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Abstract

A fundamental question in computational complexity asks whether probabilistic polynomial-
time algorithms can be simulated deterministically with a small overhead in time (the BPP vs.
P problem). A corresponding question in the realm of interactive proofs asks whether Arthur-
Merlin protocols can be simulated nondeterministically with a small overhead in time (the AM
vs. NP problem). Both questions are intricately tied to lower bounds. Prominently, in both
settings blackbox derandomization, i.e., derandomization through pseudo-random generators,
has been shown equivalent to lower bounds for decision problems against circuits.

Recently, Chen and Tell (FOCS’21) established near-equivalences in the BPP setting between
whitebox derandomization and lower bounds for multi-bit functions against algorithms on almost-
all inputs. The key ingredient is a technique to translate hardness into targeted hitting sets in an
instance-wise fashion based on a layered arithmetization of the evaluation of a uniform circuit
computing the hard function f on the given instance. Follow-up works managed to obtain
full equivalences in the BPP setting by exploiting a compression property of classical pseudo-
random generator constructions. In particular, Chen, Tell and Williams (FOCS’23) showed that
derandomization of BPP is equivalent to constructive lower bounds against algorithms that go
through a compression phase.

In this paper we develop a corresponding technique for Arthur-Merlin protocols and establish
similar near-equivalences in the AM setting. As an example of our results in the hardness to
derandomization direction, consider a length-preserving function f computable by a nondeter-
ministic algorithm that runs in time na. We show that if every Arthur-Merlin protocol that runs
in time nc for c = O(log2 a) can only compute f correctly on finitely many inputs, then AM is in
NP. We also obtain equivalences between constructive lower bounds against Arthur-Merlin pro-
tocols that go through a compression phase and derandomization of AM via targeted generators.
Our main technical contribution is the construction of suitable targeted hitting-set generators
based on probabilistically checkable proofs of proximity for nondeterministic computations.

As a byproduct of our constructions, we obtain the first result indicating that whitebox
derandomization of AM may be equivalent to the existence of targeted hitting-set generators for
AM, an issue raised by Goldreich (LNCS, 2011). Byproducts in the average-case setting include
the first uniform hardness vs. randomness tradeoffs for AM, as well as an unconditional mild
derandomization result for AM.

1 Introduction

The power of randomness constitutes a central theme in the theory of computing. In some compu-
tational settings, randomness is indispensable for any algorithmic solution. In others, it is provably
needed for attaining efficiency. In yet others, the use of randomness leads to algorithms that
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run faster than all known deterministic ones, but the question remains open: Does an efficient
deterministic algorithm exist?

In the context of decision problems, the key question is whether probabilistic polynomial-time
algorithms with bounded error (the class BPP) can be simulated deterministically with a small
overhead in time. In the realm of interactive verification protocols, the corresponding question
asks whether Arthur-Merlin protocols (the class AM) can be simulated nondeterministically with
a small overhead in time. In both settings, polynomial overhead is conjectured to suffice but even
subexponential overhead remains open. Both settings have intricate connections to the quest for
lower bounds, referred to as hardness vs. randomness tradeoffs. In some cases equivalences are
known. We first describe the situation for BPP and then the one for AM, the focal point of this
paper.

BPP setting. The first hardness vs. randomness tradeoffs were developed for blackbox derandom-
ization, where a pseudo-random generator (PRG) produces, in an input-oblivious way, a small set
of strings that “look random” to the process under consideration on every input of a given length.
A long line of research established tight equivalences between blackbox derandomization of prBPP
(the promise version of the class BPP) and nonuniform lower bounds for exponential-time classes.
At the low end of the derandomization spectrum, subexponential-time blackbox derandomizations
of prBPP are equivalent to super-polynomial circuit lower bounds for EXP

.
= DTIME[2poly(n)]

[BFNW93]. At the high end, polynomial-time blackbox derandomizations of prBPP are equivalent
to linear-exponential circuit lower bounds for E

.
= DTIME[2O(n)] [IW97]. A smooth interpolation

between the two extremes exists and yields tight equivalences over the entire derandomization spec-
trum [Uma03]. The results are also robust in the sense that if the circuit lower bound holds at
infinitely many input lengths (equivalent to the separation EXP ̸⊆ P/poly at the low end), then
the derandomization works at infinitely many input lengths, and if the circuit lower bound holds
at almost-all input lengths, then the derandomization works at almost-all input lengths.

A uniformization of the underlying arguments led to equivalences between derandomizations
that work on most inputs of a given length, and uniform lower bounds, i.e., lower bounds against
algorithms. This derandomization setting is often referred to as the average-case setting, where
the underlying distribution may be the uniform one or any other polynomial-time sampleable
distribution. At the low end, there exist subexponential-time simulations of BPP that work on
all but a negligible fraction of the inputs of infinitely many lengths if and only if EXP ̸⊆ BPP
[IW01]. Unfortunately, the known construction does not scale well (see [TV07, CRTY20, CRT22]
for progress toward an equivalence at the high end) and is not robust (a version for almost-all
input lengths remains open). On the other hand, the result holds for blackbox derandomization
as well as for general, “whitebox” derandomization, and implies an equivalence between blackbox
and whitebox derandomization in this setting: If derandomization is possible at all, it can be done
through pseudo-random generators.

This left open the setting of whitebox derandomizations that work for almost all inputs. For
prBPP, such derandomizations are equivalent to the construction of targeted pseudo-random gen-
erators, which take an input x for the underlying randomized process, and produce a small set of
strings that “look random” on that specific input x [Gol11]. Recently, Chen and Tell [CT21] raised
the question of an equivalent lower bound condition, and proposed a candidate: uniform lower
bounds for multi-bit functions (rather than usual decision problems) that hold on almost-all inputs
in the following sense.
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Definition 1 (Hardness on almost-all inputs). A computational problem f is hard on almost-
all inputs against a class of algorithms if for every algorithm A in the class there is at most a finite
number of inputs on which A computes f correctly.

Chen and Tell started from the following observation about derandomization to hardness at the
high end of the spectrum.

Proposition 2 (Chen and Tell [CT21]). If prBPP ⊆ P, then for every constant c there exists
a length-preserving function f that is computable in deterministic polynomial time and is hard on
almost-all inputs against prBPTIME[nc].

Remarkably, they also established a converse, albeit with an additional uniform-circuit depth
restriction on the hard function f . Their approach naturally yields a targeted hitting-set generator
(HSG), the counterpart of a pseudo-random generator for randomized decision processes with one-
sided error (the class RP and its promise version prRP).

Theorem 3 (Chen and Tell [CT21]). Let f be a length-preserving function computable by
logspace-uniform circuits of polynomial size and depth nb for some constant b. If f is hard on
almost-all inputs against prBPTIME[nb+O(1)], where O(1) denotes some universal constant, then
prRP ⊆ P.

Note that the hardness hypothesis of Theorem 3 necessitates the depth nb of the uniform circuits
computing the function f to be significantly less than their size. Otherwise, there exists even a
deterministic algorithm that computes f in time nb+O(1).

The proof of Theorem 3 constructs a polynomial-time targeted hitting-set generator for prRP,
which generically implies a polynomial-time targeted pseudo-random generator for prBPP, and
thus that prBPP ⊆ P. Theorem 3 scales smoothly over the entire derandomization spectrum for
prRP. Due to losses in the generic conversion from hitting sets to derandomizations for two-sided
error, the corresponding result for prBPP does not scale that well. In particular, a low-end variant
of Theorem 3 for prBPP remains open. That said, the results are robust in a similar sense as
above with respect to input lengths. In fact, the approach inherently yields a much higher degree
of robustness because it effectuates a hardness vs. randomness tradeoff on an input-by-input basis,
as we explain further in the paragraph below about our techniques.

As a summary of the above discussion, Table 1 provides a qualitative overview of the lower
bound equivalences for each of the three types of derandomization considered.

Derandomization Lower bound

blackbox, almost-all inputs non-uniform
most inputs uniform

whitebox, almost-all inputs uniform, almost-all inputs

Table 1: Equivalences between various types of derandomization and lower bounds

In the setting of the third line in Table 1, a full-fledged equivalence along the lines of Chen and
Tell remains open due to the additional uniform-circuit depth requirement that is needed in the
direction from hardness to derandomization. As such, we refer to their results as near-equivalences.

Later works managed to obtain full-fledged equivalences with other hardness conditions, all
related to compression. Liu and Pass did so for hardness of separating high from low Levin-
Kolmogorov complexity [LP22] as well as for hardness in the presence of efficiently-computable
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leakage [LP23]. Korten [Kor22] established an equivalence with the existence of a determinis-
tic polynomial-time algorithm for the following problem: Given a probabilistic circuit Ccomp :
{0, 1}n → {0, 1}n−1 and a deterministic circuit Cdec : {0, 1}n−1 → {0, 1}n, find a string z ∈ {0, 1}n
such that Cdec(Ccomp(z)) differs from z with high probability. Chen, Tell, and Williams [CTW23]
viewed such an algorithm as a refuter for the identity function against a class A of algorithms
that go through a compression phase, reduced the class A, and extended the result to efficiently
computable multi-bit functions other than identity. Their framework also captures the equivalences
from [LP22] and [LP23].

Theorem 4 ([CTW23]). The following are equivalent:

1. For some constant ϵ ∈ (0, 1), there exists a polynomial-time list-refuter for the identity func-
tion against prBPTICOMP[n1+ϵ, nϵ].

2. For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a function computable in deter-
ministic time na that admits a deterministic polynomial-time list-refuter against the class
prBPTICOMP[na+ϵ, nϵ].

3. prBPP ⊆ P.

For a class A of algorithms, ATICOMP[t(n), s(n)] denotes the class of computational processes
obtained by first running a probabilistic algorithm Acomp and then an algorithm Adec ∈ A on the
output of Acomp such that both Acomp and Adec run in time t(n) and Acomp outputs a string of length
at most s(n). Assuming s(n) < n, one can view Acomp as producing a compressed representation of
the input, from which Adec computes the output. We refer to such pairs of algorithms as bottleneck
algorithms. A refuter for a function f against a class A′ is a meta algorithm that, given as input
the description of an algorithm A′ ∈ A′ and a length n, finds an input z of length at least n on
which A′ fails to compute f . A list-refuter similarly outputs a list z1, . . . , zτ of inputs of length at
least n that contains at least one zi on which A′ fails to compute f .

Note that the existence of the refuter in Theorem 4 only guarantees that, for any fixed A′ =
(Acomp, Adec) in prBPTICOMP[t(n)1+ϵ, nϵ] there exist infinitely many inputs on which A′ fails
to compute f . This stands in contrast with Theorem 3, where the algorithm is required to fail
on almost-all inputs. However, in the refutation setting the counterexamples need to be found
efficiently. In the case of hardness on almost-all inputs, there are trivial refuters, e.g., output 0n

for length n.

AM setting. An equivalence corresponding to the first line of Table 1 is known throughout the
entire spectrum [KvM02, MV05, SU05]. The role of EXP is now taken over by NEXP ∩ coNEXP,
and the circuits are nondeterministic (or single-valued nondeterministic, or deterministic with or-
acle access to an NP-complete problem like SAT). The simulations use hitting-set generators for
AM that are efficiently computable nondeterministically. Hitting-set generators are the natural
constructs in the setting of AM because every Arthur-Merlin protocol can be efficiently trans-
formed into an equivalent one with perfect completeness. As in the BPP setting, the lower bound
equivalences for blackbox derandomization of prAM scale smoothly and are robust with respect to
input lengths.

Regarding derandomizations that work on all but a negligible fraction of the inputs of a given
length (the second line in Table 1), no hardness vs. randomness tradeoffs for AM were known
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prior to our work. What was known, are high-end results on derandomizations where no efficient
nondeterministic algorithm can locate inputs on which the simulation is guaranteed to be incorrect
[GSTS03, SU09]. Indeed, the authors of [GSTS03] explicitly mention the average-case setting and
why their approach fails to yield average-case simulations that are correct on a large fraction of the
inputs. The setting corresponding to the third line in Table 1 was not studied before.

Main results. As our main results, we obtain near-equivalences in this third setting, i.e., between
whitebox derandomizations of Arthur-Merlin protocols that work on almost-all inputs, on the one
hand, and hardness on almost-all inputs against Arthur-Merlin protocols, on the other hand.

We start from a similar observation in the derandomization to hardness direction as the one
Chen and Tell made for BPP at the high end of the spectrum. We refer to Section 5.1 for the
quantification of “a few”.

Proposition 5. If prAM ⊆ NP, then for every constant c there exists a length-preserving function
f that is computable in nondeterministic polynomial time with “a few” bits of advice, and is hard
on almost-all inputs against AMTIME[nc].

Importantly, we are able to establish an almost-converse of Proposition 5. Under a slightly
stronger hardness assumption, we construct a targeted hitting-set generator for prAM that is com-
putable in nondeterministic polynomial time, yielding the following derandomization result.

Theorem 6. Let f be a length-preserving function computable in nondeterministic time na for
some constant a. If f is hard on almost-all inputs against prAMTIME[nc] for c = O((log a)2),
where O(·) hides some universal constant, then there exists a targeted hitting-set generator that
achieves the derandomization

prAM ⊆ NP.

In contrast to Theorem 3 in the BPP setting, Theorem 6 in the AM setting has no uniform-
circuit depth restriction on the function f . Together with Proposition 5, Theorem 6 represents
a near-equivalence between prAM ⊆ NP and hardness on almost-all inputs of length-preserving
functions against Arthur-Merlin protocols. Whereas in the BPP setting, the remaining gap relates
to uniform-circuit depth, in the AM setting the remaining gap relates to the advice and the technical
distinction between AM and prAM protocols. Note that the focus on length-preserving functions
f in Proposition 5 and Theorem 6 is for concreteness. For Proposition 5 to hold, the number of
output bits needs to grow with n in an efficiently computable fashion. For Theorem 6 any number
of output bits suffices as long as there are not so many that the function f becomes trivially hard
for Arthur-Merlin protocols running in time nc.

Both Proposition 5 and Theorem 6 scale quite smoothly across the derandomization spectrum.
The generalization of Theorem 6 has the following form: Let f be a length-preserving function com-
putable in nondeterministic time T (n). If f is hard on almost-all inputs against prAMTIME[t(n)],
then prAM ⊆ NTIME[poly(T (n))]. Intuitively, we may think of t(n) as only slightly smaller than
T (n) for high-end results and much smaller for low-end results. Pushing our techniques as far as
possible toward the low end, we obtain the following variant of Theorem 6.

Theorem 7. Let f be a length-preserving function computable in nondeterministic exponential
time. If f is hard on almost-all inputs against prAMTIME[nb(logn)2 ] for all constants b, then for
some constant c there exists a targeted hitting-set generator that achieves the derandomization

prAM ⊆ NTIME[2n
c
]. (1)
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As prAM ⊆ NEXP trivially holds, the conclusion (1) of Theorem 7 represents the very low end
of the derandomization spectrum. Note that a perfectly smooth scaling of Theorem 6 would only
need a polynomial lower bound to arrive at the conclusion of Theorem 7, but the hypothesis of
Theorem 7 requires a lower bound of nω((logn)2). We remark that the same discrepancy shows up
in the current best-scaling uniform hardness vs. randomness tradeoffs for AM [SU09]. We refer to
Theorem 32 in Section 4 for the full scaling and to Table 2 in the same section for other interesting
instantiations.

We also develop a full equivalence in the refutation setting, where the refuter is supposed to
produce counterexamples for Arthur-Merlin protocols that go through a compression phase, i.e.,
bottleneck protocols. Let (Acomp, Pdec) be in prAMTICOMP[t(n), s(n)]. Note that Acomp is still a
probabilistic algorithm, while Pdec is a promise Arthur-Merlin protocol. We say that (Acomp, Pdec)
is sound for a function f if for all inputs z, with high probability, Pdec(Acomp(z)) either correctly
computes f(z) or else indicates failure.

We show that targeted hitting-set generators that suffice to derandomize prAM are equivalent
to nondeterministic refuters for identity against bottleneck Arthur-Merlin protocols that are guar-
anteed to be sound for identity, and that identity can be replaced by an existentially quantified
function f computable in nondeterministic polynomial time.

Theorem 8. The following are equivalent:

1. For some constant ϵ ∈ (0, 1), there exists a nondeterministic polynomial-time list-refuter for
the identity function against prAMTICOMP[n1+ϵ, nϵ] protocols with promised soundness for
identity.

2. For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a function f computable in non-
deterministic time na that admits a nondeterministic polynomial-time list-refuter against
prAMTICOMP[na+ϵ, nϵ] protocols with promised soundness for f .

3. There exists a targeted hitting-set generator that achieves the derandomization prAM ⊆ NP.

Consider the first statement in Theorem 8. Because of the bottleneck, any fixed protocol
(Acomp, Pdec) of the stated type fails to compute identity on a random input of sufficiently large
length. Thus, the identity function admits a trivial refuter meeting the requirements of the theorem
except that the refuter is probabilistic instead of deterministic. From this perspective, Theorem 8
shows that for derandomizing prAM, it suffices to derandomize trivial refuters for the identity
function.

Theorem 8 scales smoothly in terms of the running time for the refuter. A refuter for the function
f that runs in time T results in a targeted hitting-set generator that runs in time poly(T (poly(n))).
Similarly, a targeted hitting-set generator that runs in time T , and thus achieves the derandom-
ization prAM ⊆ NTIME[T (poly(n))], results in a refuter for identity that runs in time T (poly(n)).
When the running time of the refuter ranges from polynomial to subexponential, so does the time
needed for the nondeterministic simulations, covering the entire derandomization spectrum.

Byproducts. Using our targeted hitting-set generators we are able to make progress on a number
of related topics. We mention three representative ones here; more are described in the body of
the paper.

First, there is the relationship between whitebox derandomization of prAM and the existence
of targeted hitting-set generators for prAM. In the paper [Gol11] where Goldreich introduced
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targeted pseudo-random generators for prBPP and showed that their existence is equivalent to
whitebox derandomization of prBPP, he asked about analogous results for prAM. To the best of
our knowledge, there have been no prior results along those lines. We take a first step toward an
equivalence in this setting.

Theorem 9. If prAMTIME[2polylog(n)] ⊆ io-NEXP, then there exists a targeted hitting-set gener-
ator for prAM that yields the simulation prAM ⊆ io-NTIME[2n

c
]/nϵ for some constant c and all

ϵ > 0.

Second, we establish the first hardness vs. randomness tradeoffs for Arthur-Merlin protocols in
the average-case setting. Informally, under a high-end worst-case hardness assumption, we obtain
nondeterministic polynomial-time simulations of prAM that are correct on all but a negligible
fraction of the inputs.

Theorem 10. If NTIME[2an]∩ coNTIME[2an] ̸⊆ BPTIME[2(log(a+1))2n]SAT|| for some constant a >
0, then for every problem in prAM and all e > 0 there exists a simulation of the problem in NP
that is correct on all but a fraction 1/ne of the inputs of length n for infinitely many lengths n.

The class BPTIME[t(n)]SAT|| denotes probabilistic algorithms with bounded error that run in

time t(n) and can make parallel (i.e., non-adaptive) queries to an oracle for SAT. Theorem 10
answers a question in [GSTS03], which presents results in the different but related “pseudo” set-
ting, where the simulation may err on many inputs of any given length, but no polynomial-time
nondeterministic algorithm can pinpoint an error at that length. We remark that our technique
also leads to identical results in the “pseudo” setting by replacing the hardness assumption with
hardness against AMTIME[t(n)].

The model prBPPSAT
|| was used as a proxy for prAM in the initial derandomization results

for Arthur-Merlin protocols [KvM02] and is seemingly more powerful. However, derandomization
results for prAM typically translate into similar derandomization results for prBPPSAT

|| . In partic-

ular, the conclusion prAM ⊆ NP of Theorem 6 implies that prBPPSAT
|| ⊆ PSAT

|| , and the conclusion

prAM ⊆ NTIME[2n
c
] for some constant c in Theorem 7 implies that prBPPSAT

|| ⊆ DTIME[2n
c
]SAT||

for some constant c. In the case of Theorem 10, we argue that the hardness assumption implies
simulations of prBPPSAT

|| in PSAT
|| of the same strength as the simulations of prAM in NP. This

way, we obtain a hardness vs. randomness tradeoff in which the hardness model and the model
to-be-derandomized match, namely probabilistic algorithms with bounded error and non-adaptive
access to an oracle for SAT.

As our third byproduct, we present an unconditional mild derandomization result for AM in
the average-case setting. By a mild derandomization of AM we mean a nontrivial simulation on
Σ2-machines. Recall that AM ⊆ Π2P, and proving that AM ⊆ Σ2P is a required step if we hope
to show that AM ⊆ NP. It is known that AM can be simulated (at infinitely many input lengths
n) on Σ2-machines that run in subexponential time and take nc bits of advice for some constant
c [Wil16]. It remains open whether AM can be simulated on Σ2-machines in subexponential time
with subpolynomial advice. Indeed, such a simulation for prAM would imply lower bounds against
nondeterministic circuits that are still open [AvM17]. We show an unconditional subexponential-
time and subpolynomial-advice Σ2-simulation for prAM in the average-case setting.

Theorem 11. For every problem in prAM and every constant ϵ > 0 there exists a simulation of
the problem in Σ2TIME[2n

ϵ
]/nϵ that is correct on all but a fraction 1/ne of the inputs of length n,

for all constants e and infinitely many lengths n.
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In fact, we can extend Theorem 11 to prBPPSAT
|| in lieu of prAM.

Techniques. For our main results, we develop an instance-wise transformation of hardness into
targeted hitting sets tailored for AM. In the setting of BPP, Chen and Tell combine the Nisan-
Wigderson pseudo-random generator construction [NW94] with the doubly-efficient proof systems
of Goldwasser, Kalai, and Rothblum [GKR15] (as simplified in [Gol18]). The latter allows them to
capture the computation of a uniform circuit of size T and depth d for f on a given input x by a
downward self-reducible sequence of polynomials, which they use to instantiate the NW generator.
In case the derandomization of a one-sided error algorithm on a given input x fails, a bootstrapping
strategy à la [IW01], based on a learning property of the NW generator, allows them to retrieve the
value of f(x) in time O(d · polylog(T )). Thus, provided the depth d is small compared to the size
T , either the derandomization on input x works or else the computation of f(x) can be sped up.
In the refutation setting, the refuter provides an input z. The bootstrapping strategy produces a
small circuit that computes the mapping i 7→ f(z)i; the compression algorithm Acomp outputs this
circuit; the algorithm Adec takes the circuit and evaluates it on all i to determine and output f(z).

A similar approach based on [GKR15] applies to the AM setting by replacing the NW construc-
tion with a hitting-set generator construction for AM that also has the learning property. Like in
the BPP setting, the construction is of more interest when the circuits for f have relatively small
depth. Moreover, the construction can only handle a limited amount of nondeterminism in the
computation for f , whereas the direction from derandomization to hardness seems to require more.

In order to remedy both shortcomings, we develop a new method to extract hardness from a
nondeterministic computation on a given input z, based on probabilistically checkable proofs of
proximity (PCPPs) rather than [GKR15]. The soundness of our method presupposes some type
of resilience of the underlying regular pseudo-random generator. The required property was first
identified and used by Gutfreund, Shaltiel and Ta-Shma [GSTS03] for the Miltersen-Vinodchandran
generator MV [MV05], and later by Shaltiel and Umans [SU09] for their recursive variant of the
MV generator, RMV. We combine RMV with the probabilistically checkable proofs of proximity of
Ben-Sasson, Goldreich, Harsha, Sudan, and Vadhan [BSGH+05] to transform hardness into pseudo-
randomness for AM in an instance-wise fashion, without any uniform-circuit depth restriction or
limitation on the amount of nondeterminism.

We highlight one strong feature of all instance-wise approaches. If the hardness condition holds
on almost-all inputs, then the derandomization works on almost-all inputs. This is the setting
in which we stated the results of Chen and Tell and our main results. Similarly, if the hardness
condition holds on all inputs of a given length, then the derandomization works on all inputs of
that length. This is the robustness property that we alluded to earlier. However, an instance-
wise approach yields much more, including average-case derandomization results: To obtain a
nondeterministic simulation for some prAM problem that works with high probability over any
given distribution, it suffices to assume that every prAM protocol can only compute the hard
function f with low probability over that same distribution. In the refutation setting, we have the
refuter provide the input z, and we show that our reconstructor is actually a bottleneck Arthur-
Merlin protocol.

Our derandomization-to-hardness result follows by diagonalization, as does the one by Chen
and Tell. The result that targeted generators sufficient for derandomizing prAM imply refutation
works by employing such generators to derandomize the process of obtaining a counterexample at
random. The resilience property of our generator that follows from our use of PCPPs and the
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resilience property of the RMV reconstructor play a critical role here.
To obtain our byproducts, we combine our targeted hitting-set generator with several other

ingredients, including diagonalization, the “easy-witness” method and traditional hardness vs. ran-
domness tradeoffs. Our average-case derandomization results require a modification of our targeted
HSG so that it respects a stronger resilience property. Along the way to our unconditional mild
derandomization result, we establish an “easy witness lemma” for Σ2 computations, which may be
of independent interest.

Organization. In Section 2, we develop the ideas behind our results and relate them to existing
techniques. We start the formal treatment in Section 3 with definitions, notation, and other prelimi-
naries. In Section 4, we construct our targeted HSG and establish our hardness-to-derandomization
results that make use of it (Theorems 6, 7 and the refutation-to-derandomization direction of The-
orem 8). Section 5 presents the derandomization-to-hardness side of our near-equivalence, the
targeted-generators-to-refutation side of Theorem 8, and a proof of our byproduct on derandomiza-
tion to targeted hitting-set generators (Theorem 9). In Section 6, we derive our derandomization
byproducts under uniform worst-case hardness (the average-case simulation of Theorem 10 as well
as a simulation that works on all inputs of infinitely many lengths). Section 7 contains our uncon-
ditional mild derandomization result for AM (Theorem 11).

2 Technical overview

In this section, we start with an overview of techniques used in prior hardness vs. randomness
tradeoffs for BPP and AM in a way that facilitates a high-level exposition of our main hardness-to-
derandomization result for AM. We also provide the intuition for our derandomization-to-hardness
result and for our byproducts.

2.1 Main results

We start with an overview of the techniques used for hardness-to-derandomization results in the
traditional setting for BPP (lines 1 and 2 in Table 1), followed by those in the new setting (line 3
in Table 1). We then transition to AM, discuss the additional challenges, the known techniques in
the traditional setting and, finally, our results in the new setting.

Traditional setting for BPP. The key ingredient in all known hardness vs. randomness trade-
offs is a pseudo-random generator construction G that takes a function h as an oracle and produces
a pseudo-random distribution Gh with the following property: Any statistical test D that distin-
guishes Gh from uniform suffices as an oracle to efficiently learn h approximately from a small
number of queries. Thus, if Gh does not “look random” to an efficient randomized process A on
an input x, an approximation to h can be reconstructed efficiently when provided with x and the
values of h on a small number of points, as well as oracle access to the distinguisher D(r) = A(x, r),
where A(x, r) denotes the output of A on input x and random-bit string r. If the function h can
be self-corrected (e.g., by being random self-reducible or by its truth table being a codeword in a
locally-correctable error-correcting code), then the exact function h can be reconstructed efficiently.

In order to obtain hardness vs. randomness tradeoffs from pseudo-random generator construc-
tions with the learning property, two questions need to be addressed:
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1. How to obtain the distinguishers D?

2. How to obtain the answers to the learning queries?

The first question asks how to find inputs x on which the process A is not fooled by Gh. In
the non-uniform setting such an input can be included in the advice. In the uniform setting for
BPP, such inputs can be found by sampling x at random and testing for a difference in behavior
of D

.
= A(x, ·) between the uniform and the pseudo-random distributions, which can be done in

prBPP.
Regarding the second question, in the non-uniform setting, the answers to the learning queries

can also be provided as advice. In the uniform setting, [IW01] employs a function h that is
not only random self-reducible but also downward self-reducible, and uses the downward self-
reduction to answer the learning queries for length n by evaluating the circuit that resulted from
the reconstruction for length n−1. This bootstrapping strategy presupposes that the reconstruction
works at almost-all input lengths. This is why we only know how to obtain simulations that are
correct at infinitely many input lengths in the uniform setting for BPP.

New setting for BPP. In the setting of line 3 in Table 1, the role of pseudo-random generators
is taken over by targeted pseudo-random generators. Whereas PRGs are oblivious to x (beyond its
length), targeted PRGs take x as an input and are only supposed to fool the randomized process on
that particular x. This approach obviates the problem of obtaining the distinguisher D (question
1 above) as we can use D = A(x, ·) for the given x. Indeed, an equivalent formulation of targeted
generators considers D itself as the input, and the targeted generator only needs to “fool” that
particular D [Gol20]. Targeted PRGs can be constructed from a PRG G by instantiating G with
an oracle h = hx that depends on x. This raises a third question in the application of a PRG for
hardness vs. randomness tradeoffs:

3. How to obtain the function hx from x?

Chen and Tell [CT21] use the doubly-efficient proof systems of Goldwasser, Kalai, and Roth-
blum [GKR15] (as simplified in [Gol18]) to obtain hx from x and combine it with the Nisan-
Wigderson pseudo-random generator construction [NW94]. The GKR proof system takes a logspace-
uniform family of circuits of size T (n) and depth d(n) computing a (multi-bit) Boolean function f ,
and transforms the circuit for f on a given input x into a downward self-reducible sequence of multi-
variate low-degree polynomials ĝx,0 . . . , ĝx,d′(n) where d′(n) = O(d(n) log (T (n))). The polynomial
ĝx,0 is efficiently computable at any point given input x, and the value of f(x) can be extracted
efficiently from ĝx,d′(n). We refer to the sequence of polynomials as a layered arithmetization of the
circuit for f on input x.

Chen and Tell instantiate the NW generator with the Hadamard encoding of each of the poly-
nomials ĝx,i as the function h = hx,i, and follow a bootstrapping strategy similar to [IW01] to
construct ĝx,d′(n) from ĝx,0. For the strategy to work, the NW reconstructor needs to succeed at
every level. This is the reason why Chen and Tell only end up with a (targeted) hitting-set gen-
erator rather than a pseudo-random generator. The time required by the bootstrapping process is
proportional to the number of layers and thus to the depth d(n) of the circuit computing f . By
setting the parameters of the arithmetization appropriately, the dependency on the size T (n) is
only polylogarithmic. This is what enables the reconstruction to compute f(x) very quickly as long
as the depth d(n) is not too large.
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The above approach hinges on the speed of the reconstruction process. Subsequent works hinge
on the compressed representation that the reconstruction process implicitly builds, which can be
viewed as a bottleneck that the computation goes through. Such approaches typically allow for
a matching implication from derandomization to hardness because a random function cannot be
compressed and derandomization lets us find such an incompressible function deterministically.

Like Chen and Tell, Liu and Pass also apply the NW generator but obtain hx differently.
In [LP22], they use hx that are the encodings of the outputs π(x) of all small efficient programs π
(so the resulting string has small Kolmogorov-Levin complexity Kt). The answers to the learning
queries are hard-wired into the program that reconstructs hx. The direction from derandomiza-
tion to hardness follows from the fact that an efficient algorithm that separates low from high
Kolmogorov-Levin complexity acts as a distinguisher. In [LP23], hx encodes the value of f(x)
itself, where f is an almost-all inputs leakage-resilient hard function (a function that remains hard
even if some efficiently-computable information about f(x) is leaked to an attacker). The approach
leads to a (targeted) pseudo-random generator as it only involves a single hx. The answers to the
learning queries are provided as part of the information about f(x) that is leaked, and the direction
from derandomization to hardness follows the typical pattern.

Recall that the reconstructor only needs access to D and the answers to the learning queries to
hx; let Arec(hx, D) denote the result. Each of the above approaches can be viewed as an explicit
construction of one or more hx from x such that

Arec(hx, D) ̸= hx (2)

for at least one hx. This suffices because (2) means that the reconstruction fails for hx, and whenever
that happens the targeted pseudo-random generator based on hx has to fool D. Prior approaches
all guarantee (2) indirectly by constructing the functions hx out of a function f with a particular
hardness property, and showing that if all hx satisfy Arec(hx, D) = hx, then the hardness property
for f on input x fails. Prior approaches are also oblivious to D

.
= A(x, ·) but that feature is nothing

special as one can always incorporate a description of A as part of the input x.
Recent approaches take a broader perspective and try to directly construct hx with the sole

requirement that (2) holds. Thanks to the bottleneck that the reconstruction process goes through,
we know that a random choice of hx satisfies the requirement. Under the derandomization hypothe-
sis prBPP ⊆ P, we can efficiently find such an hx deterministically. Conversely, if we can efficiently
find such an hx deterministically, we obtain an efficient targeted pseudo-random generator in the
BPP setting.

Korten [Kor22] follows this outline, where the circuit Ccomp computes the compressed represen-
tation of a candidate value z for hx based on D, from which the circuit Cdec attempts to retrieve
hx. Korten does not use the full NW construction but only Yao’s predictor, thereby only achieving
a modest compression. Chen, Tell, and Williams [CTW23] achieve better compression using the
full NW construction. They also cast the construction of hx as a refuter for the identity function
f(z) = z against the reconstructor algorithm Arec(z,D), and show how the identity function can be
replaced by any efficiently computable length-preserving function f . The extension sets hx = f(z)
and involves an application of the Chen-Tell bootstrapping approach (based on the standard cir-
cuit simulation of the uniform computation of f) in order to obtain the answers to the learning
queries. As a consequence, the targeted generator is only hitting. In the special case of identity,
the learning queries are simply bits of z, which obviates the need for Chen-Tell and results in a
targeted generator that is pseudo-random.
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Transition to AM. A number of changes are in order in terms of the requirements for similar
results for AM. First, we need to handle co-nondeterministic distinguisher circuits D instead of
deterministic ones. Co-nondeterministic circuits suffice because Arthur-Merlin protocols can be
assumed to have perfect completeness. The only requirement for a correct derandomization is in
the case of negative instances, in which case we want to hit the set of Arthur’s random-bit strings for
which Merlin cannot produce a witness. By the soundness property of the Arthur-Merlin protocol,
the set contains at least half of the random-bit strings.

Second, we need to accommodate nondeterministic algorithms computing the function f . This is
because the direction from derandomization to hardness seems to need them (see Proposition 5). On
each input z, such an algorithm needs to have at least one successful computation path, and on every
successful computation path, the output should equal f(z). Similarly, we allow for nondeterministic
refuters, which need to output counterexamples on every accepting computation path.

Third, the algorithm for the targeted hitting-set generator can also be nondeterministic, which
is natural when the algorithm or refuter for f is nondeterministic. In the case of a generator,
the nondeterministic algorithm should still have at least one successful computation path on every
input, but it is fine to produce different outputs on different successful computation paths. For
any given D, on every successful computation path, the output should be a hitting set for D.
This allows us to nondeterministically simulate a promise Arthur-Merlin protocol P on input x
as follows: First, construct the circuit D based on P and x and guess a computation path of the
targeted HSG on input D; if it succeeds, say with output S, guess a computation path for P on
input x using each of the elements in S as the random-bit string, and accept if all of them accept;
otherwise, reject.

Finally, we need to be able to run the reconstruction procedure as a (promise) Arthur-Merlin
protocol. This is because we want the model in which we can compute f(z) in case of a failed
derandomization, to match the class we are trying to derandomize. There are two requirements for
the protocol to compute f(z) on input z:

◦ Completeness demands that there exists a strategy for Merlin that leads Arthur to succeed
with output f(z) with high probability.

◦ Soundness requires that, no matter what strategy Merlin uses, the probability for Arthur to
succeed with an output other than f(z) is small.

The reconstructor naturally needs the power of nondeterminism in order to simulate the distin-
guisher D. Making sure the reconstructor is sound and needs no more power than prAM is the
challenge.

Traditional setting for AM. In reference to the first two questions above, the answer to the one
about obtaining a distinguisher D is similar as for BPP, except that in the uniform setting we do
not know how to check in prAM for a difference in behavior of D

.
= P (x, ·) between the uniform and

the pseudo-random distributions. This is why average-case results remain open for AM. Instead,
one assumes that some nondeterministic algorithm produces, on every successful computation path
on input 1n, an input x of length n on which the difference in behavior is guaranteed.

As for obtaining answers to the learning queries in the uniform setting for AM, we can make
use of the nondeterminism allowed during the reconstruction and ask Merlin to provide the answers
to the learning queries. However, we need to guard against a cheating Merlin. A strategy proposed
by Gutfreund, Shaltiel and Ta-Shma in [GSTS03] consists of employing a function h that has a
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length-preserving instance checker. After Merlin has provided the supposed answers to the learning
queries, to compute h(z) for a given input z, we run the instance checker on input z and answer
the queries y of the instance checker by running the evaluator part of the reconstruction process
on input y. All the runs of the evaluator can be executed in parallel, ensuring a bounded number
of rounds overall, which can be reduced to two in the standard way at the cost of a polynomial
blowup in the running time [BM88].

To guarantee soundness, the reconstruction process needs to have an additional resilience prop-
erty, namely that it remains partial single-valued even when the learning queries are answered
incorrectly. Two hitting-set generators tailored for AM are known to have the property: the
Miltersen-Vinodchandran generator MV [MV05], which is geared toward the high end, and a re-
cursive version, RMV, developed by Shaltiel and Umans [SU09] to cover a broader range. MV is
used for the high end in [GSTS03], and RMV for the rest of the spectrum in [SU09].

New setting for AM. A first approach to port the Chen-Tell result to the AM setting is to
replace NW with a generator for AM that has the learning property and a reconstructor running
in prAM. The nondeterminism allows one to run the bootstrapping process in parallel, so the
number of rounds of Arthur and Merlin remains bounded, but the overall running time remains
proportional to the depth of the circuits for f . This means that, like in the setting of BPP, this
first approach only yields meaningful results when the depth is small compared to the size. Nonde-
terministic circuits for f can be accommodated in this approach by treating them as deterministic
circuits with nondeterministic guess bits as additional inputs. However, this limits the amount of
nondeterminism that can be handled. To address these issues, we develop a refined approach based
on PCPs.

We build a targeted hitting-set generator for AM based on the RMV hitting-set generator. To
obtain hx from x in the setting of hardness on almost-all inputs, we make use of Probabilistically
Checkable Proofs (PCPs) for the nondeterministic computation of the string f(x) from x. Let V
denote the verifier for such a PCP system that uses O(log(T (n)) random bits and polylog(T (n))
queries for nondeterministic computations that run in time T (n). On input x, our targeted HSG
guesses the value of f(x) and a candidate PCP witness yi for the i-th bit of f(x) for each i, and runs
all the checks of the verifier V on yi (by cycling through all random-bit strings for V ). If all checks
pass, our targeted HSG instantiates RMV with yi for each i as (the truth table of) the oracle hx,
and outputs the union of all the instantiations as the hitting set, provided those nondeterministic
computations all accept; otherwise, the targeted HSG fails.

For the reconstruction of the i-th bit of f(x), Arthur generates the learning queries of the RMV
reconstructor for the oracle yi, and Merlin provides the purported answers as well as the value of
the i-th bit of f(x). Arthur then runs some random checks of the verifier V on input x, answering
the verifier queries by executing the evaluator of the RMV reconstructor. All the executions of the
evaluator can be performed in parallel, ensuring a bounded number of rounds overall. The resilient
partial single-valuedness property of the RMV reconstructor guarantees that the verifier queries
are all consistent with some candidate proof ỹi. The completeness and soundness of the PCP then
imply the completeness and soundness of the reconstruction process for our targeted HSG. As V
makes few queries and is very efficient, the running time of the process is dominated by the running
time of the RMV reconstructor.

Abstracting out the details of our construction and how the distinguisher D is obtained, the
result can be captured in two procedures: a nondeterministic one, H, which has at least one
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successful computation path for every input and plays the role of a targeted hitting-set generator,
and a promise Arthur-Merlin protocol, Prec, which plays the role of a reconstructor for the targeted
hitting-set generator.

Property 12. For every z ∈ {0, 1}∗ and for every co-nondeterministic circuit D that accepts at
least half of its inputs, at least one of the following holds:

1. H(z,D) outputs a hitting set for D on every successful computation path.

2. Prec(z,D) computes f(z) in a complete and sound fashion.

Note that in Property 12 both H and Prec are given access to the input z as well as the co-
nondeterministic circuit D. In fact, the dependency of H on D is only through the number of input
bits of D. For Prec, blackbox access to D suffices (in addition to the input z). However, we may as
well give both H and Prec full access to the input z and the circuit D. In the setting of hardness
on almost-all inputs, the co-nondeterministic circuit D is obtained by hardwiring the input z into
the Arthur-Merlin protocol being derandomized, but this is not essential for the construction.

Theorem 6 follows by considering nondeterministic running time T (n) = na and co-nondeter-
ministic circuits D of size nc for some c > 1. In this regime, H runs in time nO(a+c) and Prec

in time nO(c(log a)2). Under the hypothesis of Theorem 6, the second item in Property 12 cannot
happen except for finitely many z, so the first item needs to hold. For any constant c′ < c, this
yields a polynomial-time targeted hitting-set generator for prAMTIME[nc′ ], which can be used for
all of prAM by padding. Theorem 7 follows along the same lines; the running time is dictated by
the RMV reconstructor.

In the refutation setting we no longer need hardness to hold on almost-all inputs but instead
need a meta-algorithm that finds inputs where a given bottleneck protocol fails. We again make use
of Property 12 but now connect derandomization to refuters for the function f against bottleneck
protocols. In the direction from refutation to derandomization, we use the refuter to find an input
z for which the reconstructor fails (i.e., the second item in Property 12 does not hold). In that
case, H(z,D) must output a hitting set for D (the first item in Property 12 holds). A key property
to ensure that the reconstructor behaves like a bottleneck protocol is that the RMV reconstructor
yields a compressed representation of any hx that fails as a basis for obtaining a hitting set. In our
PCP-based construction, we used this property to compress PCPs for each bit of f(z) to ultimately
speed up the computation of f(z). One complication in the refutation setting is that verifying PCPs
requires full access to the input z, which seems to ruin the potential for compression. We resolve
the complication by modifying the generator and additionally run RMV on z itself. This way, the
reconstructor goes through a compressed representation of z from which it can efficiently recover
z. We take the compressor Acomp to be the algorithm that, on input z, generates and answers the
learning queries for z, producing the compressed representation of z. We then feed the compressed
representation of z into Prec, which uses the RMV evaluator to access z whenever that is necessary.
With this approach, and starting from a function f computable in nondeterministic time na for
some constant a, we can construct targeted HSGs that achieve the derandomization prAM ⊆ NP
from the existence of a refuter against bottleneck protocols with subpolynomial compression that
run in time na+ϵ · poly(n) for some ϵ > 0, where the poly(n) term comes from the use of PCPs.

We can do better, and get rid of the multiplicative poly(n) term, by further refining the approach
and employing probabilistically checkable proofs of proximity rather than PCPs. Given random
access to the input z of length n and to a proof, a PCPP verifier runs in time polylog(n) instead
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of poly(n). PCPPs, however, are only sound when the input is far in relative distance from a true
instance of the underlying decision problem, which makes them more suitable to inputs that are
in error-correctable form. For this reason, we have the compressor Acomp first encode the input z
with an error-correctable code that is computable in time n · polylog(n), and have Prec employ the
PCPP verifier with the encoded version. The RMV evaluator allows us to recover individual bits
of z very efficiently, in particular in time that is sublinear in n, which can be absorbed in the na+ϵ

term together with the running time for the PCPP verifier. This is how we obtain Theorem 8.
Because of similar gains, we employ PCPPs in lieu of PCPs throughout the paper.

Derandomization to hardness. Proposition 5 is established by diagonalization. Under the
prAM ⊆ NP assumption, every fixed-polynomial time AM protocol computing a length-preserving
function can be simulated in nondeterministic fixed-polynomial time. We would like to diagonalize
against these simulating nondeterministic machines to construct our hard function. Due to the lack
of an almost-everywhere hierarchy result for NTIME, we do not know how to do this efficiently for
generic nondeterministic machines. This is where the advice comes to rescue: We use advice to
indicate which nondeterministic machines are single-valued at a particular input length. We only
need to consider single-valued machines, and diagonalizing against them is easy for a nondetermin-
istic machine with a little more running time, but figuring out which nondeterministic machines
are single-valued at a given input length is hard.

For the direction from derandomization to refutation in Theorem 8, assuming the existence
of a targeted HSG sufficient for derandomizing prAM, the objective is to obtain a refuter for
identity against polynomial-time bottleneck Arthur-Merlin protocols with subpolynomial compres-
sion bottlenecks. For any fixed such bottleneck protocol Prec, a probabilistic argument guarantees
that Prec fails to compute identity for most strings z of length n. Moreover, our use of PCPPs
together with the resilience property of the RMV reconstructor ensures that the reconstruction
protocol Prec always meets the soundness requirement. This means that a successful refuter pro-
vides an input z on which the completeness requirement fails. The latter property can be verified
co-nondeterministically, which allows us to generate such a z using the presumed targeted HSG
and thus obtain a refuter computable in nondeterministic polynomial time.

2.2 Byproducts

In this section, we develop the intuition for our byproducts.

Targeted hitting-set generators from derandomization (Theorem 9). To obtain a tar-
geted HSG from derandomization of prAM, we employ our targeted hitting-set generator in a
win-win argument. Either a complexity class separation holds, in which case a result of [IKW02]
guarantees the existence of a regular (oblivious) hitting-set generator that yields the derandomiza-
tion result, or we get a strong complexity class collapse. The collapse allows us to bypass some of
the difficulties in diagonalizing against prAM protocols on almost-all inputs (one of the reasons we
require advice in the derandomization-to-hardness direction of our near-equivalence), thus allow-
ing us to do so efficiently and uniformly, and then instantiate our targeted hitting-set generator
construction.

Average-case derandomization (Theorem 10). Our average-case derandomization results
under worst-case hardness assumptions also make use of our targeted hitting-set generator con-
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struction, but in a different way. They do not exploit the potential of the hitting sets to depend
on the input x. In fact, they set f(x) to the truth table of the worst-case hard language L from
the hypothesis at an input length determined by |x|. Instead, they hinge on the strong resilient
soundness properties of the reconstructor.

As we are considering the average-case derandomization setting, the problem of obtaining the
distinguisher D for the reconstruction resurfaces. Our approach is similar to the one for the
traditional average-case derandomization setting for BPP. If the simulation fails for protocol P
with noticeable probability over a random input, then we can sample multiple inputs x1, x2, . . . and
construct a list of “candidate distinguishers” Dx1

.
= P (x1, ·), Dx2

.
= P (x2, ·), . . . such that the list

contains, with high probability, at least one “true” distinguisher. Whereas in the BPP setting one
can test each candidate and discard, with high probability, the ones that are not distinguishers, we
do not know how to do that in the AM setting. Instead, we employ a different approach: We run
the reconstructor with each distinguisher with the hope that every execution either fails or outputs
the correct value.

This approach necessitates a stronger form of resilience than the one provided by the RMV
generator: That its reconstruction is sound when given as input any co-nondeterministic circuit
D, not just those that accept at least half of their inputs (as in Property 12). We don’t know
how to guarantee this with our prAM reconstruction, but we are able to do so in prBPPSAT

|| by
approximating the fraction of inputs that D accepts and outright failing if the fraction is too low.

We point out that earlier works [GSTS03, SU09] also manage to guarantee soundness of the
reconstructor for co-nondeterministic circuits D that accept at least half of their inputs, based
on the resilient partial single-valuedness of the reconstructor for MV or RMV. They do so by
running an instance checker, which limits the hard function f to classes for which instance checkers
are known to exist, such as complete problems for E and EXP. Instead, we achieve soundness
of the reconstructor based on the soundness of a PCPP. As PCPPs exist for all nondeterministic
computations, this makes our approach more suitable in this setting. In particular, we do not know
how to obtain Theorem 10 along the lines of [GSTS03, SU09].

Unconditional mild derandomization (Theorem 11). Our unconditional mild derandom-
ization result relies on a similar win-win argument as in the proof of Theorem 9: Either some
hardness assumption/class separation holds, in which case we get derandomization right away, or
we get a complexity collapse that we use to construct, by diagonalization, a hard function f that
has the efficiency requirements we need to obtain the derandomization result using our targeted
hitting-set generator.

Since our result is unconditional, we cannot use derandomization assumptions to make diag-
onalizing against prAM protocols easier. Instead, we rely on the inclusion prAM ⊆ Π2P, which
allows for diagonalizing against such protocols in Σ2TIME[nω(1)]. Our generator, however, requires
the hard function to be computable by efficient nondeterministic algorithms. To help bridge the
gap, we prove an “easy witness lemma” for Σ2 computations that guarantees a strong collapse
in case the aforementioned hardness assumption does not hold. The collapse then allows us to
instantiate our targeted hitting-set generator construction with the diagonalizing function.

16



3 Preliminaries

We assume familiarity with standard complexity classes such as NP, AM, and prAM. We often
consider inputs and outputs from non-Boolean domains, such as Fr for a field F and r ∈ N. In
such cases, we implicitly assume an efficient binary encoding for the elements of these domains.
Finally, as is customary, all time bounds t are implicitly assumed to be time-constructible and
satisfy t(n) ≥ n.

3.1 Nondeterministic, co-nondeterministic and single-valued computation

We make use of nondeterministic, co-nondeterministic, and single-valued circuits in our results.
A nondeterministic circuit is a Boolean circuit C with two sets of inputs, x and y. We say that
C accepts x if there exists some y such that C(x, y) = 1, and that C rejects x otherwise. A co-
nondeterministic circuit has a symmetric acceptance criterion: It accepts x if for all y it holds that
C(x, y) = 1, and rejects x otherwise. A partial single-valued circuit also has two inputs, x and y;
on input (x, y) it either fails (which we represent by C(x, y) = ⊥) or succeeds and outputs a bit
b = C(x, y). Moreover, we require that for all y, y′ such that both C(x, y) and C(x, y′) succeed,
C(x, y) = C(x, y′), i.e., the circuit computes a partial function on its first input. If, furthermore,
for all x there exists a y such that C(x, y) succeeds, we call the circuit total single-valued or just
single-valued.

We are also interested in nondeterministic algorithms that compute total relationsR ⊆ {0, 1}∗ →
{0, 1}∗. Let T be a time bound. We say that a nondeterministic algorithm N computes R if
for all x ∈ {0, 1}∗, there exists at least one computation path on which N(x) succeeds, and
N(x) outputs some y ∈ R(x) on all successful computation paths. Note, in particular, that if
a function f : {0, 1}∗ → {0, 1}∗ is computable in nondeterministic time T (n), then the language
Lf = {(x, i, b) | f(x)i = b} is in NTIME[T (n)].

3.2 Arthur-Merlin protocols

A promise Arthur-Merlin protocol P is a computational process in which Arthur and Merlin receive
a common input x and operate as follows in alternate rounds for a bounded number of rounds.
Arthur selects a random string and sends it to Merlin. Merlin sends a string that depends on
the input x and all prior communication from Arthur; the underlying function is referred to as
Merlin’s strategy, which is computationally unrestricted. At the end of the process, a deterministic
computation on the input x and all communication determines acceptance. The running time of
the process is the running time of the final deterministic computation.

Any promise Arthur-Merlin protocol can be transformed into an equivalent one with just two
rounds and Arthur going first, at the cost of a polynomial blow-up in running time, where the
degree of the polynomial depends on the number of rounds [BM88]. As such, we often use the
notation prAM to refer to promise Arthur-Merlin protocols with any bounded number of rounds,
even though, strictly speaking, the notation refers to a two-round protocol with Arthur going first.

Promise Arthur-Merlin protocols can be simulated by probabilistic algorithms with oracle access
to SAT: Instead of interacting with Merlin, Arthur asks the SAT oracle whether there exists a
response of Merlin that would lead to acceptance. Similarly, PprAM

|| can be simulated in BPPSAT
|| ,

the class of problems decidable by probabilistic polynomial-time algorithms with bounded error
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and non-adaptive oracle access to SAT. In fact, a converse also holds and helps to extend some of
our results for prAM to the class prBPPSAT

|| .

Lemma 13 ([CR11]). prBPPSAT
|| ⊆ PprAM

|| .

In Lemma 13, the deterministic machines with oracle access to prAM on the right-hand side are
guaranteed to work correctly irrespective of how the queries outside of the promise are answered,
even if those queries are answered inconsistently, i.e., different answers may be given when the same
query is made multiple times.

Arthur-Merlin protocols that output values. A promise Arthur-Merlin protocol P may also
output a value. In this case, at the end of the interaction, the deterministic computation determines
success/failure and, in case of success, an output value. We denote this value by P (x,M), which is
a random variable defined relative to a strategy M for Merlin. Similar to the setting of circuits, we
indicate failure by setting P (x,M) = ⊥, a symbol disjoint from the set of intended output values.
Our choice of using success and failure for protocols that output values is to avoid confusion with
the decisional notions of acceptance and rejection.

Definition 14 (Arthur-Merlin protocol with output). Let P be a promise Arthur-Merlin
protocol. We say that on a given input x ∈ {0, 1}∗:

◦ P outputs v with completeness c if there exists a Merlin strategy such that the probability that
P succeeds and outputs v is at least c. In symbols: (∃M) Pr[P (x,M) = v] ≥ c.

◦ P outputs v with soundness s if, no matter what strategy Merlin uses, the probability that
P succeeds and outputs a value other than v is at most s. In symbols: (∀M) Pr[P (x,M) ̸∈
{v,⊥}] ≤ s.

◦ P has partial single-valuedness s if there exists a value v such that P outputs v with soundness
s. In symbols: (∃v)(∀M) Pr[P (x,M) ̸∈ {v,⊥}] ≤ s.

Note that if P on input x outputs v with completeness c and has partial single-valuedness s,
then it outputs v with soundness s, provided s > 1 − c. If we omit c and s, then they take their
default values of c = 1 (perfect completeness) and s = 1/3.

For a given function f : X → {0, 1}∗ where X ⊆ {0, 1}∗, we say that P computes f with
completeness c(n) and soundness s(n) if on every input x ∈ X, P outputs f(x) with completeness
c(|x|) and soundness s(|x|). Note that P may behave arbitrarily on inputs that are not in X. In
contrast, an AM protocol (as opposed to a prAM protocol) computing f still computes some value
in a complete and sound fashion on inputs x /∈ X.

3.3 Learn-and-evaluate and commit-and-evaluate protocols

The reconstruction processes for hardness-based hitting-set generators for prAM are typically spe-
cial types of promise Arthur-Merlin protocols. We distinguish between two types.

A learn-and-evaluate protocol is composed of two phases: A learning phase followed by an
evaluation phase. In the learning phase, a probabilistic algorithm makes queries to a function f
and produces an output (which we call a sketch). The evaluation phase then consists of a promise
Arthur-Merlin protocol that computes f(x) correctly on every input x when given the sketch as
additional input.
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Definition 15 (Learn-and-evaluate protocol). A learn-and-evaluate protocol consists of a prob-
abilistic oracle algorithm Alearn and a promise Arthur-Merlin protocol Peval. Let f : X → {0, 1}∗
where X ⊆ {0, 1}∗. We say that (Alearn, Peval) computes f with error e(n) for completeness c(n)
and soundness s(n) if on every input x ∈ X of length n the following holds: The probability over

the randomness of Alearn that Peval with input x and additional input π = Af
learn(1

n) outputs f(x)
with completeness c(n) and soundness s(n) is at least 1− e(n).

The learning phase of a learn-and-evaluate protocol can be simulated by an Arthur-Merlin
protocol with output, where Merlin guesses the queries that Alearn makes on a given random-bit
string and answers them in parallel, and the output is a sketch of f . In this view, a learn-and-
evaluate protocol becomes a pair of promise Arthur-Merlin protocols: one for the learning phase,
and one for the evaluation phase. Note that the quality of the evaluation phase is only guaranteed
when the learning queries are answered correctly, i.e., when Merlin is honest in the learning phase.

A commit-and-evaluate protocol [SU09] has the syntactic structure of a pair of promise Arthur-
Merlin protocols without the restriction that Merlin in the first phase only answers queries about
f . Semantically, a commit-and-evaluate protocol is more constrained than a learn-and-evaluate
protocol. The first protocol of the pair now represents a commitment phase instead of a learning
phase. In this phase, Arthur and Merlin interact and produce an output π, which we call a
commitment. Similar to a learn-and-evaluate protocol, the commitment is given as input to the
protocol of the evaluation phase. Whereas in a learn-and-evaluate protocol there are no guarantees
whatsoever when Merlin is dishonest in the first phase, in a commit-and-evaluate protocol there
is a strong guarantee: With high probability over Arthur’s randomness in the commitment phase,
the evaluation protocol is partial single-valued, meaning that Merlin cannot make Arthur output
different values for the same input x with high probability. The guarantee is referred to as resilient
partial single-valuedness.

Definition 16 (Commit-and-evaluate protocol). A commit-and-evaluate protocol is a pair of
promise Arthur-Merlin protocols P = (Pcommit, Peval). P has resilience r(n) for partial single-
valuedness s(n) on domain X ⊆ {0, 1}∗ if for all n, no matter what strategy Merlin uses during
the commit phase, the probability that in the commitment phase, on input 1n, Pcommit succeeds and
outputs a commitment π that fails to have the following property (3) is at most r(n):

For every x of length n in X, Peval(x, π) has partial single-valuedness s(n). (3)

In symbols: (∀n)(∀Mcommit)

Pr[(∀x ∈ X ∩ {0, 1}n)Peval(x, π) has partial single-valuedness s(n)] ≥ 1− r(n),

where π = Pcommit(1
n,Mcommit).

A commit-and-evaluate protocol naturally induces a promise Arthur-Merlin protocol: On input
x, run Pcommit on input 1|x|. If this process succeeds, let π denote its output and run Peval on input
(x, π).

3.4 Bottleneck algorithms

The reconstructor algorithms underlying (targeted) generators typically have the property that
they go through a compression phase but eventually produce a potentially long output. We refer to
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such algorithms as ”bottleneck algorithms.” We define them generically relative to any base class
A and formalize them as two-phase algorithms: a compression phase Acomp that is probabilistic,
and a decompression phase Adec that is of type A.

Definition 17. Let A be a class of promise algorithms, t a time bound and s : N → N. We let
ATICOMP[t(n), s(n)] be the class of computational problems with the following properties for some
probabilistic algorithm Acomp and some Adec ∈ A: For any input x ∈ {0, 1}∗:

◦ The process first runs Acomp on input x, yielding a string Acomp(x), and then runs Adec on
input Acomp(x).

◦ Each of the two phases run in time t(|x|).

◦ The length of Acomp(x) never exceeds s(|x|).

Note that we impose the resource bounds strictly (not up to a constant factor) and on all inputs
(not just on all but finitely many). The differences do not matter much for the resource of time. This
is because of constant-factor speedup results and because asymptotic time bounds can be turned
into absolute ones by hard-wiring the behavior on the finitely many inputs on which the time bound
is violated. These transformations do not affect the input-output behavior of the algorithm, though
the second one comes at the cost of a potentially significant increase in the description length of the
algorithm. For the compression bound s(n) the differences do matter. Constant-factor compression
is not possible in general, and hard-wiring is not an option as it requires access to the full input.

Definition 17 applies to promise Arthur-Merlin protocols that output values, yielding the bot-
tleneck protocol classes prAMTICOMP[t(n), s(n)]. In the completeness and soundness notions of
Definition 14, for bottleneck protocols, we consider the probabilities over both the internal ran-
domness of the algorithm Acomp and Arthur’s randomness in the prAM protocol Pdec.

We similarly extend the notion of a bottleneck protocol computing a given function f with
certain completeness (default 1) and soundness (default 1/3). We say that a pair (Acomp, Pdec) is
sound for a function f if (Acomp, Pdec) computes f on every input with soundness 1/3 (without any
completeness guarantee).

3.5 Refuters

Refuters and list-refuters can be defined generically for a total function f against a resource-bounded
semantic class A of algorithms. Such A is defined by an underlying syntactic class of machines,
resource bounds that always hold (for all possible executions on all inputs), and promises about
the behavior of the machine for it to compute a value on a given input.

Definition 18. Let f : {0, 1}∗ → {0, 1}∗ be a total function, and A a resource-bounded semantic
class of algorithms. A list-refuter R for f against A is an algorithm that on input 1n and an
algorithm A of the syntactic type underlying A, outputs a list of strings (x1, . . . , xτ ), each of length
at least n. If A satisfies the resource bounds of A for all inputs of length at least n, then there exists
i ∈ [τ ] for which A fails to compute f(xi). A refuter is a list-refuter that outputs singleton sets.

Failure for A(x) to compute f(x) means that either A does not satisfy the promise on input x
or else it does but computes a value other than f(x).

Other variants on the formal requirements for a refuter exist in the literature; some comments
on the choices we made are in order. The lower bound n on the length of the counterexample allows
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us to avoid irrelevant or useless counterexamples. Such a lower bound could alternately be enforced
by modifying A and hard-wiring the correct output values for f on inputs of length less than n.
However, this comes at an exponential cost in n for the description length of the algorithm, which
is problematic for the efficiency of meta algorithms like refuters. The hard-wiring fix may also not
be possible, e.g., in the case of bottleneck algorithms.

Imposing a lower bound rather than an exact value on the length of the counterexamples
facilitates handling settings where there are only counterexamples of infinitely many lengths but
not all lengths. Note that the length of the counterexamples is bounded by the running time of
the refuter, which we typically express as a function of both n and the description length of the
algorithm.

In Definition 18 the behavior of a refuter R is well-defined even for algorithms A that do not
satisfy the resource constraints on all inputs of length less than n. This is consistent with the
requirement that the counterexample be of length at least n. Alternately, one could only specify
the behavior of a refuter on algorithms A that satisfy the resource constraints everywhere. For
constructible resource bounds, the alternate definition can be used in lieu of ours as one can first
modify A into an algorithm A′ that satisfies the resource bounds everywhere and behaves like A on
inputs where A meets the resource bounds. The increase in description length from A to A′ is not
significant from a complexity-theoretic perspective. Our definition obviates the need for applying
the transformation each time we want to run a refuter.

The refutation problem can have promises beyond the one that A meets the resource bounds
on all inputs of length at least n. In such cases the refuter only needs to produce a counterexample
when A comes from some restricted subclass of A.

In this work, we mostly use nondeterministic list-refuters against bottleneck Arthur-Merlin
protocols, i.e., against classes prAMTICOMP[t(n), s(n)]. A nondeterministic list-refuter is similar
to a regular list-refuter, with the difference that it is nondeterministic, must have at least one
accepting computation path on every input, and must output a list containing a counterexample
on every accepting path for every input satisfying the relevant promise. More precisely, on input
1n and a pair (Acomp, Pdec) consisting of a probabilistic algorithm Acomp and a prAM protocol Pdec,
the refuter must have at least one accepting computation path and exhibit the following behavior:
every accepting path must output a list (x1, . . . , xτ ), each of length at least n. If on inputs of length
ℓ ≥ n both phases of (Acomp, Pdec) run in time t(ℓ) and the output length of Acomp is bounded by
s(ℓ), then on every accepting computation path the refuter must output a list of strings (x1, . . . , xτ ),
each of length at least n such that for at least one i ∈ [τ ], (Acomp, Pdec) fails to compute f on input
xi with completeness 1 and soundness 1/3.

We say that R is a refuter for f against prAMTICOMP[t(n), s(n)] protocols with promised
soundness for f if R can refute pairs (Acomp, Pdec) that are sound for f . R may fail to refute
protocols that are not sound for f , but still needs to have at least one accepting computation path
on such inputs.

3.6 Hitting-set generators and targeted hitting-set generators

In the setting of prBPP, Goldreich [Gol20] discusses two equivalent definitions of targeted pseudo-
random generators: one for deterministic linear-time machines that take both the input x and the
random-bit string r as inputs, and one based on circuits D that only take the random-bit string r as
input. The circuit D can be obtained by first constructing a circuit C that simulates the machine
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on inputs of length |x|, and then hardwiring the input x. The difference between a regular and
targeted pseudo-random generator lies in the dependency of the output on x (in the first definition)
or the circuit D (in the second definition): For a regular PRG the output can only depend on |x|
or the size of D, whereas for a targeted PRG it can depend on x and D proper.

In the setting of prAM, without loss of generality, we can assume that promise Arthur-Merlin
protocols have perfect completeness. Therefore, we only need to consider targeted hitting-set
generators, the variant of targeted PRGs for one-sided error. Similar to the BPP setting, there
are two equivalent definitions of targeted HSGs for prAM. We propose a third, hybrid, and also
equivalent definition, where the targeted generator is given access to both x and the circuit C. For
prAM with perfect completeness the circuit C (as well as D) is co-nondeterministic. For regular
HSGs, the output can only depend on the size of C. Our definition highlights that, in principle, there
are two types of obliviousness that regular PRGs/HSGs exhibit: With respect to the input (where
only dependencies on its size are allowed) and with respect to the algorithm being derandomized
(where only dependencies on its running time are allowed). Since the algorithm description can be
incorporated as part of the input, the dependency on C can be avoided. This is essentially why all
three definitions are equivalent. In our targeted hitting-set generator construction the dependency
will only be through x and the size of C.

We start by defining hitting sets for co-nondeterministic circuits.

Definition 19 (Hitting set for co-nondeterministic circuits). Let D be a co-nondeterministic
circuit of size m. A set S of strings of length m is a hitting set for D if there exists at least one
z ∈ S such that D(z) = 1 (where D might take a prefix of z as input if necessary). In that case,
we say that S hits D.

The notion allows us to define targeted hitting-set generators for prAM as follows, where we
assume, without loss of generality, perfect completeness and soundness 1/2. Regular hitting-set
generators are viewed as a special case.

Definition 20 (Regular and targeted hitting-set generator for prAM). A targeted hitting-
set generator for prAM is a nondeterministic algorithm that, on input x ∈ {0, 1}∗ and a co-
nondeterministic circuit C, has at least one successful computation path, and if Prr[C(x, r) = 1] ≥
1/2, outputs a hitting set for D(r)

.
= C(x, r) on every successful computation path. A regular

hitting-set generator for prAM is a targeted hitting-set generator where the output only depends on
the size of C.

We measure the running time of a targeted hitting-set generator in terms of both the length
n of the string x and the size m of the co-nondeterministic circuit C. In some cases, it is more
convenient to work with generators that only take a co-nondeterministic circuit D as input. By the
above discussion, such generators suffice for derandomizing prAM.

For completeness, we state the standard way of obtaining the co-nondeterministic circuits C
and D capturing promise Arthur-Merlin protocols.

Proposition 21. There exists an algorithm that, on input 1n and the description of a (Boolean
output, two-round) prAMTIME[t(n)] protocol P , runs in time O(t(n)2) and outputs a co-nondeter-
ministic circuit C of size m = O(t(n)2) that simulates and negates the computation of P for input
length n, i.e., the input of C is comprised of x ∈ {0, 1}n and Arthur’s random-bit string r, and it
co-nondeterministically verifies that there is no Merlin message that would lead to acceptance. In
particular:
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◦ If P with input x accepts all random inputs, then Dx(r)
.
= C(x, r) rejects every input.

◦ If P with input x rejects at least a fraction 1/2 of its random-bit strings, then Dx(r)
.
= C(x, r)

accepts at least a fraction 1/2 of its inputs.

3.7 PCPs of proximity, error-correcting codes and low-degree extensions

PCPs of proximity work with pair languages, i.e., languages of pairs of strings. Intuitively, we view
one part of the input as explicit, to which the PCPP verifier has full access, and another part of
the input as implicit, to which the PCPP verifier has oracle access. Each query a PCPP verifier
makes to the implicit input counts towards its query complexity.

Let L ⊆ {0, 1}∗ × {0, 1}∗ be a pair language. We denote by Lx the set {z | (x, z) ∈ L}. The
soundness condition for PCPPs requires that z is sufficiently far from strings in Lx in relative
Hamming distance. Let z, z′ ∈ {0, 1}n and d(z, z′) = |{i | zi ̸= z′i}|/n. For z ∈ {0, 1}n and
S ⊆ {0, 1}n, we define d(z, S) = minz′∈S(d(z, z

′)). The string z is said to be δ-far from S if
d(z, S) ≥ δ.

Definition 22 (PCP of Proximity). Let r, q, t : N × N → N and s, δ : N × N → [0, 1]. Let
L ⊆ {0, 1}∗×{0, 1}∗ be a pair language. We say that L ∈ PCPPs,δ[r, q, t] if there exists a probabilistic
algorithm V (the verifier) that, given a string x ∈ {0, 1}m and an integer n as regular input, and
oracle access to an implicit input z ∈ {0, 1}n and to a proof oracle y ∈ {0, 1}∗, tosses r(m,n) coins,
queries the oracles z and y for a total of q(m,n) bits, runs in time t(m,n), and either accepts or
rejects. Moreover, V has the following properties:

◦ Completeness: If (x, z) ∈ L then there exists a y such that Pr[V z,y(x, n) = 1] = 1.

◦ Soundness: If (x, z) is such that z is δ(m,n)-far from Lx ∩ {0, 1}n, then for every y′ it holds
that Pr[V z,y′(x, n) = 1] ≤ s(m,n).

We use the following PCPP construction due to Ben-Sasson, Goldreich, Harsha, Sudan, and
Vadhan.

Lemma 23 ([BSGH+05]). Let T be a time bound and L be a pair language in NTIME[T (m,n)],
where m denotes the length for the first (explicit) input and n the length for the second (implicit)
input. Then, for every constant s, we have L ∈ PCPPs,δ[r, q, t], for

◦ Proximity parameter δ(m,n) = 1/polylog(m,n),

◦ Randomness complexity r(m,n) = log (1/s) · log T (m,n) +O(log log T (m,n)),

◦ Query complexity q(m,n) = polylog(T (m,n)),

◦ Proof length ℓ(m,n) = T (m,n) · polylog(T (m,n)),

◦ Verification time t(m,n) = poly(m, log n, log T (m,n)).

In our applications of the above PCPP the implicit input will be in an error-correcting format.
An error-correcting code (ECC) with distance parameter δ is an algorithm Enc such that for every
n and z, z′ ∈ {0, 1}n for which z ̸= z′, it holds that d(Enc(z),Enc(z′)) ≥ δ. For our purposes,
it suffices that for any constant δ ∈ (0, 1] there exists an ECC with distance parameter δ that is
computable in time n · polylog(n) (e.g., see [Jus76] and the discussion in [Spi96]).
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A particular type of ECCs are low-degree extensions. Let x ∈ {0, 1}n, F = Fp be the field with
p elements (for prime p) and h and r integers such that hr ≥ n. The low-degree extension of x
with respect to p, h, r is the unique r-variate polynomial x̂ : Fr → F with degree h − 1 in each
variable, for which x̂(v⃗) = xi for all v⃗ ∈ [h]r representing a i ∈ [n] and x̂(v⃗) = 0 for the v⃗ ∈ [h]r

that do not represent an index i ∈ [n]. The total degree of x̂ is ∆ = hr and x̂ is computable in
time n · poly(h, log p, r) given oracle access to x.

3.8 Average-case simulation

The instance-wise nature of our technique allows us to conclude derandomization on average with
respect to arbitrary distributions by assuming hardness with respect to that same distribution. The
notion of average-case simulation that we use is the one where the simulation works correctly with
high probability over inputs drawn from the distribution. We typically want good simulations to
exist with respect to every efficiently sampleable distribution (where the simulation may depend
on the distribution). This is usually referred to as the “heuristic” setting.

Definition 24 (Heuristic). Let Π be a promise-problem, µ : N → [0, 1), C a complexity class and
x = {xn}n∈N an ensemble of distributions where xn is supported on {0, 1}n and such that for all
n, every x in the support of xn satisfies the promise of Π. We write

Π ∈ Heurx,µC

if there exists a language L ∈ C such that for all sufficiently large n, Prx∈xn [L(x) ̸= Π(x)] ≤ µ(n).
We write

Π ∈ HeurµC

if the above property holds for every polynomial-time sampleable ensemble of distributions with the
above support restriction.

The notions of average-case simulation extend to the infinitely-often setting in the natural way.

4 Targeted hitting-set generator construction

In this section, we develop our targeted HSG construction, which leads to our instance-wise hardness
vs. randomness tradeoffs for Arthur-Merlin protocols.

Our construction builds on the RMV generator due to Shaltiel and Umans [SU09], which is a
recursive variant of the MV generator that shares the desired resilience property with MV. We start
with the definition of the RMV generator in Section 4.1 and state its reconstruction properties in
terms of a commit-and-evaluate protocol. We present our construction and analysis in Section 4.2
and the derandomization consequences in Section 4.3.

4.1 Recursive Miltersen-Vinodchandran generator

We need a couple of ingredients to describe how the RMV generator works. The first one is a local
extractor for the Reed-Müller code. A local extractor is a randomness extractor that only needs to
know a few bits of the sample. In the following definition the sample is provided as an oracle, and
the structured domain from which the sample is drawn is given as an additional parameter.
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Definition 25 (Local extractor). Let S be a set. A (k, ϵ) local S-extractor is an oracle function
E : {0, 1}s → {0, 1}t that is computable in time poly(s, t) and has the following property: For every
random variable X distributed on S with min-entropy at least k, EX(Us) is ϵ-close to uniform.

We make use of the following local extractor for Reed-Müller codes.

Lemma 26 (Implicit in [SU05]). Fix parameters r < ∆, and let S be the set of polynomials
ĝ : Fr → F having total degree at most ∆, where F = Fp denotes the field with p elements. There is
a (k, 1/k) local S-extractor for k = ∆5 with seed length s = O(r log p) and output length t = ∆.

Note that for every subcube with sides of size ∆
r and choice of values at its points, there exists an

interpolating polynomial ĝ with the parameters of Lemma 26. It takes (∆/r)r log p bits to describe
these polynomials, but the local extractor only accesses poly(∆, r, log p) bits.

When instantiated with a polynomial ĝ : Fr → F, the RMV generator groups variables and
operates over axis-parallel (combinatorial) lines over the grouped variables.1 Shaltiel and Umans
call these MV lines, which we define next.

Definition 27 (MV line). Let F = Fp for a prime p. Given a function ĝ : Fr → F where r is
an even integer, we define B = Fr/2 and identify ĝ with a function from B2 to F. Given a point
a⃗ = (⃗a1, a⃗2) ∈ B2 and i ∈ {1, 2}, we define the line passing through a⃗ in direction i to be the
function L : B → B2 given by L(z⃗) = (z⃗, a⃗2) if i = 1 and L(z⃗) = (⃗a1, z⃗) if i = 2. This is an
axis-parallel, combinatorial line, and we call it an MV line. Given a function ĝ : Fr → F and an
MV line L we define the function ĝL : B → F by ĝL(z) = ĝ(L(z)).

The input for the RMV construction is a multivariate polynomial ĝ : Fr → F of total degree
at most ∆, and the output is a set of m-bit strings for m ≤ ∆1/100. The construction is recursive
and requires that r is a power of 2 and that p is a prime larger than ∆100 (say, between ∆100 and
2∆100). Let E be the (k, 1/k)-local extractor from Lemma 26 for polynomials of degree ∆ in (r/2)
variables over F. Remember that k = ∆5 and that the extractor uses seed length O(r log p) and
output length t = ∆ ≥ m. By using only a prefix of the output, we have it output exactly m bits.

The operation of the RMV generator on input ĝ is as follows: Set B = Fr/2. For every a⃗ ∈ B2

and i ∈ {1, 2}, let L : B → B2 be the MV line passing through a⃗ in direction i. Compute E ĝL(y)
for all seeds y. For r = 2, output the set of all strings of length m obtained over all a⃗ ∈ B2, MV
lines L through a⃗, and seeds y. For r > 2, output the union of this set and the sets output by the
recursive calls RMV(ĝL) for each of the aforementioned MV lines L.

The construction runs in time pO(r) and therefore outputs at most that many strings. If the set
output by the procedure fails as a hitting set for a co-nondeterministic circuit D of size m, then
there exists an efficient commit-and-evaluate protocol for ĝ with additional input D. This is the
main technical result of [SU09], which we present in a format that is suitable for obtaining our
results. Shaltiel and Umans present the evaluation protocol as a multi-round protocol (with log r
rounds). We collapse it into a two-round protocol by standard amplification (which also amplifies
the crucial resilience property) [BM88, SU09].

Lemma 28 ([SU09]). Let ∆,m, r, p be such that m ≤ ∆1/100, r is a power of 2 and p is a prime
between ∆100 and 2∆100. Let also F = Fp and s ∈ (0, 1]. There exists a commit-and-evaluate
protocol (Pcommit, Peval) with additional inputs p and D, where D is a co-nondeterministic circuit
of size m, such that the following holds for any polynomial ĝ : Fr → F of total degree at most ∆.

1In the original construction [SU09], the RMV generator is defined with the number d of groups of variables as an
additional parameter. Eventually, d is set to 2, which is the value we use for our results as well.
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◦ Completeness: If D rejects every element output by RMV(ĝ) then there exists a strategy
Mcommit for Merlin in the commit phase such that Peval on input (z⃗, D, π) outputs ĝ(z⃗) with
completeness 1 for every z⃗ ∈ Fr, where π

.
= Pcommit(1

n,Mcommit).

◦ Resilience: If D accepts at least a fraction 1/2 of its inputs then (Pcommit, Peval) has resilience
s for partial single-valuedness s on domain Fr.

◦ Efficiency: Both Pcommit and Peval have two rounds. Pcommit runs in time log (1/s)·poly(∆, r)
and Peval runs in time (log (1/s))2 ·∆O((log r)2).

Moreover, the (honest) commitment protocol works as follows: Arthur randomly selects a set S ⊆
Fr/2 of size log (1/s) · poly(∆, r) and the honest Merlin replies with evaluations of ĝ on each of the
points in S2 ⊆ Fr. The honest commitment π consists of the set S and the evaluations of ĝ on S2.
Finally, the only way Peval requires access to D is via blackbox access to the deterministic predicate
that underlies D.

4.2 Targeted generator and reconstruction

In this section, we present our targeted HSG construction, which works as follows: On input z
and a co-nondeterministic circuit D of size m, it guesses a PCPP (as in Lemma 23) for each bit
of f(z) and verifies each PCPP deterministically by enumerating the PCPP verifier’s randomness.
It encodes the input z with a suitable error-correcting code, obtaining Enc(z), and instantiates
the RMV generator with Enc(z) and the PCPPs, outputting the union of the outputs for each
instantiation. If the generator fails, the reconstruction property for the RMV generator allows
for compressing the input z, which is critical for obtaining a bottleneck reconstructor, and the
PCPPs, which leads to a more efficient reconstructor. The compressor Acomp computes Enc(z) and
the honest commitment πz for Enc(z), which is given as input to a prAM protocol Pdec, in which
Merlin, for any given bit position i, sends a bit b and commits to the low-degree extension of a
proof that the i-th bit of f(z) equals b. Arthur then runs the PCPP verifier using the evaluation
protocol to answer input and proof queries. The protocol succeeds and outputs b if and only if the
PCPP verifier accepts. This approach yields the following statement:

Theorem 29. Let T be a time bound and f a function computable in nondeterministic time T (n).
There exists a nondeterministic algorithm H (the generator) that always has at least one successful
computation path per input, and a pair Prec (the reconstructor) consisting of a probabilistic algorithm
Acomp and a promise Arthur-Merlin protocol Pdec such that for every z ∈ {0, 1}∗ and every co-
nondeterministic circuit D that accepts at least half of its inputs, at least one of the following
holds.

1. H(z,D) outputs a hitting set for D on every successful computation path.

2. Pdec(Acomp(z, 1
m), D) computes f(z) with completeness 1 and soundness 1/3.

The construction also has the following properties:

◦ Compression: On input z of length n and 1m, the output of Acomp has length poly(m, log T (n)).

◦ Resilient soundness: In both cases 1 and 2 above, the probability that Pdec(D,Acomp(1
m, z))

outputs a value other than f(z) is at most 1/3.
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◦ Efficiency: On input z of length n and 1m, Acomp runs in time n · poly(m, log T (n)). On
inputs z of length n and D of size m, H runs in time poly(T (n),m) and Pdec, given the
output of Acomp(z, 1

m) and an additional index i, computes the i-th bit of f(z) in time (m ·
log T (n))O((log r)2) for r = O(log (T (n))/ logm). In particular, Pdec computes f(z) in time
|f(z)| · (m · log T (n))O((log r)2).

Moreover, H(z,D) only depends on z and the size of D, and the only way Pdec requires access to
D is via blackbox access to the deterministic predicate that underlies D.

Proof. Fix an input z ∈ {0, 1}n. For f computable in nondeterministic time T (n), we define a
language Lf that captures the computation of f on inputs encoded with an error-correcting code.
Let Enc be an ECC with distance parameter 0.1 computable in time n ·polylog(n) as in Section 3.7.
Lf consists of strings (z̃, n, i, b), where n and i are integers given in binary and b ∈ {0, 1}, and
z̃ = Enc(z) for z ∈ {0, 1}n such that f(z)i = b. In particular, Lf is decidable in nondeterministic
time n · polylog(n) + T (n) by guessing z ∈ {0, 1}n, computing Enc(z), checking that Enc(z) = z̃
and computing f(z)i. Let V be the PCPP verifier given by Lemma 23 where we consider z̃ as
an implicit input and the remaining part of the input as explicit, with soundness parameter 0.01.
The proof length of V is at most poly(T (n), n) = poly(T (n)) since T (n) ≥ n. In the following
discussion, we let yi denote any PCPP witnessing (z̃, n, i, b) ∈ Lf .

We now set parameters for the low-degree extensions that we need. Recall that we wish to
instantiate the RMV generator with the low-degree extensions of the PCPPs yi as well as the
encoded input z̃. Given our choice of Lf , the proof length of V is poly(T (n)). To encode the
PCPPs, let h = h(m) = m100, r = r(m,n) be the smallest power of two such that hr is greater
than or equal to to the proof length of V , and p = p(m,n) the smallest prime in the interval
[∆100, 2∆100] for ∆ = h·r, found by exhaustive search. Note, in particular, that hr = poly(T (n),m)
and r = O(log (T (n))/ logm). Throughout the rest of the proof, we denote by ŷi the low-degree
extension of each yi with parameters p, h and r.

To obtain the low-degree extension of z̃, we use slightly different settings. We set h and p as
before, but define r′ = r′(m,n) to the smallest power of two such that hr

′ ≥ n. We denote by ẑ
the low-degree extension of z̃ with parameters p, h and r′.

Generator. The generator H, on input z and a co-nondeterministic circuit D of size m, computes
z̃ = Enc(z) and the low-degree extension ẑ of z̃ with the parameters above, and guesses the value
of v = f(z) and a PCPP yi witnessing (z̃, n, i, vi) ∈ Lf for each index i of v. Then H verifies that
Pr[V z̃,yi(n, i, vi) = 1] = 1 for every i ∈ [|v|] by deterministically enumerating the poly(T (n),m)
random-bit strings for V . If any of the verifications fail, H fails. Otherwise, H computes the
low-degree extension ŷi of yi. Finally, H outputs the union of RMV(ẑ) and ∪i∈[|v|]RMV(ŷi), where
each invocation of the RMV generator is instantiated with the same output length m. Note that
the choice of parameters for encoding ẑ and each ŷi respects the preconditions of Lemma 28.

Computing z̃ and the initial verification step takes time poly(T (n),m), computing the low-
degree extensions for the PCPPs also takes time poly(T (n),m) and each execution of the RMV
generator, including the one for ẑ, takes time pO(r) = poly(T (n),m)and outputs strings of length m.
This culminates in a running time of poly(T (n),m). Finally, since for the correct output v = f(z)
there always exist PCPPs y1, . . . , y|v| that are accepted with probability 1 by V , there always exists
a nondeterministic guess that leads H to succeed.

Reconstructor. We describe and analyze the pair (Acomp, Pdec), which uses the commit-and-evaluate
protocol (Pcommit, Peval) of Lemma 28 with fixed input p and resilience parameter s = s(m,n) =
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(100q)−1, where q = q(m,n) = polylog(T (n),m) denotes the query complexity of the PCPP verifier
V for Lf on implicit input z̃ and explicit inputs (n, i, b).

On input z and 1m, Acomp first computes z̃ = Enc(z). Then, Acomp tosses the coins required for
Pcommit for the low-degree extension ẑ of z̃ and outputs a commitment πz for ẑ, which it computes
by using the random bits to determine the set S and evaluating ẑ on every point of S2 as in the
moreover part of Lemma 28. As for protocol Pdec, on input the commitment πz and an index i,
Arthur first tosses the coins required for executing Pcommit for ŷi. Merlin then replies with a message
for Pcommit, which produces a commitment πyi , and with a bit b. The honest Merlin should send
b = f(z)i and commit to the low-degree extension of a PCPP yi that witnesses f(z)i = b, but a
dishonest Merlin may send b ̸= f(z)i and/or commit to a different function. Let ỹi denote the
function that Merlin commits to in the first step, which may be accessed with high probability
by executing the evaluation protocol Peval with input πyi . The restriction of ỹi to [h]r defines a
candidate PCPP y′i. Arthur then runs the PCPP verifier V z̃,y′i(n, i, b), employing Merlin’s help to
evaluate ẑ and ỹi using Peval and the respective commitment whenever V makes a query to z̃ or y′i.
If V z̃,y′i(n, i, vi) accepts, then the protocol Pdec succeeds and outputs b, otherwise it fails.

Compression. The output of Acomp consists of |S2| = log (1/s) · poly(∆, r) = poly(m, log T (n))
points in Fr′ together with evaluations of ẑ on each point, each of which can be described with
log p = polylog(m, log T (n)) bits, resulting in a total output length of poly(m, log T (n)).

Completeness. IfD is not hit byH(z,D), then RMV(ẑ) fails to hitD and for all indices i there exists
at least one proof yi that witnesses (z̃, n, i, f(z)i) ∈ Lf and such that RMV(ŷi) fails to hitD. In that
case, an honest Merlin can commit to any such ŷi with probability 1 by the completeness property
of Lemma 28. The property also allows the algorithm Acomp to compute a correct commitment πz
for z̃ with probability 1. Finally, perfect completeness of V and Peval guarantees that on input πz
and an index i, and when considering an honest Merlin strategy, Pdec succeeds and outputs f(z)i
with probability 1.

(Resilient) soundness. If D accepts at least half of its inputs, then the resilience property of the
commit-and-evaluate protocol of Lemma 28 guarantees that with probability at least 1 − s, the
commitment for ỹi is successful, meaning that each execution of the evaluation protocol with input
πyi has partial single-valuedness s. For ẑ and the commitment πz, this implies that with probability
at least 1− s, the evaluation protocol with commitment πz has soundness s for ẑ, as Acomp always
computes the honest commitment. By a union bound, with probability at least 1− 2s ≥ 0.99, for
sufficiently large m,n, the commit phase is successful for ẑ and ỹi. Let the first “bad” event be
the event that at least one of the commitments is unsuccessful. If the first “bad” event does not
happen, then by a union bound over the at most q queries made by V to one of ẑ or some ỹi, with
probability at least 0.99, every execution of the evaluation protocol results in the evaluation of the
respective fixed function. Call the complement of this event the second “bad” event.

Now, the only way Merlin could try to have Arthur output a wrong value, assuming the first
two “bad” events do not happen, is if he sends some b ̸= f(z)i in the first round. If this happens,
then (z̃, n, i, b) /∈ Lf , and moreover any w̃ such that (w̃, n, i, b) ∈ Lf is at relative distance at
least 0.1 from z̃. Thus the soundness property of V in Lemma 23 guarantees that Pdec fails with
probability at least 0.99. Let the third “bad” event be the event that V outputs an incorrect value
when the first two “bad” events do not occur. By a union bound over the three “bad” events, all
of which have probability at most 0.99, Pdec(D, (Acomp(1

m, z))) either fails or outputs a bit of f(z)
with probability at least 2/3. In particular, if completeness also holds then Pdec(D, (Acomp(1

m, z)))
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computes individual bits of f(z) with completeness 1 and soundness 1/3.

Reconstructor efficiency. The running time for Acomp is the time required to compute z̃ = Enc(z)
plus the time required to compute at most log (1/s) · poly(∆, r) = poly(m, log T (n)) evaluations of
ẑ. Computing z̃ takes time n · polylog(n) = n · polylog(T (n)), and computing each evaluation of
ẑ takes time n · poly(h, log p, r, log n) = n · poly(m, log T (n)), resulting in a total running time of
n · poly(m, log T (n)).

As for Pdec, the commit phase takes time log (1/s) · poly(∆, r) = poly(m, log T (n)) and two
rounds of communication. Afterwards, evaluating each query made by V with Peval takes time
(log (1/s))2 · ∆O((log r)2) = (m · polylog(T (n)))O((log r)2). The verification step for V takes time
poly(m, log T (n)), and it makes at most q = polylog(m,T (n)) queries, resulting in a total running
time of (m · log T (n))O((log r)2). Moreover, because V ’s queries are fully determined by its input
and random bits, each execution of the evaluation protocol can be carried out in parallel, and thus
the total number of rounds is four. Collapsing this protocol into a two-round one using standard
techniques [BM88] leads to a prAM protocol with running time (m · log T (n))O((log r)2) with the
same completeness and soundness parameters. To compute the entirety of f(z) all at once, we
can amplify soundness for Pdec by parallel repetition [BM88] so that we still get soundness 1/3 for
computing every bit of f(z) in parallel. This introduces a multiplicative overhead of polylog(T (n))
for each execution of Pdec, resulting in a total running time of |f(z)| · (m · log T (n))O((log r)2).

Input access. We observe that the only information about D required for computing RMV(ẑ)
and RMV(ŷi) is its size m, and thus the generator H also only requires knowledge of the size of
D. Similarly, the commit-and-evaluate protocol in Lemma 28 only requires blackbox access to the
deterministic predicate that underlies the circuit D instead of to the description of D, and thus so
does Pdec since it just passes D as input to the commit-and-evaluate protocol.

We make some remarks about Theorem 29. First, we could assume that the honest Merlin
strategy in protocol Pdec knows the value of z. Indeed, if the first “bad” event in the resilient
soundness part of the proof of Theorem 29 does not happen, then Merlin is able to reconstruct ẑ
and thus z from πz since ẑ is the only possible output from running the RMV evaluator with πz as
input. Second, we can amplify the resilient soundness property for the reconstructor via parallel
repetition so that the probability that it outputs a value outside of {f(z)i,⊥} is at most 2−k; this
incurs a multiplicative running time and compression length overhead of Θ(k). Finally, we may view
the reconstructor as a regular Arthur-Merlin protocol by feeding Pdec the input z directly instead of
the compressed version πz. Whenever the PCPP verifier queries ẑ, Arthur can compute the value
by himself in time poly(m,n), resulting in a final running time of poly(n) · (m · log T (n))O((log r)2)

for computing a bit of f(z) or |f(z)| · poly(n) · (m · log T (n))O((log r)2) for computing the entirety of
f(z).

Stronger resilient soundness. We now present a version of Theorem 29 with a stronger re-
silient soundness property at the expense of increasing the complexity of the reconstructor from a
bottleneck Arthur-Merlin protocol to a probabilistic algorithm with parallel access to SAT. While
it is possible to obtain a bottleneck version for this result, it is not necessary since we employ
it to obtain our byproducts in the average-case setting, and in this setting having a bottleneck
reconstructor does not lead to any stronger results.

Corollary 30. Let T be a time bound and f a function computable in nondeterministic time T (n).
There exists a nondeterministic algorithm H (the generator) that always has at least one successful
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computation path per input, and a probabilistic algorithm Arec (the reconstructor) with parallel
access to SAT such that for every z ∈ {0, 1}∗ and every co-nondeterministic circuit D, at least one
of the following holds.

1. H(z,D) outputs a hitting set for D on every successful computation path.

2. Arec(z,D) computes f(z) with probability at least 2/3.

The construction also has the following properties:

◦ Strong resilient soundness: In both cases 1 and 2 above, the probability that Arec(z,D) outputs
a value other than f(z) is at most 1/3.

◦ Efficiency: On inputs z of length n and D of size m, H runs in time poly(T (n),m) and Arec,
given an additional index i, computes the i-th bit of f(z) in time poly(n)·(m·log T (n))O((log r)2)

for r = O(log (T (n))/ logm). In particular, Arec computes f(z) in time |f(z)| · poly(n) · (m ·
log T (n))O((log r)2).

Moreover, H(z,D) only depends on z and the size of D, and the only way Arec requires access to
D is via blackbox access to the deterministic predicate that underlies D.

The idea behind Corollary 30 is for the reconstructor to first check whether the co-nondeter-
ministic circuit D accepts at least somewhat less than half of its inputs. This is where the parallel
access to an oracle for SAT comes in; it allows us to distinguish with high probability between the
cases where the fraction of accepted inputs is, say, at most 1/3 and at least 1/3 + ϵ for some small
ϵ. In the former case, the new reconstructor indicates failure with high probability. Otherwise,
we boost the fraction of accepted inputs to at least 1/2 by trying D on two independent inputs,
and then run the prAM version of the old reconstructor on the corresponding co-nondeterministic
circuit D′.

Proof of Corollary 30. LetH ′ be the generator and P ′
rec the regular promise Arthur-Merlin protocol

version of the reconstructor of Theorem 29 as discussed in the paragraph after its proof, instantiated
with function f and amplified to have (resilient) soundness 1/6.

Generator. The generator H, on input z and D of size m, first constructs the circuit D′ of size 2m
as D′(r1r2) = D(r1) ∨D(r2), where r1, r2 ∈ {0, 1}m. We then define H(z,D) as Left(H ′(z,D′)) ∪
Right(H ′(z,D′)), where Left(S) and Right(S) output the set of the left and right halves of every
string in S, respectively.

Reconstructor. On input (z,D) and an index i, the reconstructor Arec estimates up to error 1/12
and with probability of failure 1/6 the fraction of inputs accepted by D by evaluating circuit D
on O(1) random inputs of length m. This can be done in probabilistic time poly(m) with O(1)
parallel queries to a SAT oracle. If the estimated fraction is less than 5/12 (the midpoint between
1/3 and 1/2), then Arec declares failure. In parallel, Arec builds the circuit D′ in the same way as
H, selects Arthur’s randomness for protocol P ′

rec with inputs (z,D′) and i, and makes three queries
to the SAT oracle to obtain the protocol’s output: Whether there is a Merlin response that leads to
success and whether there are Merlin responses that lead to outputting 0 and 1. If the first query
is answered negatively, or the last two queries give inconsistent answers, then Arec declares failure.
Otherwise, Arec outputs whatever P ′

rec does.
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Strong resilient soundness. Consider two cases in relation to circuit D: Either D accepts fewer than
1/3 of its inputs, or it accepts at least 1/3 of its inputs. In the first case, the initial verification
fails with probability at least 5/6. In the second case, D′ accepts at least 1 − (2/3)2 = 5/9 > 1/2
of its inputs. The resilient soundness property of protocol P ′

rec guarantees that with probability at
least 5/6, Arec either fails or outputs f(z) correctly. In either case, it follows that Arec outputs an
incorrect value for f(z) with probability at most 1/6 < 1/3.

Correctness. If a co-nondeterministic circuit D accepts at least half of its inputs, so does the circuit
D′. Moreover, if H(z,D) fails to hit D, then H ′(z,D′) fails to hit D′. The correctness of protocol
P ′
rec then guarantees that there exists a strategy for Merlin that makes P ′

rec output f(z) with
probability 1, and no strategy can make P ′

rec output an incorrect value for f(z) with probability at
least 1/6. In this case, assuming that the fraction of inputs accepted by D was estimated correctly
initially, It follows that Arec yields f(z) with probability at least 5/6. Accounting for the probability
of failure of 1/6 for the estimation, we conclude that Arec outputs f(z) with probability at least
2/3.

Efficiency. The running time of H is asymptotically identical to that of H ′, and the running time
of Arec is polynomial in the running time of P ′

rec.

Input access. This part follows right away from the corresponding part of Theorem 29.

Similar to the case of Theorem 29, we can amplify the strong resilient soundness property for the
reconstructor of Corollary 30 so that the probability that it outputs a value outside of {f(z)i,⊥}
is at most 2−k by running it Θ(k) times in parallel and outputting the majority answer.

4.3 Derandomization consequences

First, we present a generic derandomization result for prAM that works under hardness against
arbitrary distributions.

Theorem 31. There exists a constant c such that the following holds. Let t, T be time bounds,
Π ∈ prAMTIME[t(n)] and {xn}n∈N be an ensemble of distributions such that xn is supported over
{0, 1}n and such that for all n, every x in the support of xn satisfies the promise of Π. Assume that
for µ : N → [0, 1) there exists a length-preserving function f computable in nondeterministic time
T (n) such that for every prAMTIME[t(n)O((log r)2)] protocol P for r = O(log (T (n))/ log (t(n))), it
holds that the probability over x ∼ xn that P (x) computes f(x) is at most µ(n) for all but finitely
many n. Then, it holds that

Π ∈ Heurx,µNTIME[T (n)c].

Proof. First, notice that if t(n) ≤ log T (n), then the conclusion is trivial and if t(n) ≥ T (n)
then the premise is impossible, so we focus on the case that log T (n) ≤ t(n) ≤ T (n). Let Π ∈
prAMTIME[t(n)] and let PΠ be a two-round protocol for Π running in time O(t(n)) on inputs of
length n. On input x ∈ {0, 1}n, compute the circuitDx of Proposition 21 with protocol PΠ, and note
that Dx has size O(t(n)2). Then, instantiate the HSG of Theorem 29 with f . Feed H inputs x and
Dx and run the usual derandomization procedure for protocol PΠ with the set output by H(x,Dx):
For each string ρ ∈ H(x,Dx), nondeterministically guess Merlin’s message yρ and compute the
output of PΠ with randomness ρ and message yρ, accepting if and only if PΠ accepts for every
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ρ ∈ H(x,Dx). The entire procedure runs in nondeterministic time poly(T (n), t(n)) = O(T (n)c) for
some constant c, since T (n) ≥ t(n).

Assume, with the intent of deriving a contradiction, that with probability at least µ(n) over
x ∼ xn, this derandomization fails for input x. First, notice that by the perfect completeness of
PΠ it must be the case that such an x lies in ΠN and that PΠ with input x accepts every string
in H(x,Dx). Therefore, Dx acts as a distinguisher for H(x,Dx), i.e., it rejects every string output
by Dx while accepting at least half of its inputs. By computing Dx and feeding it to the regular
prAM protocol version Prec of the reconstructor of Theorem 29, we obtain a prAM protocol that
computes individual bits of f(x) correctly for every x for which the derandomization fails, i.e., with
probability at least µ(n) over x ∼ xn. By running this protocol n times in parallel to compute
every bit of f(x), we obtain a prAM protocol that runs in time

poly(n) · (t(n) · log T (n))O((log r)2) = t(n)O((log r)2)

since t(n) ≥ log T (n) and t(n) ≥ n. This is a contradiction to the hardness of f so we are done.

We remark that we require hardness not just against AM protocols but against prAM protocols,
which may not respect the completeness and/or soundness conditions on some inputs. However,
an input of length n only contributes to the success fraction µ(n) provided the completeness and
soundness conditions are met on that input.

As a consequence of Theorem 31, if the hardness assumption holds for almost-all inputs, then
we obtain full derandomization of prAM.

Theorem 32. There exists a constant c such that the following holds. Let t, T be time bounds.
If there is a length-preserving function f computable in nondeterministic time T (n) that is hard
on almost-all inputs against prAMTIME[t(n)O((log r)2)] for r = O(log (T (n))/ log (t(n))) then there
exists a targeted hitting-set generator that achieves the derandomization

prAMTIME[t(n)] ⊆ NTIME[T (n)c].

Proof. The statement follows from Theorem 31 by noting that the assumption that f is hard on
almost-all inputs implies that, for sufficiently large n, f is hard for all possible distributions xn

with success probability µ(n) = 0. In particular, the following nondeterministic algorithm is a
hitting-set generator for prAM: On input x ∈ {0, 1}n and a co-nondeterministic circuit C of size
m, output H(x,D) where H is the generator of Theorem 29 and D

.
= C(x, ·). This algorithm has

a successful computation path for any input and, on every successful computation path on inputs
where D accepts at least half of its inputs, it outputs a set that hits D. The running time of the
generator is poly(T (n),m), which results in the derandomization result in the theorem statement
when T (n) ≥ m.

By setting parameters in Theorem 32, we obtain the derandomization results listed on Table 2.
In particular, the first line of Table 2 establishes Theorem 6 and the last line establishes Theorem 7.
We now provide more details on how to obtain each line of Table 2:

◦ For the high end, set t(n) = n, in which case r = O(a). Then, prAMTIME[n] ⊆ NP follows as
long as f is hard on almost-all inputs against prAMTIME[nO((log a)2)]. The result for prAM
follows by padding.
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Setting T (n) Hard for Derandomization

high end na nO((log a)2) prAM ⊆ NP

middle-of-the-road 2polylog(n) nO((log logn)2) prAM ⊆ NTIME[2polylog(n)]

low end 2n
o(1)

no((logn)2) prAM ⊆ NTIME[2n
o(1)

]

very low end 2poly(n) nb(logn)2 ∀b ∃c prAM ⊆ NTIME[2n
c
]

Table 2: Derandomization consequences that follow from different instantiations of Theorem 32.

◦ For the middle-of-the-road result, set t(n) = n, in which case r = polylog(n). Then,
prAMTIME[n] ⊆ NTIME[2polylog(n)] follows as long as f is hard on almost-all inputs against
prAMTIME[nO((log logn)2)]. The result for prAM follows by padding.

◦ For the low end, let ν = ν(n) = o(1) be such that T (n) = 2n
ν
and set t(n) = n. In

this case, r ≤ nν . Then, prAMTIME[n] ⊆ NTIME[poly(n, 2n
ν
)] follows as long as f is

hard on almost-all inputs against prAMTIME[nO((ν logn)2)]. Since poly(n, 2n
ν
) = 2n

o(1)
and

nO((ν logn)2) = no((logn)2), the result for prAM follows by padding.

◦ For the very low end, set t(n) = nb for a constant b, in which case r = poly(n). Then,
prAMTIME[nb] ⊆ NTIME[2n

c
] for some constant c follows as long as f is hard on almost-all

inputs against prAMTIME[nO(b(logn)2)]. To get the result for prAM, it suffices for hardness
to hold for all constants b.

4.4 From refutation to derandomization

In this section, we show that the second item in Theorem 8 implies the third one.
Here is the outline for the construction of the targeted hitting-set generator for prAM, assuming

a refuter for a function f computable in nondeterministic time na. On input a co-nondeterministic
circuitD of sizem, we first run the assumed list-refuter on the input consisting of 1n for a sufficiently
large n and the reconstructor protocol Prec from Theorem 29 with D fixed. This produces a list
of strings z1, . . . , zτ , each of length at least n. We use each of them as an input for the generator
H of Theorem 29 and output the union of the sets obtained. Provided that n is a sufficiently
large polynomial in m, the reconstructor meets the resource bounds for a prAMTICOMP[na+ϵ, nϵ]
protocol at length n. The defining property of the list-refuter then guarantees that for at least
one zi, the reconstructor fails to compute f(zi) (item 2 in Theorem 29 fails for zi). It follows that
H(zi, D) hits D (item 1 in Theorem 29 holds).

Theorem 33. Let T be a time bound, a a constant and f a function computable in nondeterministic
time na. If for some constant ϵ ∈ (0, 1) there is a nondeterministic list-refuter R for f against
prAMTICOMP[na+ϵ, nϵ] protocols with promised soundness for f such that R runs in time T ,
then there is a targeted hitting-set generator for prAM that is computable in nondeterministic time
poly(T (poly(n))).

Proof. Let (Acomp, Pdec) be the reconstructor of Theorem 29 instantiated with f . We first describe
the operation of the targeted HSG, then we analyze its correctness and running time.

Generator. The generator, on input a co-nondeterministic circuit D of size m, first sets n = n(m)
to be determined later. Let Acomp(·, 1m) denote algorithm Acomp with 1m fixed as its second input
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and similarly let Pdec(·, D) be the protocol Pdec with the circuit D fixed as its second input. The
generator then feeds inputs 1n and (Acomp(·, 1m), Pdec(·, D)) into the refuter R to obtain a list
of inputs (z1, . . . , zτ ). Finally, the generator outputs ∪i∈[τ ]H(zi, D), where H is the generator of
Theorem 29 instantiated with f . Observe that the generator always has a successful computation
path for every input since so does the refuter R.

Correctness. Note that as long as D accepts at least half of its inputs, the resilient soundness prop-
erty in Theorem 29 guarantees that (Acomp(·, 1m), Pdec(·, D)) is sound for f . To ensure correctness
of the generator, we set the value of n sufficiently large such that Acomp(·, 1m) and Pdec(·, D) run
in time at most na+ϵ and such that the output length of Acomp(·, 1m) is at most nϵ. In this case,
the refuter must output, on every accepting computation path, a list of strings (z1, . . . , zτ ) that
contains at least one zi such that (Acomp(·, 1m), Pdec(·, D)) fails to compute f(zi) with completeness
1 and soundness 1/3. This means that item 2 in Theorem 29 fails for z = zi, and therefore item 1
must hold, which implies that our targeted generator hits D.

We now set the value of n. We set n = mk, where k is a constant that respects the lower bounds
we set in the following discussion. Recall that, on input z ∈ {0, 1}n, Acomp(·, 1m) outputs a string
of length poly(m, a log n) ≤ (m · log n)k1 for a fixed constant k1. Moreover, the running time for
Acomp(·, 1m) is n · poly(m, a log n) = n · poly(m, log n) ≤ n · (m · log n)k2 for some constant k2, and

the running time for Pdec(·, D) is na · (m ·a log n)O((log r)2) for r = O(a log n/ logm), and thus upper
bounded by na · (m · log n)k3·(log (a logn/ logm))2 for some constant k3.

By setting k ≥ 2k1/ϵ, it holds for sufficiently large m and any input of length ℓ ≥ n = mk that
the string output by Acomp(·, 1m) has length at most ℓϵ. Similarly, setting k ≥ 2k2/ϵ, it holds for
for sufficiently large m and any input of length ℓ ≥ n = mk that the running time of Acomp(·, 1m)
is at most ℓ1+ϵ ≤ ℓa+ϵ. Finally, setting k ≥ 2k3 · (log (ak))2/ϵ, which holds for sufficiently large
constant k, guarantees that Pdec(·, D) runs in time at most ℓa+ϵ for ℓ ≥ n = mk and sufficiently
large m.

Running time. Let the constant c denote the description length of (Acomp, Pdec), it follows that
(Acomp(·, 1m), Pdec(·, D)) has description length at most m′ = c+Θ(m logm) = Θ(m logm). Com-
puting the list of inputs (z1, . . . , zτ ) using the refuter R takes time T (n+m′) = T (poly(m)), which
also serves as an upper bound for the length of each zi. Finally, computing H(zi, D) for all zi takes
time poly(T (poly(m))), which dominates the running time for the generator.

Theorem 33 scales very smoothly with respect to the time T for computing the refuter. In
particular, it allows us to obtain equivalences at the low end of the derandomization spectrum.
Apart from the time T for computing the refuter, one can also vary the time for computing f
as well as the compression length for the bottleneck protocols. Increasing the time required for
computing f leads to a similar increase in the time bound for the class against which we require
refuters. Decreasing the compression length requires the targeted HSG to run the refuter with a
larger input length n. Due to the sub-optimal scaling of the RMV reconstructor, our approach does
not work for equivalences at the low end in either direction. It does work for intermediate ranges,
e.g., for running time bounds of the form 2polylog(n) and compression lengths of the form 2(logn)

ϵ

for ϵ ∈ (0, 1).

Theorem 34. Let a be a constant and f a function computable in nondeterministic time 2(logn)
a
.

If for some constant ϵ ∈ (0, 1) there is a nondeterministic list-refuter R for f against protocols
in prAMTICOMP[2(logn)

a+ϵ
, 2(logn)

ϵ
] with promised soundness for f such that R runs in time
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2polylog(n), then there is a targeted hitting-set generator for prAM that is computable in nonde-
terministic time 2polylog(n).

5 Consequences of derandomization

In this section, we prove the directions of derandomization to hardness and derandomization to
targeted HSGs of our near-equivalences, as well as the direction of targeted HSGs to refutation of
our equivalence.

5.1 Hardness on almost-all inputs

We start with our derandomization-to-hardness implication: If prAM ⊆ NP then for all constants
c there is a length-preserving function f computable in nondeterministic polynomial time (with
a few bits of advice) that is hard on almost-all inputs against AMTIME[nc]. The basic idea is
that, under the derandomization hypothesis, every (single-bit) AM protocol that runs in time nc

can be simulated by a single-valued nondeterministic machine without too much time overhead. If
we have as advice whether a particular nondeterministic machine is single-valued or not at input
length n, we can negate its input efficiently, obtaining a function f computable in nondeterministic
time poly(n) that is almost-all inputs hard against AM protocols that run in time nc. We now
state Proposition 5 formally.

Proposition 35 (Formal version of Proposition 5). If prAM ⊆ NP, then for every constant
c and increasing function α : N → N there exists a length-preserving function f computable in
nondeterministic polynomial time with α(n) bits of advice that is hard on almost-all inputs against
AMTIME[nc].

Proof. Assume that prAM ⊆ NP and let c′ be a constant to be defined later (which depends on c).
The basic idea for the function f is as follows: On an input z of length n, we set its i-th output
bit (for 1 ≤ i ≤ min(n, α(n))) to the opposite of the i-th bit output by the i-th nondeterministic
Turing machine Ni on input z (if Ni is single-valued and halts in at most nc′+2 steps at input length
n), and otherwise we set it to 0. Formally, on input z of length n and for 1 ≤ i ≤ n

f(z)i =

{
1−Ni(z)i if i ≤ α(n), Ni is single-valued and halts in at most nc′+2 steps,

0 otherwise.

Note that f is computable by a single-valued nondeterministic machine running in time O(nc′+3)
with α(n) bits of advice (indicating whether Ni is single-valued and halts in at most nc′+2 steps at
input length n for 1 ≤ i ≤ α(n)). The nondeterministic machine computing f is only guaranteed to
be single-valued when given the correct advice string. This holds because, when Ni is single-valued,
computing 1−Ni(z)i can be done by guessing a path on which Ni succeeds, which must result in
the unique value Ni(z), and then outputting the opposite of the i-th bit of that. Assume, with the
intent of deriving a contradiction, that there exists an AM protocol P that runs in time O(nc) and
computes f on an infinite set of inputs Z ⊆ {0, 1}∗. Consider the protocol P ′ that takes as regular
input a triple (z, i, b) and accepts iff the i-th bit of the output of protocol P with input z equals b (if
i > |z| then P ′ rejects). Note that P ′ induces a language L in AMTIME[nc]. Since prAM ⊆ NP and
prAMTIME[nc] has a complete problem under linear-time reductions, it follows that there exists
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a constant c′ such that AMTIME[nc] ⊆ NTIME[nc′ ]. While our argument only requires that there
exists a constant c′ such that AMTIME[nc] ⊆ NTIME[nc′ ], we use the assumption prAM ⊆ NP
instead of AM ⊆ NP since it is unknown whether AMTIME[nc] contains a complete problem under
linear-time reductions.

Let N be a nondeterministic machine that runs in time nc′ and computes L. Note that for every
z ∈ {0, 1}∗ and 1 ≤ i ≤ |z|, N(z, i, b) = 1 for exactly one b ∈ {0, 1}, and when z ∈ Z, N(z, i, b) = 1
if and only if f(z)i = b. Now consider the following procedure N ′: On input z ∈ {0, 1}n, guess a
value bi and a witness yi for each 1 ≤ i ≤ n and run N(z, i, bi; yi). If for all i, N(z, i, bi; yi) accepts,
N ′ succeeds and prints the concatenation of the guessed bi’s, otherwise N ′ fails. Note that N ′ is a
nondeterministic machine that runs in time O(nc′+1). Moreover, by our assumption that P is an
AM protocol and that prAM ⊆ NP, N ′ is single-valued on every input. By construction, the single
value equals f(z) for all z ∈ Z.

Let i be the index of N ′ in our enumeration, i.e., Ni = N ′. By definition of f , for every input
z ∈ {0, 1}∗ of sufficiently large length n ≥ α−1(i) (so that it has a chance to negate the output of
Ni), and in particular for all sufficiently large z ∈ Z, we have that f(z)i = 1−N ′(z)i = 1− f(z)i,
a contradiction.

This result extends to other parameter settings. As an example, we state a version of Proposi-
tion 35 at the very low end.

Proposition 36. If there exists a constant c such that that AM ⊆ NTIME[2n
c
], then for every

increasing function α : N → N there exists a function f computable in nondeterministic exponential
time with α(n) bits of advice that is hard on almost-all inputs against AM protocols running in
polynomial time.

Proof (Sketch). The proof is essentially identical to that of Proposition 35, but with a different
time bound. Since AM ⊆ NTIME[2n

c
], the diagonalizing machine N needs to diagonalize against

single-valued nondeterministic algorithms running in time 2n
c′
for some fixed constant c′ > c, and

thus we get a nondeterministic algorithm that runs in time O(2n
k
) for any constant k > c′.

We conclude this section by pointing out the remaining gaps between the direction from hardness
to derandomization and the reverse direction in the setting of hardness on almost-all inputs. The
first gap lies in the fact that in the derandomization-to-hardness direction, the function f requires
a few bits of advice that we don’t know how to handle in the other direction. A subtler gap
relates to the difference between AM and prAM. In the hardness-to-derandomization direction, we
require hardness against prAM protocols, which may not obey the AM promise on all inputs. In
the derandomization-to-hardness direction, we can only guarantee hardness against AM protocols,
which necessarily obey the AM promise on all inputs. We remark that a similar problem shows
up in other hardness vs. randomness tradeoffs for AM [GSTS03, SU09]. For example, to conclude
almost-everywhere derandomization of AM, the authors of [GSTS03] require hardness of EXP
against AM protocols for which completeness only holds infinitely-often. Finally, we also note that,
while Chen and Tell only state their derandomization-to-hardness result for BPP [CT21], in that
setting one can actually achieve hardness against prBPP (where the probabilistic algorithm might
not have a high-probability output for every input).
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5.2 Targeted hitting-set generator

In this section, we prove Theorem 9 along the lines of the intuition provided in Section 2.2. We
make use of a win-win argument: Either the EXP ̸= NEXP hardness assumption holds, in which
case there is a regular (oblivious) HSG that guarantees the derandomization result [IKW02]. Or
else we may assume that EXP = NEXP, which allows us to construct a function f that is hard
against prAM protocols by diagonalization, with which we then instantiate Theorem 29 to obtain
the targeted HSG.

We need the following result that follows from the “easy-witness” method.

Lemma 37 ([IKW02]). If NEXP ̸= EXP then prAM ⊆ io-NTIME[2n
ϵ
]/nϵ for every ϵ > 0.

Moreover, there exists a (regular) HSG that achieves this derandomization.

We now prove Theorem 9, which we restate here for convenience.

Theorem 9 (Restated). If prAMTIME[2polylog(n)] ⊆ io-NEXP, then there exists a targeted
hitting-set generator that yields the simulation prAM ⊆ io-NTIME[2n

c
]/nϵ for some constant c

and all ϵ > 0.

Proof. If EXP ̸= NEXP, we are done by Lemma 37. Otherwise, it holds that NEXP = EXP. We
use this collapse to construct a length-preserving multi-bit function f computable in exponential
time that is hard against prAMTIME[n(logn)3 ]. We then instantiate Theorem 31 with f to obtain
the targeted HSG. Hardness against protocols running in this time bound suffices along the lines
of Theorem 7.

Before constructing f , we make an observation: Due to the instance-wise nature of our con-
struction, to obtain an infinitely-often derandomization result using Theorem 31 it suffices to have
an infinitely-often all-inputs hardness assumption. More precisely, we require the following: For
every prAMTIME[n(logn)3 ] protocol P , there exist infinitely many input lengths n such that P fails
to compute f for every z of length n. Thus, we construct a function f with this requirement in
mind.

Under the hypothesized derandomization assumption and because prAMTIME[n(logn)3 ] has
a complete problem under linear-time reductions, it follows that there exists a constant k such
that prAMTIME[n(logn)3 ] ⊆ io-NTIME[2n

k
]. Since NTIME[2n

k
] also has a complete problem un-

der linear-time reductions, under the assumption EXP = NEXP, there exists a constant k′ such

that prAMTIME[n(logn)3 ] ⊆ io-DTIME[2n
k′
]. In that case, it suffices to diagonalize against fixed-

exponential time machines to construct f . Similar to Proposition 35, we define the i-th bit of f(z)

to be the opposite of the i-th bit output by Mi(z) when it runs for at most 2|z|
k′+1

steps, where Mi

is the i-th deterministic Turing machine. Formally, on input z of length n and for 1 ≤ i ≤ n,

f(z)i =

{
1−Mi(z) if Mi(z) halts in at most 2n

k′+1
steps,

0 otherwise.

Note that f is computable by a deterministic machine running in time O(n · 2nk′+1
).

Assume, with the intent of deriving a contradiction, that there exists a prAMTIME[n(logn)3 ]
protocol P such that for almost-all input lengths n, P computes f on at least one input z ∈
{0, 1}n, and call the set of inputs where P computes f correctly Z. Again, similar to the proof of
Proposition 35, P induces a problem Π in prAMTIME[n(logn)3 ], and by our assumptions, there is
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a language L ∈ DTIME[2n
k′
] such that L and Π agree on infinitely many input lengths. Let M be

a deterministic Turing machine running in time O(2n
k′
) that decides L. Recall that yes-instances

of Π are triples (z, i, b) such that z ∈ Z and f(z)i = b while no-instances have z ∈ Z and f(z)i ̸= b.
Let M ′ be the deterministic Turing machine that, on input z of length n, outputs M ′(z) of length
n such that M ′(z)i = 1 if and only if M accepts (z, i, 1) for 1 ≤ i ≤ n. Note that M ′ runs in time

2n
k′+1

. By construction and our assumption on P , for infinitely many input lengths n there exists
at least one z ∈ Z ∩ {0, 1}n such that M ′(z) = f(z). Let i be the index of M ′ in our enumeration.
By definition of f , for every input z ∈ {0, 1}∗ of sufficiently large length n ≥ i (so that it has a
chance to negate the output of M ′), and in particular for all sufficiently large inputs z ∈ Z, we
have that f(z)i = 1−M ′(z)i = 1− f(z)i, which gives us the sought contradiction.

Under the hypotheses of the theorem, we have constructed a length-preserving function f that
is computable in exponential time T with the property that for every prAMTIME[n(logn)3 ] protocol
P there are infinitely many lengths n such that on every input z ∈ {0, 1}n, P fails to compute f . We
instantiate Theorem 31 with f to obtain a targeted HSG for prAM that, on input z ∈ {0, 1}n and
a co-nondeterministic circuit D of size m, runs in time poly(T (n),m) and works for all inputs z of
infinitely-many input lengths n, resulting in a fixed-exponential time nondeterministic simulation
for prAM that works for infinitely many input lengths.

5.3 Refuters from targeted hitting-set generators

In this section, we prove that the third item in Theorem 8 implies the first one. In fact, we establish
something stronger: Assuming the existence of a targeted hitting-set generator as in the third item,
every function f that is computable in nondeterministic polynomial-time and has a probabilistic
polynomial-time refuter against bottleneck protocols with imperfect completeness and promised
soundness for f , also has a nondeterministic polynomial-time list-refuter against the same class
but with the standard perfect completeness level (Theorem 38). The first item then follows as the
identity function has such a probabilistic refuter (Proposition 39).

A probabilistic refuter is a refuter that produces a counterexample with constant probability
over its internal randomness. In the case of the class prAMTICOMP[t(n), s(n)] with imperfect
completeness level c = 2/3 (and default soundness level s = 1/3), this means the following: On
input 1n and a pair (Acomp, Pdec) consisting of a probabilistic algorithm Acomp and a prAM protocol
Pdec, a probabilistic refuter for a function f outputs a string z of length at least n such that the
following holds with probability Ω(1). If on inputs of length ℓ ≥ n both phases of (Acomp, Pdec) run
in time t(ℓ) and the output length of Acomp is bounded by s(ℓ), then (Acomp, Pdec) fails to compute
f on input z with completeness 2/3 and soundness 1/3. Note that if (Acomp, Pdec) is promised to
be sound for f and to obey the time and compression requirements, then it must be the case that
(Acomp, Pdec) fails to compute f(z) with completeness 2/3.

Here is the intuition for the stronger statement (Theorem 38). To derandomize the given
probabilistic refuter, we set up a co-nondeterministic circuit D that verifies that a random bit-
string leads to a counterexample for a given bottleneck Arthur-Merlin protocol (Acomp, Pdec) with
promised soundness for f . On input a string (r1, r2, r3) where r1 represents the randomness for
the probabilistic refuter Rpr, r2 the randomness for Acomp and r3 the randomness for Pdec, D
first computes the candidate counterexample z by running Rpr and uses co-nondeterminism to
determine f(z). D then co-nondeterministically verifies that all possible replies from Merlin would
lead Pdec with input Acomp(z, r2) and randomness r3 to fail or output something other than f(z).
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If (Acomp, Pdec) is sound for f and obeys the time and compression requirements, the only way
the refuter can succeed is when (Acomp, Pdec) fails the completeness requirement on z. Since the
refuter succeeds with probability Ω(1) and the completeness level is bounded below 1, this means
that the circuit D accepts a Ω(1) fraction of its inputs. Thus, when we apply the assumed targeted
hitting-set generator to D, it has to output at least one (r1, r2, r3) on which D succeeds. For such
a (r1, r2, r3), (Acomp, Pdec) does not have perfect completeness on the input z that Rpr produces
with random-bit string r1 because (Acomp, Pdec) does not output f(z) on random bit-string (r2, r3).
Thus, outputting the strings z over all (r1, r2, r3) that the targeted HSG produces, yields the desired
nondeterministic polynomial-time list-refuter.

Note the increase in the completeness level from c = 2/3 for a probabilistic refuter to c = 1
in the corresponding item for a nondeterministic refuter as in Section 3.5. On the one hand,
the gap in completeness for the counterexample output by a probabilistic refuter allows the co-
nondeterministic circuit D to accept a constant fraction of its inputs, which is needed to guarantee
success for the derandomization. On the other hand, the nondeterministic refuter we obtain from
the probabilistic refuter only guarantees that the completeness on the counterexample is not perfect.
The latter guarantee suffices for the direction from refutation to derandomization because the
reconstructor in Theorem 29 has perfect completeness. The resilient soundness property of the
reconstructor in Theorem 29 ensures that we only need to worry about refuting pairs (Acomp, Pdec)
that are sound for f .

Theorem 38. Assume that there is a targeted hitting-set generator for prAM computable in non-
deterministic time T . Let f be a function computable in nondeterministic polynomial time that has
a probabilistic polynomial-time refuter against prAMTICOMP[t(n), s(n)] protocols with promised
soundness for f . There exists a list-refuter R for f against prAMTICOMP[t(n), s(n)] protocols with
promised soundness for f such that R is computable in nondeterministic time T (poly(m, t(poly(n)))),
where m denotes the description length of the protocol to be refuted and n the lower bound for the
length of the counterexamples.

We observe that in case the function f in Theorem 38 is computable in polynomial time, as is
the case with identity, the list-refuter R runs in polynomial time in its input length, i.e., in time
poly(m,n).

Proof of Theorem 38. Let H be the hypothesized targeted HSG. H always has an accepting com-
putation path for any input, and on input a co-nondeterministic circuit D of size m′ that ac-
cepts at least 1/2 of its inputs, it runs in time T (m′) and outputs, on every accepting computa-
tion path, a set S that hits D. Let Rpr be the hypothesized probabilistic refuter for f against
prAMTICOMP[t(n), s(n)] protocols with promised soundness for f , and assume w.l.o.g. that Rpr

only outputs strings of length at least n and succeeds in outputting a counterexample with constant
probability δ > 0.

We now describe the nondeterministic list-refuter R. The input is 1n and a pair (Acomp, Pdec)
consisting of a probabilistic algorithm Acomp and a prAM protocol Pdec. R constructs a co-
nondeterministic circuit D as follows: On input a random string (r1, r2, r3), which is interpreted
as randomness for Rpr, randomness for Acomp and randomness for Pdec, respectively, D first runs
Rpr(1

n, (Acomp, Pdec); r1) to obtain an input z of length ℓ with n ≤ ℓ = O(poly(n)). Then, using
the fact that f is computable in polynomial time on a nondeterministic machine, D computes f(z)
using co-nondeterminism. Let A′

comp and P ′
dec denote the versions of Acomp and Pdec, respectively,
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clocked to run in time t. Finally, the circuit D computes A′
comp(z, r2), co-nondeterministically ver-

ifies that there is no Merlin message that would lead P ′
dec with input A′

comp(z, r2) and randomness
r3 to output f(z), and accepts if and only if the verification succeeds.

Before moving further, we observe that, if the pair (Acomp, Pdec) is sound for f and obeys the
running time and compression bounds, then D accepts at least a constant fraction of its inputs.
This holds because for such n, Rpr(1

n, (Acomp, Pdec); r1) outputs, with probability at least a constant
δ > 0 over a random choice of r1, an input z of length ℓ ≥ n such that (Acomp, Pdec) fails to compute
f(z) with completeness 2/3. For those z, it holds for a fraction of at least 1/3 of strings (r2, r3) that
there is no Merlin message that leads Pdec(Acomp(z, r2); r3) to output f(z). Thus, with probability
at least δ′ = δ/3, D accepts a triple (r1, r2, r3).

After constructing D, R constructs a new co-nondeterministic circuit D′ that is composed of k
independent copies of D and that accepts if and only if at least one of the copies accepts, where
k is constant to be set. R then computes H(D′), obtaining a set S of strings of the form ρ =
(ρ1, ρ2, . . . , ρk), where each ρi is of the form (r1, r2, r3). Finally, R outputs Rpr(1

n, Acomp, Pdec; r1)
for all r1 that appear in S. R always has an accepting computation path for every input since so does
the generator H. Recall that if (Acomp, Pdec) is sound for f , then the acceptance probability of D is
at least δ′. This means that the acceptance probability of D′ is at least 1−(1−δ′)k ≥ 1−exp(−δ′k),
which can be made at least 1/2 by setting k = Θ(1/δ). In this case, H(D′) outputs a hitting-set
for D′ on every accepting computation path. Let ρ be a string that hits D′. In that case, there
must be some ρi = (r1, r2, r3) that hits D, which means that Pdec fails to compute f(z) with perfect
completeness on input z = Rpr(1

n, Acomp, Pdec; r1). As such a z is on the list output by R on every
accepting computation path, R is a list-refuter for f against prAMTICOMP[t(n), s(n)] protocols
with promised soundness for f .

Let m denote the description length of (Acomp, Pdec). The co-nondeterministic circuit D′ con-
structed by R on inputs 1n and (Acomp, Pdec) has size poly(m,n, t(poly(n))) = poly(m, t(poly(n)))
since t(n) ≥ n, and thus computing H(D′) takes time T (poly(m, t(poly(n)))). Finally, R needs to
compute Rpr(1

n, Acomp, Pdec; r1) for at most T (poly(m, t(poly(n)))) strings r1, and each such exe-
cution takes time poly(m,n). The final running time is thus T (poly(m, t(poly(n))))+poly(m,n) =
T (poly(m, t(poly(n)))) since T (n) ≥ n.

We now exhibit a probabilistic polynomial-time refuter for the identity function against bottle-
neck protocols with imperfect completeness. The intuition is that strings z for which a bottleneck
protocol computes identity correctly with completeness 2/3 and soundness 1/3 can be described
succinctly via the output of the compression phase. Thus, the protocol must fail to compute identity
for most z, as most z do not admit a succinct representation.

Proposition 39. For every constant ϵ ∈ (0, 1), there exists a probabilistic polynomial-time refuter
for the identity function against prAMTICOMP[∞, nϵ] with completeness 2/3 and soundness 1/3.

Proof. Fix ϵ ∈ (0, 1). The probabilistic polynomial-time refuter Rpr, on input 1n and a pair
(Acomp, Pdec) of description length m just outputs a random string z of length ℓ = Θ(n) to be
defined precisely in the next paragraph.

Assume that (Acomp, Pdec) computes the identity function with completeness 2/3 and soundness
1/3 on an input z of length ℓ, and that |Acomp(z)| ≤ ℓϵ. By an averaging argument, there exists a
random sequence r1 for Acomp such that the following property holds with probability at least 1/3
over a random sequence r2 for Pdec: Any reply from Merlin for the protocol Pdec(Acomp(z; r1); r2)
leads to either acceptance or the correct output z, and there exists a Merlin reply that leads to the
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correct output z. If we let πz = Acomp(z; r1) and fix (Acomp, Pdec), we can describe z as one of the
only three possible outputs of Pdec(πz) for which the property above holds. This description for
z has length at most ℓϵ + c for some constant c, and thus at most 2ℓ

ϵ+c+1 out of the 2ℓ strings of
length ℓ can have such a short description. We then set ℓ = max(n, n0) = Θ(n), where n0 is the
smallest integer such that 2n

ϵ
0+c+1/2n0 ≤ 1/3. With ℓ as the output length, the probability that

the refuter succeeds is at least 2/3.

For completeness, as we now have all the steps involved in Theorem 8, we tie them together in
a formal proof.

Proof of Theorem 8. The implication 1 =⇒ 2 holds trivially by taking the identity for f . The
implication 2 =⇒ 3 is Theorem 33. The implication 3 =⇒ 1 follows by combining Theorem 38
and Proposition 39 with polynomial time bounds.

A similar proof with bounds as in Theorem 34 establishes the following middle-of-the-road
equivalence.

Theorem 40. The following are equivalent:

1. For some constant ϵ ∈ (0, 1), there exists a nondeterministic 2polylog(n)-time list-refuter for the
identity function against prAMTICOMP[n·2(logn)ϵ , 2(logn)ϵ ] protocols with promised soundness
for identity.

2. For some constants a ≥ 1 and ϵ ∈ (0, 1), there exists a function f computable in nonde-
terministic time 2(logn)

a
that admits a nondeterministic polynomial-time list-refuter against

prAMTICOMP[2(logn)
a+ϵ

, 2(logn)
ϵ
] protocols with promised soundness for f .

3. There exists a targeted hitting-set generator that achieves the derandomization prAM ⊆
NTIME[2polylog(n)].

6 Derandomization under uniform worst-case hardness

Our technique also leads to new results in the traditional uniform worst-case setting. Under worst-
case hardness against probabilistic algorithms with non-adaptive oracle access to SAT, we obtain
average-case derandomization results for prAM. Moreover, by further strengthening the hardness
assumption, we may also conclude full (infinitely-often) derandomization of prAM. As previously
mentioned, these results extend to average-case derandomization of prBPPSAT

|| .

6.1 Average-case simulation

In this section, we develop our average-case derandomization results for prAM under worst-case
uniform hardness assumptions (where hardness is against BPTIMESAT

|| ). Our results in this setting

work as follows: Assume there exists a hard language L ∈ NTIME[T (n)] ∩ coNTIME[T (n)]. To
derandomize some prAM protocol P on input length n, we first consider the hard language L at
some suitable input length ℓ, which depends on the hardness of L (for Theorem 10, for example,
we take ℓ = Θ(log n)). Then we let f be the function that maps any input x ∈ {0, 1}n to the
truth table of L at input length ℓ, and it follows from the complexity of L that f is computable
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in nondeterministic time 2ℓcṪ (ℓ). Finally, we instantiate our targeted HSG construction H with f
and use it to derandomize P .

For the reconstruction, we make use of the strong resilient soundness property of Corollary 30.
If the average-case derandomization fails, to decide whether z of length ℓ is in L, we first sample
multiple candidate “good” strings x that hopefully lead to a distinguisher Dx for the generator
(enough so that we expect at least one “good” x with high probability). Then, we run the recon-
struction for all of them, accepting if and only if at least one of those outputs 1. By the strong
resilient soundness property and amplification, with high probability every execution either fails or
outputs f(x)z = L(z), and in the high probability case that we sample at least one “good” x, some
execution outputs L(z), meaning we can compute L efficiently on input length ℓ.

First, we present such a result at the high end of the derandomization spectrum.

Theorem 41 (Strengthening of Theorem 10). If NTIME[2an] ∩ coNTIME[2an] is not included
in BPTIME[2(log(a+1))2n]SAT|| for some constant a > 0, then for all e > 0 it holds that

prAM ⊆ io-Heur1/neNP

prBPPSAT
|| ⊆ io-Heur1/nePSAT

|| .

Proof. We first argue the result for prAM. Consider derandomizing a prAM protocol PΠ for a
problem Π running in time O(nk) for some constant k. Let S be an O(ns)-time sampler for a
distribution in {0, 1}n and e be a constant such that we want to “fool” S with probability at least
1 − 1/ne. Let f be a function mapping every z ∈ {0, 1}n to the truth table of the hard language
L ∈ NTIME[2an] ∩ coNTIME[2an] at input length ℓ = ℓ(n) = Θ(log n) to be set precisely later.
Note that f is computable in nondeterministic time T (n) = 2(a+1)ℓ. Instantiate the generator H of
Corollary 30 with f , run H on input z = 0n (recall f maps every string in {0, 1}n to the same truth
table) and co-nondeterministic circuit size m = O(n2k), and use it to attempt to derandomize PΠ

in nondeterministic time poly(T (n), n2k) = poly(n).
If the derandomization fails for almost-all input lengths, even heuristically, then for almost-

all input lengths n, S(1n) outputs with probability at least 1/ne a string x ∈ {0, 1}n such that
the simulation errs on x, i.e., the circuit Dx obtained from x and PΠ using Proposition 21 is a
distinguisher for H(0n, Dx). To compute L at input length ℓ, it then suffices to do the following:
On input w ∈ {0, 1}ℓ, first use S to sample t = Θ(ne) inputs x1, . . . , xt and use these to construct a
list Dx1 , . . . , Dxt of candidate distinguishers for H(0n, Dx). With high probability, this list contains
an actual distinguisher for the generator. Let Arec be the algorithm of Corollary 30, amplified by
parallel repetition to have negligible soundness 2−n, i.e., with probability at least 1 − 2n, the
algorithm outputs either ⊥ or a correct evaluation of f . Finally, run Arec with inputs 0n, index w
(recall f(0n) equals the truth table of L at input length ℓ) and Dxi for every sampled input xi, and
accept if and only if some execution outputs 1. To see that this is correct, note that by a union
bound, with high probability every execution of Arec is successful in the sense that it either outputs
f(0n)w = L(w) or ⊥. Conditioned on there being a distinguisher in the list, we are guaranteed to
output the correct value of L(w) with high probability.

The running time for the reconstruction is O(ne+s) for generating the t = Θ(ne) samples,
and O(n2k)O((log r)2) per sample for running Arec, where r = O(((a + 1)ℓ)/(k log n)), for a total
of O(ne(ns + nO(k(log r)2))). By setting ℓ = dk log n, we have that r = O(d(a + 1)) and we can
upper bound the total running time by nO(e+s+k(log(d(a+1)))2). In terms of the input length ℓ, this is
2(log(a+1))2ℓ when d is a sufficiently large constant depending on a, e, s. This concludes the argument
for prAM.
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Now, we argue the result for prBPPSAT
|| . To do so, we use the containment prBPPSAT

|| ⊆
PprAM
|| [CR11]. It suffices to show that every deterministic polynomial-time algorithm with non-

adaptive oracle access to a paddable prAM-complete problem Γ ∈ prAMTIME[n] can be simulated
by deterministic polynomial-time algorithms with non-adaptive oracle access to SAT. Let M be a
deterministic algorithm with non-adaptive oracle access to Γ running in time O(nb) and S be an
O(ns)-time sampler that we want to “fool” with probability at least 1−1/ne. Since Γ is paddable, we
may assume that every query made by M on inputs of length n is of length O(nb) (at the expense of
increasing its running time to O(n2b)). To simulate M on an input x of length n, let f be a function
mapping every z ∈ {0, 1}n to the truth table of L at input length ℓ = ℓ(n) = Θ(log n). As before,
f is computable in nondeterministic time 2(a+1)ℓ. Instantiate the generator H of Corollary 30 with
f and input z = 0n and use it to derandomize Γ at input length O(nb) in order to obtain a PSAT

||
simulation for M . Whenever M with input x queries Γ, we instead query the SAT oracle whether
the nondeterministic simulation of Γ using H with input 0n and co-nondeterministic circuit size
m = O(n2b) accepts. This simulation runs in PSAT

|| since M is non-adaptive.
If this derandomization fails on almost-all input lengths n, then as before we can use S to

sample t = Θ(ne) inputs x1, . . . , xt such that with high probability the simulation fails on some xi.
Let Q(M,x) be the set of queries to Γ made by M on input x. If the simulation fails on xi, it must
be the case that some query q in Q(M,xi) (and also in the promise of Γ) was answered incorrectly.
Since the protocol for Γ has perfect completeness, it must be the case that q ∈ ΠN and that Dq is
a distinguisher for H(0n, Dq). The reconstruction is as before though we use the sets Q(M,xi) for
i ∈ [t] to obtain the list of candidate generators, and correctness follows by the same argument as
in the prAM case. The running time analysis is similar to the one for the case of prAM.

At the low end, we are able to obtain a slightly stronger average-case derandomization result.
Instead of having a different simulation for each sampler, we obtain a single simulation (depending
on the problem in prAM/prBPPSAT

|| and the constant ϵ) that “fools” every polynomial-time sampler.

Theorem 42. If NEXP ∩ coNEXP ̸⊆ BPTIME[nb((logn)2)]SAT|| for all b > 0, then for every ϵ > 0
and all e > 0

prAM ⊆ io-Heur1/neNTIME[2n
ϵ
]

prBPPSAT
|| ⊆ io-Heur1/neDTIME[2n

ϵ
]SAT|| .

Moreover, for any Π in prAM or prBPPSAT
|| and ϵ > 0, there is a single simulation that works for

all e > 0.

Proof. We begin with the argument for prAM. Let L be a hard language in NTIME[2n
a
] ∩

coNTIME[2n
a
] for some constant a ≥ 1. Consider derandomizing a protocol PΠ for a problem

Π ∈ prAMTIME[nk] for constant k. Let ϵ > 0 and f be the function mapping every z ∈ {0, 1}n
to the truth table of L at input length ℓ = nϵ. Note that f is computable in nondeterministic
time T (n) = 2n

aϵ
. Instantiate the generator H of Corollary 30 with f , run H on input z = 0n and

co-nondeterministic circuit size m = O(n2k), and use it to derandomize PΠ. The simulation runs in

nondeterministic time poly(T (n), n2k), which is at most 2n
ϵ′
for any ϵ′ > 0 by taking a sufficiently

small ϵ > 0.
The reconstruction is identical to that of Theorem 41 but with ℓ = nϵ. The running time

is O(ne+s) to generate the samples and (n2k)O((log r)2) per sample for running Arec, where r =
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O(log (T (n))/ log n), for a total of O(ne(ns+nO((log r)2))). Given our parameter choices, r = O(naϵ),
and the expression is upper bounded by O(ne(ns+nO((aϵ logn)2))). As the input length is ℓ = nϵ for
constant ϵ, there exists a constant b (depending on a, e, s, ϵ) such that the running time is upper
bounded by ℓb(logn)

2
. If hardness holds for all b > 0, then the same simulation works for any

constant value of s and e, i.e., for any polynomial-time sampler and any inverse-polynomial error
probability.

The proof for prBPPSAT
|| is also almost identical to that of Theorem 41, where we derandomize

the “oracle” Γ using the generator H from Corollary 30 instantiated with the function f that maps
every z ∈ {0, 1}n to the truth table of L at input length ℓ = nϵ and use a set of queries instead of
a set of inputs to obtain the list of candidate distinguishers for the reconstruction. This approach

naturally leads to a simulation in P
NTIME[2n

ϵ
]

|| , and we obtain the DTIME[2n
ϵ
]SAT|| simulation by

replacing the original queries with padded SAT queries.

6.2 Infinitely-often all-input simulation

By introducing nondeterminism in the algorithms we require hardness for, we are able to extend
Theorem 10 to conclude full (infinitely-often) derandomization of prAM. We have shown that, if
the HSG construction of Theorem 10 fails to obtain average-case derandomization of prAM, then
we are able to efficiently sample candidate distinguishers with the hope that at least one is “good”.
However, if the HSG fails in the worst case, it is harder to pinpoint exactly where it does so as to
obtain a distinguisher. To solve this, we have Merlin send a “good” input x. This necessitates a
lower bound against MATIMESAT

|| , but allows for concluding full (infinitely-often) derandomization

of prAM and prBPPSAT
|| .

Theorem 43. If NTIME[2an] ∩ coNTIME[2an] ̸⊆ MATIME[2(log (a+1))2n)]SAT|| for some constant
a > 0, then

prAM ⊆ io-NP

prBPPSAT
|| ⊆ io-PSAT

|| .

Proof. We argue the result for prAM first. Let Π ∈ prAMTIME[nk] for some constant k and let
L be a hard language in NTIME[2an] ∩ coNTIME[2an]. Let f be a function mapping every input
z ∈ {0, 1}n to the truth table of L at input length ℓ = Θ(log n) to be set precisely later. Note that f
is computable in nondeterministic time T (n) = 2(a+1)ℓ. Instantiate the generator H of Corollary 30
with f , run H on input z = 0n and co-nondeterministic circuit size m = O(n2k), and use it to
derandomize Π in time poly(T (n), n) = poly(n).

If the simulation fails for some input of almost-all input lengths, then for almost-all input lengths
n there exists an x ∈ ΠN of length n such that the simulation errs on x, i.e., the circuit Dx of
Proposition 21 instantiated with the protocol for Π and x is a distinguisher for H(0n, Dx). Let
Arec be the reconstructor of Corollary 30 and consider the following Merlin-Arthur protocol for L,
where the protocol has parallel oracle access to SAT: On input w ∈ {0, 1}ℓ, Merlin sends x, and
Arthur runs Arec(0

n, Dx) to compute the w-th bit of f(0n) = L(w). If Arec outputs ⊥, then the
protocol rejects, otherwise, it accepts if and only if Arec outputs 1. Because Arec is a probabilistic
algorithm with parallel access to an oracle for SAT, Arthur can select the randomness required
for it and then run the underlying deterministic parallel-SAT-oracle computation, meaning this is
indeed a MASAT

|| protocol. Completeness follows since Merlin can send a correct value of x, and
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soundness follows from the strong resilience property of Arec: Even if Merlin sends a “bad” x′, Arec

is still guaranteed to either fail or output L(w) with high probability.
To finish the argument for prAM, note that the running time of the protocol is just the running

time of Arec, which is poly(n)·(m·log T (n))O((log r)2) for r = O(log (T (n))/ logm). Sincem = O(n2k)
and setting ℓ = dk log n, we have r = O(d(a + 1)) and the running time for the protocol is upper
bounded by nO(k(log (d(a+1)))2). In terms of the input length ℓ, this is 2(log (a+1))2ℓ) when d is a
sufficiently large constant depending on a.

The simulation for prBPPSAT
|| is similar to before and the reconstruction is identical to the

prAM case: If the simulation fails, then there is a query q of length O(nk) (which results in a
distinguisher of size O(n2k)) that Merlin can send Arthur to make Arthur output L(w) with high
probability. Soundness also follows exactly as in the prAM case and the running time is again
2(log (a+1))2ℓ).

We only state the previous result for the high-end parameter setting because stronger results
are already known for the low end. For example, to conclude a subexponential derandomization
of prAM, it suffices for there to exist a language in NEXP ∩ coNEXP that is hard for a subclass
of MASAT

|| [AvM17]. In comparison with ours, other results that conclude the same derandomiza-
tion either require hardness of nondeterministic algorithms against much larger deterministic time

bounds, e.g., NE ∩ coNE ̸⊆ DTIME[22
nϵ

] for some ϵ > 0 [IKW02] or hardness of deterministic
algorithms against slightly less space, e.g., E ̸⊆ SPACE[2ϵn] for some ϵ > 0 [Lu01].

7 Unconditional mild derandomization

In this section, we establish our unconditional mild derandomization result for prAM and extend
it to prBPPSAT

|| . We employ a similar win-win argument to that of the proof of Theorem 9: Either

some hardness assumption/class separation holds (here, Σ2EXP ̸⊆ NP/poly), in which case we get
derandomization right away. Or else we get a complexity collapse which we can use to construct a
hard function f that has the efficiency requirements we need to apply one of our targeted hitting-set
constructions (in this case Theorem 42, which requires hardness against BPTIME[2polylog(n)]SAT|| ).

As a first step toward the win-win argument, we prove an “easy-witness lemma” for Σ2EXP,
which allows for the collapse PΣ2EXP ⊆ EXP from the assumption that Σ2EXP ⊆ NP/poly. Then
we consider two cases:

◦ Σ2EXP ̸⊆ NP/poly. In this case, the derandomization result follows from standard hardness
vs. randomness tradeoffs.

◦ Σ2EXP ⊆ NP/poly. In this case, we diagonalize against BPTIME[2polylog(n)]SAT|| in PΣ2EXP =
EXP, and then instantiate Theorem 42 to conclude the proof.

To diagonalize against BPTIME[2polylog(n)]SAT|| , we make use of the inclusion prBPPSAT
|| ⊆

PprAM
|| and diagonalize against deterministic algorithms with non-adaptive oracle access to prAM

instead.

7.1 Nondeterministic easy witnesses

In this section, we prove our “easy witness lemma” for Σ2EXP. One way of thinking of Σ2 com-
putations is as follows: On input x, guess a string y and then run a co-nondeterministic verifier on
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input (x, y). This view allows us to abstract the co-nondeterministic verification and think of y as
a witness for x. In this section, we show that if Σ2EXP ⊆ NP/poly, then every language in Σ2EXP
has witnesses that are the truth tables of functions computed by polynomial-size single-valued cir-
cuits. To do so, we use the following result to convert hardness against single-valued circuits into
hitting sets for co-nondeterministic circuits.

Lemma 44 ([Uma03]). There is a universal constant b and a deterministic polynomial-time al-
gorithm that, on input 1m and a truth table y of a function with single-valued circuit complexity at
least mb, outputs a set S of size O(|y|b) that hits co-nondeterministic circuits of size m that accept
at least half of their inputs.

We also need the following equivalence from [AvM17].

Lemma 45 ([AvM17]). Σ2EXP ̸⊆ NP/poly if and only if prAM ⊆ io-Σ2TIME[2n
ϵ
]/nϵ for all

ϵ > 0.

We are now ready to prove our easy witness result for Σ2EXP.

Theorem 46. Assume Σ2EXP ⊆ NP/poly. Then Σ2EXP has single-valued witnesses of polynomial
size, i.e., for every L ∈ Σ2EXP and linear-time (in its input length) co-nondeterministic verifier H
for L, the following holds: For every x ∈ L, there exists a single-valued circuit Cx of size poly(|x|)
such that H(x, ·) accepts the exponential-length truth table of Cx.

Proof. We show that Σ2E has single-valued witness circuits of size nc for some constant c. The
result for Σ2EXP then follows by padding.

Assume that Σ2E does not have single-valued witness circuits of size nc for any constant c. This
implies that for all c ≥ 1, there is a co-nondeterministic verifier Hc that takes as input a string x
and a string y of length 2O(|x|), runs in time 2O(|x|), and has the following property: For infinitely
many n, there is a input x′ of length n such that Hc(x

′, y′) accepts for some y′, but every y accepted
by Hc(x

′, ·) has single-valued circuit complexity at least nc. Thus, there are infinitely many n such
that, if we give x′ as n bits of advice, guess a string y of length 2O(n), and verify that Hc(x

′, y)
accepts (using co-nondeterminism), we are guaranteed that y encodes the truth table of a function
with single-valued circuit complexity at least nc. This gives us a Σ2-procedure for obtaining hard
functions, which we use to derandomize prAM and obtain a contradiction to Lemma 45.

Let Π ∈ prAM and let PΠ be a protocol for Π that runs in time O(ℓa) on input length ℓ. By
Proposition 21, to derandomize PΠ it suffices to have a set S that hits any co-nondeterministic
circuit of size O(ℓ2a) that accepts at least half of its inputs. To obtain such a set using Lemma 44,
we need to first obtain a truth table of single-valued circuit complexity at least Ω(ℓ2ab), where b is
the constant from the lemma. Recall that our objective is to obtain a subexponential (time 2n

ϵ
for

all ϵ > 0) simulation. To this end, let ϵ > 0 be sufficiently small and consider the verifier Hc for
c = 3ab/ϵ on inputs of length n = ℓϵ. If n is one of the infinitely many input lengths for which there
exists x′ such that every string accepted by Hc(x

′, ·) has single-valued circuit complexity at least

nc = ℓ3ab, then we can obtain such a hard string by having x′ as advice, guessing y ∈ {0, 1}2O(ℓϵ)

and verifying that Hc(x
′, y) accepts.

In parallel, apply Lemma 44 to y to obtain a set S of size 2O(ℓϵ), and use S to derandomize the
prAM computation (guessing a Merlin response for each string in S). Finally, accept if and only if
both Hc(x

′, y) and the prAM simulation accept. All of this can be carried out in Σ2TIME[2O(ℓϵ)]/ℓϵ.
Since ϵ is an arbitrarily small constant and the simulation works for infinitely many input lengths
ℓ, we obtain a contradiction to Lemma 45.
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Theorem 46 allows us to establish the following complexity class collapse in case Σ2EXP ⊆
NP/poly. The corollary represents the role our easy witness result plays in the proof of Theorem 11.

Corollary 47. If Σ2EXP ⊆ NP/poly, then PΣ2EXP = EXP.

Proof. Under the hypothesis from the statement, we show that Σ2EXP = coNEXP, which suf-
fices by combining Lemma 45 and Lemma 37. The hypothesis and Lemma 45 guarantee the
negation of prAM ⊆ io-Σ2TIME[2n

ϵ
]/nϵ for all ϵ, which in turn implies the negation of prAM ⊆

io-NTIME[2n
ϵ
]/nϵ for all ϵ, and thus the contrapositive of Lemma 37 implies EXP = NEXP and

therefore Σ2EXP = coNEXP = EXP. Finally, we have PΣ2EXP = PEXP = EXP.
To show that Σ2EXP = coNEXP it suffices by padding to show that every L ∈ Σ2E is in

coNEXP. Fix L ∈ Σ2E. By Theorem 46, L has single-valued witnesses of size nc for some constant
c. On input x ∈ {0, 1}n, we cycle through all nondeterministic circuits C of size nc and compute
their truth tables in time O(2n

c
). For each truth table T , we then run V (x, T ) (where V is a

co-nondeterministic verifier for L), accepting if and only if some verification accepts. All of this
runs in exponential co-nondeterministic time, so we are done.

7.2 Simulation

We now execute our win-win strategy and establish Theorem 11 and its strengthening for prBPPSAT
||

in lieu of prAM. We first consider the case where Σ2EXP ̸⊆ NP/poly. In this case simulations of
the required type that work on all inputs of a given length are provided by Lemma 45 for prAM.
We argue the same simulations follow for prBPPSAT

|| .

Lemma 48. If Σ2EXP ̸⊆ NP/poly, then for every ϵ > 0

prBPPSAT
|| ⊆ io-Σ2TIME[2n

ϵ
]/nϵ.

Proof. We use the inclusion prBPPSAT
|| ⊆ PprAM

|| . Let k be a constant and M be an O(nk)-
time deterministic machine with non-adaptive oracle access to a paddable prAM-complete problem
Γ ∈ prAMTIME[n]. We assume that all queries made by M on inputs of length n are of length
O(nk) at the expense of increasing M ’s running time to O(n2k).

Our approach is to use Lemma 44 to derandomize the queries made to Γ while making sure
that the overall simulation of M can be carried out in subexponential Σ2-time. To derandomize
Γ at input length O(nk) using the lemma, we need to obtain a truth table of single-valued circuit
complexity at least Ω(n2bk), where b is the constant from the lemma. Let ϵ > 0 and L ∈ Σ2E be
a language that has nondeterministic circuit complexity at least n3bk/ϵ for infinitely many input
lengths (which is guaranteed to exist by the hypothesis of the theorem). The simulation of M on
inputs x goes as follows: Given as advice the number of strings of length nϵ that are in L, the Σ2

algorithm guesses the truth table of L at input length nϵ, verifies it, and uses it as the string y
in Lemma 44. More precisely, after guessing the truth table, the algorithm performs the following
operations in parallel:

◦ It uses an existential and a universal guess to verify that the guessed truth table for L is
correct. This is possible because the algorithm has as advice the number of strings of length
nϵ that are in L, and thus it can existentially guess which strings are in L and only verify
those, with the guarantee that the others are not in L.
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◦ It guesses which of the queries to Γ that M makes on input x are answered positively and
which are answered negatively. For each query that is guessed to be answered positively, it
uses the set S from Lemma 44 and the existential phase to verify that there is a random-bit
string in S for which Merlin can provide a witness. Similarly, it uses S and the universal
phase to verify each query that is guessed to be answered negatively.

We note that the only existential computation paths that survive the computation are the ones
where the truth table of L at input length nϵ was guessed correctly. In this case, and in the case that
nϵ is one of the infinitely many input lengths where L has nondeterministic circuit complexity at
least n3bk/ϵ, it holds that the guessed truth table has high enough (single-valued) nondeterministic
circuit complexity such that S hits the co-nondeterministic circuits given by Proposition 21 for
negative instances of Γ at input length O(nk). This further guarantees that the surviving existential
computation paths are those that correctly guess the answers to all queries M makes on input x
that are in the promise of Γ. This suffices to obtain a simulation of M that is correct on infinitely
many input lengths since M is insensitive to variations in answers to queries that are outside the
promise (even when the same query is answered differently on different occasions). Finally, we note

that the entire procedure runs in time 2O(nϵ), which can be made smaller than 2n
ϵ′
for any ϵ′ > 0

by taking ϵ to be sufficiently small.

The other case of the win-win analysis is when Σ2EXP ⊆ NP/poly. In this case, we use the
collapse PΣ2EXP = EXP given by Corollary 47 and our targeted hitting-generator construction to
obtain the desired simulation. We conclude:

Theorem 49 (Strengthening of Theorem 11). For every ϵ > 0 and every e > 0

prBPPSAT
|| ⊆ io-Heur1/neΣ2TIME[2n

ϵ
]/nϵ.

Proof. If Σ2EXP ̸⊆ NP/poly, then it follows that prBPPSAT
|| ⊆ Σ2TIME[2n

ϵ
]/nϵ for all ϵ > 0

by Lemma 48. Otherwise, by Corollary 47, we have that PΣ2EXP = EXP. By Theorem 41,
all we need to show is that PΣ2EXP ̸⊆

⋃
b∈NBPTIME[nb((logn)2)]SAT|| . Given the containment

prBPPSAT
|| ⊆ PprAM

|| and a padding argument, it follows that
⋃

b∈NBPTIME[nb((logn)2)]SAT|| ⊆
DTIME[2polylog(n)]prAM

|| . It remains to show that PΣ2EXP ̸⊆ DTIME[2polylog(n)]prAM
|| , which we

do by diagonalization.
Fix a prAM-complete problem Γ and note that if L ∈ DTIME[2polylog(n)]prAM

|| , then there exists

a Turing machine M running in time 2polylog(n) with non-adaptive oracle access to Γ that computes
L. Thus, it suffices to diagonalize against such machines with Γ as an oracle. Let S be the following
Σ2EXP-oracle machine: On input x ∈ {0, 1}n, interpret x as a non-adaptive oracle Turing machine
Mx with an oracle for Γ. Then, using binary search and the Σ2EXP oracle, compute the number
q of queries that Mx on input x makes that are answered negatively, where we let Mx run for
at most 2n steps. This is possible in PΣ2EXP because prAM ⊆ Π2P, so we can verify negative
instances in Σ2EXP. Once we know q, we can simulate Mx(x) for at most 2n steps in Σ2EXP as
follows: Guess which q queries are negative and verify them in Σ2EXP (again using the fact that
prAM ⊆ Π2P); then assume that the other queries are answered positively and simulate Mx(x)
directly with these answers. By querying the Σ2EXP oracle S then outputs the opposite of this
simulation. By construction, the language of S is in PΣ2EXP \DTIME[2polylog(n)]prAM

|| .

This concludes our discussion of the byproducts of our main results.
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