T be a time bound, a a constant and f a function computable in nondeterministic
time na. If for some constant ϵ ∈ (0, 1) there is a nondeterministic list-refuter R for f against
prAMTICOMP[na+ϵ, nϵ] protocols with promised soundness for f such that R runs in time T ,
then there is a targeted hitting-set generator for prAM that is computable in nondeterministic time
poly(T (poly(n))).

Proof. Let (Acomp, Pdec) be the reconstructor of Theorem 14 instantiated with f . We first describe
the operation of the targeted HSG, then we analyze its correctness and running time.

Generator. The generator, on input a co-nondeterministic circuit D of size m, first sets n = n(m)
to be determined later. Let Acomp(·, 1m) denote algorithm Acomp with 1m fixed as its second input
and similarly let Pdec(·, D) be the protocol Pdec with the circuit D fixed as its second input. The
generator then feeds inputs 1n and (Acomp(·, 1m), Pdec(·, D)) into the refuter R to obtain a list
of inputs (z1, . . . , zτ ). Finally, the generator outputs ∪i∈[τ ]H(zi, D), where H is the generator of
Theorem 14 instantiated with f . Observe that the generator always has a successful computation
path for every input since so does the refuter R.

Correctness. Note that as long as D accepts at least half of its inputs, the resilient soundness prop-
erty in Theorem 14 guarantees that (Acomp(·, 1m), Pdec(·, D)) is sound for f . To ensure correctness
of the generator, we set the value of n sufficiently large such that Acomp(·, 1m) and Pdec(·, D) run
in time at most na+ϵ and such that the output length of Acomp(·, 1m) is at most nϵ. In this case,
the refuter must output, on every accepting computation path, a list of strings (z1, . . . , zτ ) that
contains at least one zi such that (Acomp(·, 1m), Pdec(·, D)) fails to compute f(zi) with completeness
1 and soundness 1/3. This means that item 2 in Theorem 14 fails for z = zi, and therefore item 1
must hold, which implies that our targeted generator hits D.

We now set the value of n. We set n = mk, where k is a constant that respects the lower bounds
we set in the following discussion. Recall that, on input z ∈ {0, 1}n, Acomp(·, 1m) outputs a string
of length poly(m, a log n) ≤ (m · log n)k1 for a fixed constant k1. Moreover, the running time for
Acomp(·, 1m) is n · poly(m, a log n) = n · poly(m, log n) ≤ n · (m · log n)k2 for some constant k2, and

the running time for Pdec(·, D) is na · (m ·a log n)O((log r)2) for r = O(a log n/ logm), and thus upper
bounded by na · (m · log n)k3·(log (a logn/ logm))2 for some constant k3.

By setting k ≥ 2k1/ϵ, it holds for sufficiently large m and any input of length ℓ ≥ n = mk that
the string output by Acomp(·, 1m) has length at most ℓϵ. Similarly, setting k ≥ 2k2/ϵ, it holds for
for sufficiently large m and any input of length ℓ ≥ n = mk that the running time of Acomp(·, 1m)
is at most ℓ1+ϵ ≤ ℓa+ϵ. Finally, setting k ≥ 2k3 · (log (ak))2/ϵ, which holds for sufficiently large
constant k, guarantees that Pdec(·, D) runs in time at most ℓa+ϵ for ℓ ≥ n = mk and sufficiently
large m.

Running time. Let the constant c denote the description length of (Acomp, Pdec). It follows that
(Acomp(·, 1m), Pdec(·, D)) has description length at most m′ = c+Θ(m logm) = Θ(m logm). Com-
puting the list of inputs (z1, . . . , zτ ) using the refuter R takes time T (n+m′) = T (poly(m)), which
also serves as an upper bound for the length of each zi. Finally, computing H(zi, D) for all zi takes
time poly(T (poly(m))), which dominates the running time for the generator.

In contrast to the corresponding result of [CTW23] in the BPP setting, Theorem 15 scales very
smoothly with respect to the time T for computing the refuter. In particular, it allows us to obtain
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equivalences at the low end of the derandomization spectrum. The time T arguably is the most
natural choice of scaling parameter since it translates directly into slower hitting-set generators
without any extra steps such as increasing the input length. One can also consider scaling with
respect to secondary parameters, namely the time for computing f as well as the compression length
for the bottleneck protocols. Increasing the time required for computing f leads to a similar increase
in the time bound for the class against which we require refuters. Decreasing the compression length
requires the targeted HSG to run the refuter with a larger input length n. Due to the sub-optimal
behavior of the RMV reconstructor at the low end, our approach does not reach the low end when
scaling those secondary parameters. It does work for intermediate ranges, e.g., for running time
bounds of the form 2polylog(n) and compression lengths of the form 2(logn)

ϵ
for ϵ ∈ (0, 1).

Theorem 16. Let a be a constant and f a function computable in nondeterministic time 2(logn)
a
.

If for some constant ϵ ∈ (0, 1) there is a nondeterministic list-refuter R for f against protocols
in prAMTICOMP[2(logn)

a+ϵ
, 2(logn)

ϵ
] with promised soundness for f such that R runs in time

2polylog(n), then there is a targeted hitting-set generator for prAM that is computable in nonde-
terministic time 2polylog(n).

4.3 From derandomization to refutation

Next, we prove that the third item in Theorem 2 implies the first one. In fact, we establish
something stronger: Assuming the existence of a targeted hitting-set generator as in the third item,
every function f that is computable in nondeterministic polynomial-time and has a probabilistic
polynomial-time refuter against bottleneck protocols with imperfect completeness and promised
soundness for f , also has a nondeterministic polynomial-time list-refuter against the same class
but with the standard perfect completeness level (Theorem 17). The first item then follows as the
identity function has such a probabilistic refuter (Proposition 18).

A probabilistic refuter is a refuter that produces a counterexample with constant probability
over its internal randomness. In the case of the class prAMTICOMP[t(n), s(n)] with imperfect
completeness level c = 2/3 (and default soundness level s = 1/3), this means the following: On
input 1n and a pair (Acomp, Pdec) consisting of a probabilistic algorithm Acomp and a prAM protocol
Pdec, a probabilistic refuter for a function f outputs a string z of length at least n such that the
following holds with probability Ω(1). If on inputs of length ℓ ≥ n both phases of (Acomp, Pdec) run
in time t(ℓ) and the output length of Acomp is bounded by s(ℓ), then (Acomp, Pdec) fails to compute
f on input z with completeness 2/3 and soundness 1/3. Note that if (Acomp, Pdec) is promised to
be sound for f and to obey the time and compression requirements, then it must be the case that
(Acomp, Pdec) fails to compute f(z) with completeness 2/3.

Here is the intuition for the stronger statement (Theorem 17). To derandomize the given
probabilistic refuter, we set up a co-nondeterministic circuit D that verifies that a random bit-
string leads to a counterexample for a given bottleneck Arthur-Merlin protocol (Acomp, Pdec) with
promised soundness for f . On input a string (r1, r2, r3) where r1 represents the randomness for
the probabilistic refuter Rpr, r2 the randomness for Acomp and r3 the randomness for Pdec, D
first computes the candidate counterexample z by running Rpr and uses co-nondeterminism to
determine f(z). D then co-nondeterministically verifies that all possible replies from Merlin would
lead Pdec with input Acomp(z, r2) and randomness r3 to fail or output something other than f(z).
If (Acomp, Pdec) is sound for f and obeys the time and compression requirements, the only way
the refuter can succeed is when (Acomp, Pdec) fails the completeness requirement on z. Since the
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refuter succeeds with probability Ω(1) and the completeness level is bounded below 1, this means
that the circuit D accepts a Ω(1) fraction of its inputs. Thus, when we apply the assumed targeted
hitting-set generator to D, it has to output at least one (r1, r2, r3) on which D succeeds. For such
a (r1, r2, r3), (Acomp, Pdec) does not have perfect completeness on the input z that Rpr produces
with random-bit string r1 because (Acomp, Pdec) does not output f(z) on random bit-string (r2, r3).
Thus, outputting the strings z over all (r1, r2, r3) that the targeted HSG produces, yields the desired
nondeterministic polynomial-time list-refuter.

Note the increase in the completeness level from c = 2/3 for a probabilistic refuter to c = 1
in the corresponding item for a nondeterministic refuter as in Section 3.4. On the one hand,
the gap in completeness for the counterexample output by a probabilistic refuter allows the co-
nondeterministic circuit D to accept a constant fraction of its inputs, which is needed to guarantee
success for the derandomization. On the other hand, the nondeterministic refuter we obtain from
the probabilistic refuter only guarantees that the completeness on the counterexample is not perfect.
The latter guarantee suffices for the direction from refutation to derandomization because the
reconstructor in Theorem 14 has perfect completeness. The resilient soundness property of the
reconstructor in Theorem 14 ensures that we only need to worry about refuting pairs (Acomp, Pdec)
that are sound for f .

Theorem 17. Assume a targeted hitting-set generator for prAM computable in nondeterministic
time T . Let f be a function computable in nondeterministic polynomial time that has a probabilistic
polynomial-time refuter against prAMTICOMP[t(n), s(n)] protocols with promised soundness for
f . There exists a list-refuter R for f against prAMTICOMP[t(n), s(n)] protocols with promised
soundness for f such that R is computable in nondeterministic time T (poly(m, t(poly(n)))), where
m denotes the description length of the protocol to be refuted and n the lower bound for the length
of the counterexamples.

We observe that in case the function f in Theorem 17 is computable in polynomial time, as is
the case with identity, the list-refuter R runs in polynomial time in its input length, i.e., in time
poly(m,n).

Proof of Theorem 17. Let H be the hypothesized targeted HSG. H always has an accepting com-
putation path for any input, and on input a co-nondeterministic circuit D of size m′ that ac-
cepts at least 1/2 of its inputs, it runs in time T (m′) and outputs, on every accepting computa-
tion path, a set S that hits D. Let Rpr be the hypothesized probabilistic refuter for f against
prAMTICOMP[t(n), s(n)] protocols with promised soundness for f , and assume w.l.o.g. that Rpr

only outputs strings of length at least n and succeeds in outputting a counterexample with constant
probability δ > 0.

We now describe the nondeterministic list-refuter R. The input is 1n and a pair (Acomp, Pdec)
consisting of a probabilistic algorithm Acomp and a prAM protocol Pdec. R constructs a co-
nondeterministic circuit D as follows: On input a random string (r1, r2, r3), which is interpreted
as randomness for Rpr, randomness for Acomp and randomness for Pdec, respectively, D first runs
Rpr(1

n, (Acomp, Pdec); r1) to obtain an input z of length ℓ with n ≤ ℓ = O(poly(n)). Then, using
the fact that f is computable in polynomial time on a nondeterministic machine, D computes f(z)
using co-nondeterminism. Let A′

comp and P ′
dec denote the versions of Acomp and Pdec, respectively,

clocked to run in time t. Finally, the circuit D computes A′
comp(z, r2), co-nondeterministically ver-

ifies that there is no Merlin message that would lead P ′
dec with input A′

comp(z, r2) and randomness
r3 to output f(z), and accepts if and only if the verification succeeds.
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Before moving further, we observe that, if the pair (Acomp, Pdec) is sound for f and obeys the
running time and compression bounds, then D accepts at least a constant fraction of its inputs.
This holds because for such n, Rpr(1

n, (Acomp, Pdec); r1) outputs, with probability at least δ over a
random choice of r1, an input z of length ℓ ≥ n such that (Acomp, Pdec) fails to compute f(z) with
completeness 2/3. For those z, it holds for a fraction of at least 1/3 of strings (r2, r3) that there is
no Merlin message that leads Pdec(Acomp(z, r2); r3) to output f(z). Thus, with probability at least
δ′ = δ/3, D accepts a triple (r1, r2, r3).

After constructing D, R constructs a new co-nondeterministic circuit D′ composed of k copies
of D, which accepts if and only if any of the copies accept, for a constant k to be defined next.
R then computes H(D′), obtaining a set S of strings of the form ρ = (ρ1, ρ2, . . . , ρk), where each
ρi is of the form (r1, r2, r3). Finally, R outputs Rpr(1

n, Acomp, Pdec; r1) for all r1 that appear in
S. R always has an accepting computation path for every input since so does the generator H.
Recall that if (Acomp, Pdec) is sound for f , then the acceptance probability of D is at least δ′. This
means that the acceptance probability of D′ is at least 1 − (1 − δ′)k ≥ 1 − exp(−δ′k), which can
be made at least 1/2 by setting k = Θ(1/δ). In this case, H(D′) outputs a hitting-set for D′

on every accepting computation path. Let ρ be a string that hits D′. In that case, there must
be some ρi = (r1, r2, r3) that hits D, which means that Pdec fails to compute f(z) with perfect
completeness on input z = Rpr(1

n, Acomp, Pdec; r1). As such a z is on the list output by R on every
accepting computation path, R is a list-refuter for f against prAMTICOMP[t(n), s(n)] protocols
with promised soundness for f .

Let m denote the description length of (Acomp, Pdec). The co-nondeterministic circuit D′ con-
structed by R on inputs 1n and (Acomp, Pdec) has size poly(m,n, t(poly(n))) = poly(m, t(poly(n)))
since t(n) ≥ n, and thus computing H(D′) takes time T (poly(m, t(poly(n)))). Finally, R needs to
compute Rpr(1

n, Acomp, Pdec; r1) for at most T (poly(m, t(poly(n)))) strings r1, and each such exe-
cution takes time poly(m,n). The final running time is thus T (poly(m, t(poly(n))))+poly(m,n) =
T (poly(m, t(poly(n)))) since T (n) ≥ n.

We now exhibit a probabilistic polynomial-time refuter for the identity function against bottle-
neck protocols with imperfect completeness. The intuition is that strings z for which a bottleneck
protocol computes identity correctly with completeness 2/3 and soundness 1/3 can be described
succinctly via the output of the compression phase. Thus, the protocol must fail to compute identity
for most z, as most z do not admit a succinct representation.

Proposition 18. For every constant ϵ ∈ (0, 1), there exists a probabilistic polynomial-time refuter
for the identity function against prAMTICOMP[∞, nϵ] with completeness 2/3 and soundness 1/3.

Proof. Fix ϵ ∈ (0, 1). The probabilistic polynomial-time refuter Rpr, on input 1n and a pair
(Acomp, Pdec) of description length m just outputs a random string z of length ℓ = Θ(n) to be
defined precisely in the next paragraph.

Assume that (Acomp, Pdec) computes the identity function with completeness 2/3 and soundness
1/3 on an input z of length ℓ, and that |Acomp(z)| ≤ ℓϵ. By an averaging argument, there exists a
random sequence r1 for Acomp such that the following property holds with probability at least 1/3
over a random sequence r2 for Pdec: Any reply from Merlin for the protocol Pdec(Acomp(z; r1); r2)
leads to either acceptance or the correct output z, and there exists a Merlin reply that leads to the
correct output z. If we let πz = Acomp(z; r1) and fix (Acomp, Pdec), we can describe z as one of the
only three possible outputs of Pdec(πz) for which the property above holds. This description for
z has length at most ℓϵ + c for some constant c, and thus at most 2ℓ

ϵ+c+1 out of the 2ℓ strings of
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length ℓ can have such a short description. We then set ℓ = max(n, n0) = Θ(n), where n0 is the
smallest integer such that 2n

ϵ
0+c+1/2n0 ≤ 1/3. With ℓ as the output length, the probability that

the refuter succeeds is at least 2/3.

4.4 Proof of equivalence result

We now have all the steps involved in Theorem 2; we just need to tie them together.

Proof of Theorem 2. The implication 1 =⇒ 2 holds trivially by taking the identity for f . The
implication 2 =⇒ 3 is Theorem 15. The implication 3 =⇒ 1 follows by combining Theorem 17
and Proposition 18 with polynomial time bounds.

The strategy also applies to other types of targeted HSGs such as deterministic, single-valued
and deterministic with (parallel) NP oracle. Finally, we present a general version of Theorem 2
that applies to different types of targeted hitting-set generators for prAM.

Theorem 19. Let C ∈ {P, (NP ∩ coNP),PNP
|| ,PNP}. The following are equivalent:

1. For some constant ϵ ∈ (0, 1), there exists a list-refuter computable in C for the identity function
against prAMTICOMP[n1+ϵ, nϵ] protocols with promised soundness for identity.

2. For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a function f computable in deterministic
time na that admits a list-refuter computable in C against prAMTICOMP[na+ϵ, nϵ] protocols
with promised soundness for f .

3. There exists a targeted hitting-set generator for prAM computable in C.

Proof (sketch). The equivalence goes along the same lines as that of Theorem 2, using the observa-
tion after Theorem 14 that if the algorithm computing f is deterministic, then the targeted HSG
construction of Theorem 14 is also deterministic. In this case, assuming a refuter computable in C
and following Theorem 15, we obtain a targeted HSG that is also computable in C. Similarly and
following Theorem 17, a targeted HSG computable in C leads to a refuter computable in C.

The equivalence of Theorem 19 scales in the same way as that of Theorem 2, and in particu-
lar holds for quasipolynomial and subexponential time bounds. For completeness, we include an
argument for Corollary 3.

Proof of Corollary 3. That (1) implies (2) is trivial. We show that (2) implies (3) by retracing
the argument of Theorem 15. The original argument assumes that the refuter is computable in
nondeterministic time T and concludes the existence of a targeted hitting-set generator that runs
in nondeterministic time poly(T (poly(n))). In the original argument, to obtain the targeted HSG,
we run the refuter to obtain a list of inputs of length n = poly(m) (where m is the size of the co-
nondeterministic circuit given as input to the targeted generator) and then use each input as a basis
for the (nondeterministic) generatorH of Theorem 14. For deterministic and zero-error probabilistic
algorithms with oracle access to SAT, we can use the SAT oracle to compute the lexicographically
least output of H after obtaining the output of the refuter. For a refuter computable by a Σ2

algorithm, we can have the targeted generator guess the output of the refuter and of H, and then
verify with an existential and a universal guess that the outputs of the refuter and H were guessed
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correctly. In all cases, the final running time for the targeted HSG is poly(T (poly(m))), which is
polynomial if T is polynomial.

To see that (3) implies (1), we retrace the proof of Theorem 17. In the proof, we construct a
co-nondeterministic circuit D that verifies whether a given input serves as a counterexample for
the input bottleneck protocol, and then run the assumed targeted hitting-set generator to produce
a list of inputs containing a counterexample. On input 1n and a bottleneck protocol of description
length m, setting up D can be done deterministically in time poly(m,n). Thus, if we start from a
targeted hitting-set generator computable in C, we obtain a list-refuter computable in C.

Finally, the equivalence of (3) and (4) follows from Theorem 5 in [vMMS23b].

5 Explicit constructions

In this section, we establish a connection between targeted generators for prAM and explicit con-
structions. We first establish our general result in Section 5.1 and then highlight some applications
in Section 5.2.

5.1 General statement

We prove a more general version of Proposition 5 that applies for different types of targeted gener-
ators for prAM. For the upcoming statement, recall that a probabilistic construction for a property
Π is a polynomial-time randomized algorithm that, on input 1n, outputs a string x ∈ Π of length
at least n with probability at least 1/2.

Proposition 20. Let T be a time bound and C ∈ {P, (NP ∩ coNP),NP,PNP
|| ,PNP}. Assume there

exists a targeted hitting-set generator for prAM of type C that is computable in time T and let Π
be a property that respects the following conditions:

1. Π is decidable in coNP and admits a probabilistic construction.

2. There exists a polynomial time algorithm of type C that given a list x1, . . . , xk of strings in
{0, 1}n containing some xi ∈ Π outputs a string in Π of length at least n.

Then there exists an algorithm of type C that, on input 1n, runs in time poly(T (poly(n))) and
outputs a string in Π of length at least n.

Proof. Let A′ be a probabilistic construction for Π, B the algorithm in the second item and H the
assumed targeted generator for prAM. We describe an explicit construction A for Π: On input
1n, A first constructs a co-nondeterministic circuit D that, on input a random sequence r for A′,
computes v

.
= A′(1n, r) and co-nondeterministically verifies that v ∈ Π. Then, A computes H(D),

obtaining a list of strings r1, . . . , rk. Finally, A runs algorithm B on inputs A′(1n, r1), . . . , A
′(1n, rk)

and outputs whatever B does.
To see that A is correct, we note that because Π has a probabilistic construction and Π ∈ coNP,

it follows that D accepts at least a half of its inputs, while only accepting strings r such that
A′(1n, r) ∈ Π. In that case, the generator H on input D is guaranteed to output a list r1, . . . , rk
such that there exists ri for which A′(1n, ri) ∈ Π. Then, the guarantee on B implies that A outputs
a string in Π of length at least n. The circuit D has size m = poly(n), and it can be constructed
in that time. Then, computing H(D) takes time T (poly(n)), and thus produces a list of strings of
size at most T (poly(n)). Finally, running B on the resulting list takes time poly(T (poly(n))).
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For the case C = PNP
|| , the construction above has two rounds of non-adaptive NP queries.

Using standard results (see, e.g., [SU06, Lemma 7.2]), we can obtain a construction with a single
round of non-adaptive NP queries while incurring a polynomial time overhead.

5.2 Instantiations

In this section, we provide examples of explicit constructions that can be obtained by applying
Proposition 20.

Nondeterministic construction of hard truth-tables. We show how to construct truth-
tables of high circuit complexity assuming the existence of targeted generators sufficient to deran-
domize prAM. Then, using the construction, we prove Theorem 4.

Theorem 21. Assume there exists a targeted hitting-set generator for prAM computable in nonde-
terministic time T (m). Then, there exists a nondeterministic algorithm that always has an accept-
ing computation path and, on input 1m, runs in time T (poly(m)) and outputs, on every accepting
computation path, the truth-table of a function with circuit complexity at least m.

Proof. Assume there is a targeted hitting-set generator for prAM that is computable in nondeter-
ministic time T . It suffices to show that truth-tables of high circuit complexity respect the first and
second items in Proposition 20. Testing whether a truth-table x has high circuit complexity can be
done in coNP by universally guessing a circuit of size s and checking that the guessed circuit fails
to compute x. We now describe a probabilistic construction A′ for the property: On input 1s, the
algorithm A′ outputs a random truth-table of a Boolean function on 2⌈log s⌉ input bits. Since there
are at least 2s

2
possible such truth-tables but only 2O(s log s) circuits of size at most s, A′ succeeds

with probability at least 1/2 for sufficiently large s. For the second item, we note that one can
just concatenate (padding with zeroes in the end if necessary) a list x1, . . . , xk of truth tables that
contains a xi of circuit complexity at least s to obtain a single truth-table of circuit complexity at
least s.

Theorem 4 follows from Theorem 21 and traditional hardness vs. randomness tradeoffs [Uma03].
The conclusion of Theorem 21 together with the construction in [Uma03] results in a nondetermin-
istic PRG that, on input 1m, runs in time poly(T (poly(m)) and fools every circuit of size m, as
desired.

Deterministic construction of rigid matrices. The rank-r rigidity of a matrix M over a ring
S, which we denote by RS

M (r), is the minimum number of entries of M that must be changed
so that the rank of M becomes r or below. The maximum r-rigidity of an n × n matrix M is
(n− r)2, and in [Val77], Valiant showed that most matrices have very high rigidity (n− r)2/ log n.
However, known deterministic explicit constructions do not achieve this rigidity (see [Ram20] for
some recent progress). We show that a deterministic construction of matrices with very high rigidity
follows from the existence of deterministic refuters for a function f computable in deterministic
polynomial-time against bottleneck protocols.

Theorem 22. Assume that for some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a function f
computable in deterministic time na that admits a deterministic polynomial time list-refuter against
prAMTICOMP[na+ϵ, nϵ] protocols with promised soundness for f . Then, for any prime p, there is a
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deterministic polynomial-time algorithm that, on input n, outputs a matrix Mn over the polynomial

ring Fp[x] such that R
Fp[x]
Mn

= Ω((n− r)2/ log n).

Proof (sketch). We first use Theorem 19 to conclude the existence of a deterministic polynomial-
time targeted hitting-set generator for prAM. We now argue that the rigidity property for matrices
obeys the conditions of Proposition 20. Testing if a matrix is rigid is in coNP by universally guessing
a matrix A with “few” entries and verifying that the rank of M +A is larger than r. The result of
Valiant [Val77] implies a probabilistic construction of rigid matrices over Fp for any prime p, and
Klivans and van Melkebeek [KvM02] show how to obtain a single rigid matrix (though over the
polynomial ring Fp[x]) from a list of matrices that is guaranteed to contain a rigid matrix.

The reason we present the precondition of Theorem 22 in terms of the existence of refuters is
to provide a (constructive) hardness condition under which constructing rigid matrices is possible,
following other works that construct rigid matrices under similar assumptions [KvM02, GSTS03].

Appendix – Detailed targeted hitting-set generator construction

For completeness, we provide the full analysis of the targeted HSG that we need for our main result.
In Appendix A, we describe the RMV generator and its reconstructor. In Appendix B, we prove
Theorem 14.

A Recursive Miltersen-Vinodchandran generator

We need a couple of ingredients to describe how the RMV generator works. The first one is a local
extractor for the Reed-Müller code. A local extractor is a randomness extractor that only needs to
know a few bits of the sample. In the following definition the sample is provided as an oracle, and
the structured domain from which the sample is drawn is given as an additional parameter.

Definition 23 (Local extractor). Let S be a set. A (k, ϵ) local S-extractor is an oracle function
E : {0, 1}s → {0, 1}t that is computable in time poly(s, t) and has the following property: For every
random variable X distributed on S with min-entropy at least k, EX(Us) is ϵ-close to uniform.

We make use of the following local extractor for Reed-Müller codes.

Lemma 24 (Implicit in [SU05]). Fix parameters r < ∆, and let S be the set of polynomials
ĝ : Fr → F having total degree at most ∆, where F = Fp denotes the field with p elements. There is
a (k, 1/k) local S-extractor for k = ∆5 with seed length s = O(r log p) and output length t = ∆.

Note that for every subcube with sides of size ∆
r and choice of values at its points, there exists an

interpolating polynomial ĝ with the parameters of Lemma 24. It takes (∆/r)r log p bits to describe
these polynomials, but the local extractor only accesses poly(∆, r, log p) bits.

When instantiated with a polynomial ĝ : Fr → F, the RMV generator groups variables and
operates over axis-parallel (combinatorial) lines over the grouped variables.2 Shaltiel and Umans
call these MV lines, which we define next.

2In the original construction [SU09], the RMV generator is defined with the number d of groups of variables as an
additional parameter. Eventually, d is set to 2, which is the value we use for our results as well.
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Definition 25 (MV line). Let F = Fp for a prime p. Given a function ĝ : Fr → F where r is
an even integer, we define B = Fr/2 and identify ĝ with a function from B2 to F. Given a point
a⃗ = (⃗a1, a⃗2) ∈ B2 and i ∈ {1, 2}, we define the line passing through a⃗ in direction i to be the
function L : B → B2 given by L(z⃗) = (z⃗, a⃗2) if i = 1 and L(z⃗) = (⃗a1, z⃗) if i = 2. This is an
axis-parallel, combinatorial line, and we call it an MV line. Given a function ĝ : Fr → F and an
MV line L we define the function ĝL : B → F by ĝL(z) = ĝ(L(z)).

The input for the RMV construction is a multivariate polynomial ĝ : Fr → F of total degree
at most ∆, and the output is a set of m-bit strings for m ≤ ∆1/100. The construction is recursive
and requires that r is a power of 2 and that p is a prime larger than ∆100 (say, between ∆100 and
2∆100). Let E be the (k, 1/k)-local extractor from Lemma 24 for polynomials of degree ∆ in (r/2)
variables over F. Remember that k = ∆5 and that the extractor uses seed length O(r log p) and
output length t = ∆ ≥ m. By using only a prefix of the output, we have it output exactly m bits.

The operation of the RMV generator on input ĝ is as follows: Set B = Fr/2. For every a⃗ ∈ B2

and i ∈ {1, 2}, let L : B → B2 be the MV line passing through a⃗ in direction i. Compute E ĝL(y)
for all seeds y. For r = 2, output the set of all strings of length m obtained over all a⃗ ∈ B2, MV
lines L through a⃗, and seeds y. For r > 2, output the union of this set and the sets output by the
recursive calls RMV(ĝL) for each of the aforementioned MV lines L.

The construction runs in time pO(r) and therefore outputs at most that many strings. If the set
output by the procedure fails as a hitting set for a co-nondeterministic circuit D of size m, then
there exists an efficient commit-and-evaluate protocol for ĝ with additional input D. This is the
main technical result of [SU09], but before presenting it we define commit-and-evaluate protocols.

A commit-and-evaluate protocol [SU09] has the syntactic structure of a pair of promise Arthur-
Merlin protocol. The first protocol of the pair represents a commitment phase. In this phase, Arthur
and Merlin interact and produce an output π, which we call a commitment. The commitment is
given as input to the protocol of the evaluation phase. Even when Merlin is dishonest in the first
phase, in a commit-and-evaluate protocol there is a strong guarantee: With high probability over
Arthur’s randomness in the commitment phase, the evaluation protocol is partial single-valued,
meaning that Merlin cannot make Arthur output different values for the same input x with high
probability. The guarantee is referred to as resilient partial single-valuedness. For the upcoming
definition, we say that a prAM protocol P has partial single-valuedness s if there exists a value v
such that P outputs v with soundness s.

Definition 26 (Commit-and-evaluate protocol). A commit-and-evaluate protocol is a pair of
promise Arthur-Merlin protocols P = (Pcommit, Peval). P has resilience r(n) for partial single-
valuedness s(n) on domain X ⊆ {0, 1}∗ if for all n, no matter what strategy Merlin uses during
the commit phase, the probability that in the commitment phase, on input 1n, Pcommit succeeds and
outputs a commitment π that fails to have the following property (2) is at most r(n):

For every x of length n in X, Peval(x, π) has partial single-valuedness s(n). (2)

In symbols: (∀n)(∀Mcommit)

Pr[(∀x ∈ X ∩ {0, 1}n)Peval(x, π) has partial single-valuedness s(n)] ≥ 1− r(n),

where π = Pcommit(1
n,Mcommit).

25



A commit-and-evaluate protocol naturally induces a promise Arthur-Merlin protocol: On input
x, run Pcommit on input 1|x|. If this process succeeds, let π denote its output and run Peval on input
(x, π).

We now present the RMV reconstructor in a format that is suitable for obtaining our results.
Shaltiel and Umans present the evaluation protocol as a multi-round protocol (with log r rounds).
We collapse it into a two-round protocol by standard amplification (which also amplifies the crucial
resilience property) [BM88, SU09].

Lemma 27 ([SU09]). Let ∆,m, r, p be such that m ≤ ∆1/100, r is a power of 2 and p is a prime
between ∆100 and 2∆100. Let also F = Fp and s ∈ (0, 1]. There exists a commit-and-evaluate
protocol (Pcommit, Peval) with additional inputs p and D, where D is a co-nondeterministic circuit
of size m, such that the following holds for any polynomial ĝ : Fr → F of total degree at most ∆.

◦ Completeness: If D rejects every element output by RMV(ĝ) then there exists a strategy
Mcommit for Merlin in the commit phase such that Peval on input (z⃗, D, π) outputs ĝ(z⃗) with
completeness 1 for every z⃗ ∈ Fr, where π

.
= Pcommit(1

n,Mcommit).

◦ Resilience: If D accepts at least a fraction 1/2 of its inputs then (Pcommit, Peval) has resilience
s for partial single-valuedness s on domain Fr.

◦ Efficiency: Both Pcommit and Peval have two rounds. Pcommit runs in time log (1/s)·poly(∆, r)
and Peval runs in time (log (1/s))2 ·∆O((log r)2).

Moreover, the (honest) commitment protocol works as follows: Arthur randomly selects a set S ⊆
Fr/2 of size log (1/s) · poly(∆, r) and the honest Merlin replies with evaluations of ĝ on each of the
points in S2 ⊆ Fr. The honest commitment π consists of the set S and the evaluations of ĝ on S2.
Finally, the only way Peval requires access to D is via blackbox access to the deterministic predicate
that underlies D.

B Targeted generator and reconstruction

In this appendix, we present our targeted HSG construction in more detail, which works as follows:
On input z and a co-nondeterministic circuit D of size m, it guesses a PCPP (as in Lemma 13)
for each bit of f(z) and verifies each PCPP deterministically by enumerating the PCPP verifier’s
randomness. It encodes the input z with a suitable error-correcting code, obtaining Enc(z), and
instantiates the RMV generator with Enc(z) and the PCPPs, outputting the union of the outputs
for each instantiation. If the generator fails, the reconstruction property for the RMV generator
allows for compressing the input z, which is critical for obtaining a bottleneck reconstructor, and
the PCPPs, which leads to a more efficient reconstructor. The compressor Acomp computes Enc(z)
and the honest commitment πz for Enc(z), which is given as input to a prAM protocol Pdec, in
which Merlin, for any given bit position i, sends a bit b and commits to the low-degree extension of
a proof that the i-th bit of f(z) equals b. Arthur then runs the PCPP verifier using the evaluation
protocol to answer input and proof queries. The protocol succeeds and outputs b if and only if the
PCPP verifier accepts. This approach yields the following statement:

Proof of Theorem 14. Fix an input z ∈ {0, 1}n. For f computable in nondeterministic time T (n),
we define a language Lf that captures the computation of f on inputs encoded with an error-
correcting code. Let Enc be an ECC with distance parameter 0.1 computable in time n ·polylog(n)
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as in Section 3.6. Lf consists of strings (z̃, n, i, b), where n and i are integers given in binary and
b ∈ {0, 1}, and z̃ = Enc(z) for z ∈ {0, 1}n such that f(z)i = b. In particular, Lf is decidable in
nondeterministic time n · polylog(n) + T (n) by guessing z ∈ {0, 1}n, computing Enc(z), checking
that Enc(z) = z̃ and computing f(z)i. Let V be the PCPP verifier given by Lemma 13 where
we consider z̃ as an implicit input and the remaining part of the input as explicit, with soundness
parameter 0.01. The proof length of V is at most poly(T (n), n) = poly(T (n)) since T (n) ≥ n. In
the following discussion, we let yi denote any PCPP witnessing (z̃, n, i, b) ∈ Lf .

We now set parameters for the low-degree extensions that we need. Recall that we wish to
instantiate the RMV generator with the low-degree extensions of the PCPPs yi as well as the
encoded input z̃. Given our choice of Lf , the proof length of V is poly(T (n)). To encode the
PCPPs, let h = h(m) = m100, r = r(m,n) be the smallest power of two such that hr is greater
than or equal to to the proof length of V , and p = p(m,n) the smallest prime in the interval
[∆100, 2∆100] for ∆ = h·r, found by exhaustive search. Note, in particular, that hr = poly(T (n),m)
and r = O(log (T (n))/ logm). Throughout the rest of the proof, we denote by ŷi the low-degree
extension of each yi with parameters p, h and r.

To obtain the low-degree extension of z̃, we use slightly different settings. We set h and p as
before, but define r′ = r′(m,n) to the smallest power of two such that hr

′ ≥ n. We denote by ẑ
the low-degree extension of z̃ with parameters p, h and r′.

Generator. The generator H, on input z and a co-nondeterministic circuit D of size m, computes
z̃ = Enc(z) and the low-degree extension ẑ of z̃ with the parameters above, and guesses the value
of v = f(z) and a PCPP yi witnessing (z̃, n, i, vi) ∈ Lf for each index i of v. Then H verifies that
Pr[V z̃,yi(n, i, vi) = 1] = 1 for every i ∈ [|v|] by deterministically enumerating the poly(T (n),m)
random-bit strings for V . If any of the verifications fail, H fails. Otherwise, H computes the
low-degree extension ŷi of yi. Finally, H outputs the union of RMV(ẑ) and ∪i∈[|v|]RMV(ŷi), where
each invocation of the RMV generator is instantiated with the same output length m. Note that
the choice of parameters for encoding ẑ and each ŷi respects the preconditions of Lemma 27.

Computing z̃ and the initial verification step takes time poly(T (n),m), computing the low-
degree extensions for the PCPPs also takes time poly(T (n),m) and each execution of the RMV
generator, including the one for ẑ, takes time pO(r) = poly(T (n),m)and outputs strings of length m.
This culminates in a running time of poly(T (n),m). Finally, since for the correct output v = f(z)
there always exist PCPPs y1, . . . , y|v| that are accepted with probability 1 by V , there always exists
a nondeterministic guess that leads H to succeed.

Reconstructor. We describe and analyze the pair (Acomp, Pdec), which uses the commit-and-evaluate
protocol (Pcommit, Peval) of Lemma 27 with fixed input p and resilience parameter s = s(m,n) =
(100q)−1, where q = q(m,n) = polylog(T (n),m) denotes the query complexity of the PCPP verifier
V for Lf on implicit input z̃ and explicit inputs (n, i, b).

On input z and 1m, Acomp first computes z̃ = Enc(z). Then, Acomp tosses the coins required for
Pcommit for the low-degree extension ẑ of z̃ and outputs a commitment πz for ẑ, which it computes
by using the random bits to determine the set S and evaluating ẑ on every point of S2 as in the
moreover part of Lemma 27. As for protocol Pdec, on input the commitment πz and an index i,
Arthur first tosses the coins required for executing Pcommit for ŷi. Merlin then replies with a message
for Pcommit, which produces a commitment πyi , and with a bit b. The honest Merlin should send
b = f(z)i and commit to the low-degree extension of a PCPP yi that witnesses f(z)i = b, but a
dishonest Merlin may send b ̸= f(z)i and/or commit to a different function. Let ỹi denote the
function that Merlin commits to in the first step, which may be accessed with high probability
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by executing the evaluation protocol Peval with input πyi . The restriction of ỹi to [h]r defines a
candidate PCPP y′i. Arthur then runs the PCPP verifier V z̃,y′i(n, i, b), employing Merlin’s help to
evaluate ẑ and ỹi using Peval and the respective commitment whenever V makes a query to z̃ or y′i.
If V z̃,y′i(n, i, vi) accepts, then the protocol Pdec succeeds and outputs b, otherwise it fails.

Compression. The output of Acomp consists of |S2| = log (1/s) · poly(∆, r) = poly(m, log T (n))
points in Fr′ together with evaluations of ẑ on each point, each of which can be described with
log p = polylog(m, log T (n)) bits, resulting in a total output length of poly(m, log T (n)).

Completeness. IfD is not hit byH(z,D), then RMV(ẑ) fails to hitD and for all indices i there exists
at least one proof yi that witnesses (z̃, n, i, f(z)i) ∈ Lf and such that RMV(ŷi) fails to hitD. In that
case, an honest Merlin can commit to any such ŷi with probability 1 by the completeness property
of Lemma 27. The property also allows the algorithm Acomp to compute a correct commitment πz
for z̃ with probability 1. Finally, perfect completeness of V and Peval guarantees that on input πz
and an index i, and when considering an honest Merlin strategy, Pdec succeeds and outputs f(z)i
with probability 1.

(Resilient) soundness. If D accepts at least half of its inputs, then the resilience property of the
commit-and-evaluate protocol of Lemma 27 guarantees that with probability at least 1 − s, the
commitment for ỹi is successful, meaning that each execution of the evaluation protocol with input
πyi has partial single-valuedness s. For ẑ and the commitment πz, this implies that with probability
at least 1− s, the evaluation protocol with commitment πz has soundness s for ẑ, as Acomp always
computes the honest commitment. By a union bound, with probability at least 1− 2s ≥ 0.99, for
sufficiently large m,n, the commit phase is successful for ẑ and ỹi. Let the first “bad” event be
the event that at least one of the commitments is unsuccessful. If the first “bad” event does not
happen, then by a union bound over the at most q queries made by V to one of ẑ or some ỹi, with
probability at least 0.99, every execution of the evaluation protocol results in the evaluation of the
respective fixed function. Call the complement of this event the second “bad” event.

Now, the only way Merlin could try to have Arthur output a wrong value, assuming the first
two “bad” events do not happen, is if he sends some b ̸= f(z)i in the first round. If this happens,
then (z̃, n, i, b) /∈ Lf , and moreover any w̃ such that (w̃, n, i, b) ∈ Lf is at relative distance at
least 0.1 from z̃. Thus the soundness property of V in Lemma 13 guarantees that Pdec fails with
probability at least 0.99. Let the third “bad” event be the event that V outputs an incorrect value
when the first two “bad” events do not occur. By a union bound over the three “bad” events, all
of which have probability at most 0.99, Pdec(D, (Acomp(1

m, z))) either fails or outputs a bit of f(z)
with probability at least 2/3. In particular, if completeness also holds then Pdec(D, (Acomp(1

m, z)))
computes individual bits of f(z) with completeness 1 and soundness 1/3.

Reconstructor efficiency. The running time for Acomp is the time required to compute z̃ = Enc(z)
plus the time required to compute at most log (1/s) · poly(∆, r) = poly(m, log T (n)) evaluations of
ẑ. Computing z̃ takes time n · polylog(n) = n · polylog(T (n)), and computing each evaluation of
ẑ takes time n · poly(h, log p, r, log n) = n · poly(m, log T (n)), resulting in a total running time of
n · poly(m, log T (n)).

As for Pdec, the commit phase takes time log (1/s) · poly(∆, r) = poly(m, log T (n)) and two
rounds of communication. Afterwards, evaluating each query made by V with Peval takes time
(log (1/s))2 · ∆O((log r)2) = (m · polylog(T (n)))O((log r)2). The verification step for V takes time
poly(m, log T (n)), and it makes at most q = polylog(m,T (n)) queries, resulting in a total running
time of (m · log T (n))O((log r)2). Moreover, because V ’s queries are fully determined by its input
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and random bits, each execution of the evaluation protocol can be carried out in parallel, and thus
the total number of rounds is four. Collapsing this protocol into a two-round one using standard
techniques [BM88] leads to a prAM protocol with running time (m · log T (n))O((log r)2) with the
same completeness and soundness parameters. To compute the entirety of f(z) all at once, we
can amplify soundness for Pdec by parallel repetition [BM88] so that we still get soundness 1/3 for
computing every bit of f(z) in parallel. This introduces a multiplicative overhead of polylog(T (n))
for each execution of Pdec, resulting in a total running time of |f(z)| · (m · log T (n))O((log r)2).

Input access. We observe that the only information about D required for computing RMV(ẑ)
and RMV(ŷi) is its size m, and thus the generator H also only requires knowledge of the size of
D. Similarly, the commit-and-evaluate protocol in Lemma 27 only requires blackbox access to the
deterministic predicate that underlies the circuit D instead of to the description of D, and thus so
does Pdec since it just passes D as input to the commit-and-evaluate protocol.
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[AGHK11] Barış Aydınlıoğlu, Dan Gutfreund, John M. Hitchcock, and Akinori Kawachi. De-
randomizing Arthur-Merlin games and approximate counting implies exponential-size
lower bounds. Computational Complexity, 20(2):329–366, 2011.

[AvM17] Barış Aydınlıoğlu and Dieter van Melkebeek. Nondeterministic circuit lower
bounds from mildly derandomizing Arthur-Merlin games. Computational Complex-
ity, 26(1):79–118, 2017.

[BGH+05] Eli Ben-Sasson, Oded Goldreich, Prahladh Harsha, Madhu Sudan, and Salil Vadhan.
Short PCPs verifiable in polylogarithmic time. In Conference on Computational Com-
plexity (CCC), pages 120–134, 2005.
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