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ABSTRACT

Motivation: The process of transcription is controlled by systems of

factors which bind in specific arrangements, called cis-regulatory

modules (CRMs), in promoter regions. We present a discriminative

learning algorithm which simultaneously learns the DNA binding site

motifs as well as the logical structure and spatial aspects of CRMs.

Results:Our results on yeast datasets showbetter predictive accuracy

than a current state-of-the-art approach on the same datasets. Our

results on yeast, fly and human datasets show that the inclusion of

logical and spatial aspects improves the predictive accuracy of our

learned models.

Availability: Source code is available at http://www.cs.wisc.edu/

�noto/crm
Contact: noto@cs.wisc.edu

1 INTRODUCTION

Eukaryotic gene transcription is controlled by multiple factors,

which to bind to DNA in a specific arrangement in a gene’s

promoter region. This type of regulation system is called a cis-
regulatory module (CRM). Such a module consists of (1) specific

sequences of DNA called motifs to which transcription factors bind,

(2) logical relationships between these sites and (3) spatial relation-

ships between these sites. Three examples of logical relationships

are as follows:

� AND logic; multiple required binding sites,

� OR logic; a set of motifs, any of which satisfies a binding site,

� NOT logic; a binding site which must not appear in a promoter

sequence.

Three examples of spatial relationships are as follows:

� Order preference; e.g. binding site A appears upstream of B,

� Distance preference; e.g. binding siteA appears�125 bp fromB,
or binding site A appears somewhere within 50 bp from the

estimated start of transcription,

� Strand preference; e.g. binding site A appears on the template

DNA strand (as opposed to the transcribed strand).

Given (1) a set of positive DNA sequence examples thought to

contain a hidden CRM, and (2) a set of negative DNA sequence

examples thought not to contain the CRM, the task we consider is to

learn a representation of a CRM which distinguishes between the

positive and negative sequences.

Several methods have been proposed for this task (Aerts et al.,
2003; Beer and Tavazoie, 2000; Keles et al., 2004; Segal and

Sharan, 2004; Sinha et al., 2003; Zhou and Wong, 2004). These

methods either learn motifs, or learn rich representations of the

relationships between candidate motifs, but not both. For instance,

the approach of Keleş et al. (2004) employs a rich representation of

the logical relationships between motifs. The approach of Beer and

Tavazoie (2004) involves logical aspects and spatial constraints

regarding order, distance and strand. However, these approaches

finalize motifs during a pre-processing step, before logical and

spatial aspects are considered. The approaches of Segal and Sharan

(2004) and Zhou and Wong (2004) learn motifs, and they do rep-

resent that binding sites must appear relatively close together, but in

a window of a fixed and predetermined size.

Since motifs are hidden in data, learning the relevant logical and

spatial aspects may help to identify motifs which would not oth-

erwise appear to be significantly overrepresented. None of the afore-

mentioned approaches learn both binding site motifs as they learn

the logical and spatial aspects of a CRM. The approach we present

is, to our knowledge, the first learning algorithm which does so.

Another advantage of our approach is that it can take advantage of

background knowledge. Learning CRMs is a difficult problem in

part because training set sizes are often limited (for instance, they

may consist of a few genes which are upregulated together) and

because the relevant binding site motifs may appear anywhere in a

large control region of a gene (tens of thousands of base pairs in

higher eukaryotes). Since our approach is entirely probabilistic, a

prior probability distribution over where binding sites are likely to

be [e.g. from a set of multiple alignment conservation scores or from

data concerning hypersensitive regions (Noble et al., 2005)] fits

naturally into our approach.

2 APPROACH

2.1 CRM representation

Our representation of a CRM is illustrated in Figure 1. It can

describe a logical relationship among binding site motifs (using

AND, OR and NOT), each represented by the standard position

weight matrix (PWM), and a set of probabilities representing the

spatial aspects: order, distance and strand. Note that we make a

distinction between binding sites and motifs, since because of OR

logic, more than one motif may be associated with a given binding

site. Also note that the pairwise distance distributions in Figure 1b

refer to adjacent binding sites. Hence, the order of binding sites

determines which distance distributions are relevant.

It is useful to think of an instantiation of our CRM representation

as a hidden Markov model (HMM), such as the one shown in�To whom correspondence should be addressed.
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Figure 2, and each sequence as being generated by a path through

this model. The logical structure of a CRM representation is

reflected in the structure of the HMM. The submodel denoted

‘BG’ represents a fixed background distribution over DNA

sequences of arbitrary length. We use a 5th-order HMM as the

background submodel, which is trained on the appropriate DNA,

such as promoter sequences in the organism being analyzed. A DNA

sequence with a hidden CRM takes an ‘upper’ path through the

model, and does the following: (1) probabilistically chooses an

ordering of the binding sites, (2) generates DNA from a background

distribution, at some point (3) chooses a PWM from which to gen-

erate the first binding site, (4) chooses a DNA strand, (5) generates

DNA probabilistically from the PWM distribution, (6) generates

more DNA from the background distribution, etc. The amount of

sequence generated by the background distribution submodel

between one binding site and the next depends on the probability

of that distance, which is given by our model parameters

(Figure 1b). This means that the HMM is a generalized HMM

(Burge and Karlin, 1997), because the amount of sequence

explained by the background state is not represented by transition

probabilities alone. A DNA sequence without a hidden CRM takes

the ‘lower’ path in the model, and it generates all DNA from the

background distribution.

Note that several parameters are tied together: all instances of the

background submodel are identical, and the submodel correspond-

ing to each binding site appears multiple times for each possible

binding site order. Also note that the model illustrated in Figure 2

contains no negated binding sites (NOT logic). These cases are

slightly different and are discussed in Section 2.5.

2.2 Learning structure

The task of learning one of our CRM models involves learning both

the logical structure (such as the example shown in Figure 1a) and

the parameters for a given structure (which is discussed in the next

section). Given a structure and parameters, we evaluate a model by

how well it classifies the training data (when there is a large number

Fig. 1. An example model in our CRM representation. (a) A logical structure of motifs consisting of a conjunction of binding sites (rounded boxes), each with a

disjunction of motif PWMs (lettered boxes). Each binding site is associated with a strand preference (one number indicating the probability of binding to the

template DNA strand). A binding site may be negated. (b) Each pair of binding sites is associatedwith an order preference (one number indicating the probability

of one site being upstream of the other) and a distance distribution over the possible intermotif distances of two adjacent binding sites. Also, each binding site has

order and distance preferences relative to a fixed point, such as the estimated transcription start site (TSS).

Fig. 2. ADNA-generating hiddenMarkovmodel representing the logical structure shown inFigure 1 (inset).BG represents a fixed background submodel. Shaded

lettered boxes represent PWMs (these are upside-down for reverse complement distributions). A sequencewith theCRMtakes the upper path, and generatesDNA

fromPWMsand the backgrounddistribution.A sequencewithout a CRMtakes the lower path, and generates all DNA from the background distribution.Note that

several parameters are tied together. All instances of the background submodel are identical, and the submodel corresponding to each binding site appears

multiple times for each possible binding site order.
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of training examples, we prefer to use held-aside tuning data for

evaluation), according to a user-defined metric.

We search for the CRM logical structure using a best-first beam

search (Mitchell, 1997). Our search operators are shown in Figure 3.

We start with a structure containing a single motif. At each step in

the search process, we apply each operator to the highest-scoring

solution to obtain new logical structures. We learn the parameters

for these structures, evaluate the models and repeat until some

maximum number of structures has been evaluated.

Each application of our search operators adds a new, untrained,

PWM. The model parameters we learn depend on the values in this

PWM, so we initialize it by sampling from the training data.

2.3 Learning parameters

Given the logical structure of a candidate CRM model, we set the

parameters,Q̂Q, in an attempt to optimize

Q̂Q ¼ arg max
Q

Y

x

P
�
cx j x‚±Q‚Vx

�
‚ ð1Þ

where cx is the label (i.e. positive or negative), of a training example

sequence x, and Vx is a prior probability distribution describing

locations on x where binding sites are likely to occur.

To train our parameters, we use the discriminative learning

approach of Krogh (1994). We calculate the expected number of

times each parameter is used to explain our input sequences, and

compare this with the expected number of times each parameter

should be used (i.e. positive examples should always take the upper

paths in Figure 2, and negative examples should always take the

lower path). We iteratively update our parameters according to:

Qtþ1
k  N

�
Qt

k þ h
�
mk � nk

��
‚ ð2Þ

where Qt
k is the current value for the k-th parameter, mk is the

expected number of times it is used in correct paths to generate

the training sequences, nk is the expected number of times it is used

in all paths, N is a normalization constant, and h is the learning rate,

which can be adjusted dynamically so that the parameters do not

fall below zero.

After we update model parameters, we do the appropriate

normalization and smoothing. For most of the parameters,

smoothing is done with pseudocounts. For our distance distri-

butions, we smooth each histogram with a Gaussian-shaped kernel

with standard deviation 1/
ffiffiffi
n
p

for a sample size of n (John and

Langley, 1995).

2.4 Efficient computation

To classify a sequence, x, we calculate the probability that x takes a
positive path through the HMM. This is given by

Pðcx ¼ pos j x‚Q‚VxÞ ¼
P

p2Ppos
Pðx jpÞPðp jQ‚VxÞP

p2Pall
Pðx jpÞPðp jQ‚VxÞ

‚ ð3Þ

where Ppos represents the set of positive paths through the HMM,

and Pall represents the set of all possible paths.

To understand how we compute (3), consider the example shown

in Figure 4. Here, our model has two binding sites, A and B, as
shown in Figure 4a. We consider each possible order separately, so

assume the binding site order is fixed, with A upstream of B.
Figure 4b. shows two possible locations for A and B on sequence

x, which is of length L. To compute (3), we use a dynamic pro-

gramming (DP) algorithm. a is a DP matrix, shown in Figure 4c.

Each entry in the matrix, a(S,l) represents the likelihood of the

subsequence of x, from location l to L, given that binding site S
occurs at location l. The iterative update step in the DP algorithm for

Fig. 3. Illustration of our search space operators. (a) An initial CRM logical

structure. (b) The result of applying the AND operator to the initial structure.

This introduces a new binding site with an untrained PWMX. (c) The result of

theORoperator. The secondbinding site becomes a disjunction of the original

PWMB and an untrained PWM Y. (d). The result of the NOT operator. This is

the same as the AND operator, except the new binding site is negated.

Fig. 4. (a) A CRM logical structure. (b) Possible binding site locations on a

DNA sequence x. (c) A dynamic programming matrix a, where a(A,i)

represents the likelihood of sequence x from location i to Lwhen siteA occurs

at location i. (d) A probability distribution over the locations of binding sites

A and B, respectively. These probabilities tend to be extreme and high

probabilities are sparsely distributed, which allows us to skip computation

on all but the most likely values.
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our two sites, A and B, with A at location i, is

aðA‚ iÞ ¼
XL�wB

j¼iþwA

aðB‚ jÞ · Pðxi...iþwA
jQAÞ · PðxiþwA...j jBGÞ

· Pðj � i jQdistðA‚BÞÞ‚
ð4Þ

where xx. . .j represents the subsequence of x from i to j, wA and wB

are the widths of motifs A and B, QA is the PWM for motif A, BG is

the background distribution and Qdist (A, B) is the probability distri-

bution in Q over the distance between A and B.
The run-time complexity of this calculation is O(L2) (for two or

more binding sites), which is impractical for long DNA sequences

such as mammalian promoters. To make this computation tractable,

we take advantage of one key insight: a large proportion of the

sequence likelihood often depends on a small proportion of the

combinations of binding site locations (i.e. where the sequence

DNA actually matches the PWM distributions). Therefore, return-

ing to our example in Figure 4, we first scan the sequence for the

most likely locations for A and B (shown in Figure 4d), and consider

those in order of decreasing likelihood, until we have considered

enough, e.g. 95% of the probability over all possible locations of

both A and B. Figure 4c shows which cells (they are crossed out) in

the DP matrix a that we ignore because they contribute very little to

the sequence probability. In practice, this decreases run time sub-

stantially and speeds up parameter convergence. It is a necessary

step in learning CRMs from the long promoter sequences we wish to

consider.

We calculate the expected number of times a parameter is used in

(2) with a similar calculation, except that we need an additional DP

matrix for the upstream subsequences. The expected number of

times a parameter is used is proportional to the sum of the sequence

likelihood over the paths that use it.

2.5 Negated binding sites

Recall that our model structure allows for negated binding sites

(NOT logic). In these cases, there are three groups of paths through

the corresponding HMM, as shown in Figure 5. The correct

paths for positive examples are still the upper paths, corresponding

Fig. 5. AnHMMwith three groups of paths representing a CRMstructure with a negated binding site (inset). A negative example sequence should take either the

background path, or the paths that include the negated site.

Table 1. Results of finding CRMs in 25 yeast datasets from Lee et al. (2002)

Classification Classification

Dataset Margin P-value Dataset Margin P-value

GAT3, PDR1 0.765 <1.0e�5 GAT3, RGM1 0.467 1.9e�3
FHL1, RAP1 0.756 <1.0e�5 FHL1, YAP5 0.450 2.2e�4
GAT3, YAP5 0.691 <1.0e�5 MBP1, SWI4 0.440 2.0e�5
FKH2, SWI4 0.610 <1.0e�5 SWI4, SWI6 0.429 1.0e�5
NDD1, SWI4 0.603 <1.0e�5 MCM1, NDD1 0.424 1.8e�4
RAP1, YAP5 0.591 <1.0e�5 SKN7, SWI4 0.395 2.4e�3
FKH2, MBP1 0.580 <1.0e�5 FKH2, NDD1 0.350 2.5e�4
MBP1, SWI6 0.578 <1.0e�5 NRG1, YAP6 0.323 5.8e�3
MBP1, NDD1 0.570 <1.0e�5 GAL4, YAP5 0.313 0.053

FKH2, MCM1 0.540 1.0e�5 CIN5, NRG1 0.276 0.079

PDR1, YAP5 0.529 <1.0e�5 PHD1, YAP6 0.190 0.22

ACE2, SWI5 0.509 3e�05 CIN5, YAP6 0.160 0.21

RGM1, YAP5 0.467 5.8e�4

Classificationmargins above the level of statistical significance (P�value<0.01),which
varies by dataset size, are shown in bold.

Table 2. Descriptions and classification margins of four datasets we use to

test the effectiveness of our representation’s logical structure and spatial

aspects (p-value < 0.01 shown in bold.)

Classification

Dataset Margin P-value

Yeast ESR induced: 270

S cerevisiae genes induced

under ESR (5) (1000 negatives)

0.305 <1.0e�5

Yeast ESR PAC/RRPE cluster:

428 S. cerevisiae genes repressed

under ESR. Promoters contain the

PAC and RRPE elements (5)

(1000 negatives)

0.338 <1.0e�5

Yeast ESR ribosomal proteins: 121

S. cerevisiae ribosomal protein

genes repressed under ESR (5)

(1000 negatives)

0.495 <1.0e�5

Fly gap system: 8 genes in the

D. melanogaster gap system

(13) (100 negatives)

0.730 8.5e�5
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to the CRM model with negated binding sites removed. However,

the ‘correct’ paths for the negative examples are divided among the

lower (background) path, and the ‘middle’ paths (with negated

sites), proportional to the likelihood that the example takes

each path.

3 RESULTS

Wewish to test whether or not our approach is able to learn accurate

CRM models. To this end, we run our approach on several datasets,

using cross-validation to measure the predictive accuracy of our

learned models.

For the datasets that we consider, we train a 5th-order HMM on

promoter sequences in the same genome to use as the background

distribution.

As a metric for scoring learned models during our logical struc-

ture search, we use a statistic called F1. Given a trained model, we

probabilistically estimate how many positive examples were gen-

erated by positive paths through our model (true positives, tp), and

through negative paths (false negatives, fn), and how many negative

examples were generated by positive paths (false positives, fp).

Precision is given by P ¼ tp/tp + fp. Recall is given by

R ¼ tp/tp + fp. F1 is the harmonic mean of precision and recall,

and is given by F1 ¼ 2PR/P + R.

3.1 Evaluating predictive accuracy

In order to test our algorithm’s effectiveness in identifying CRMs,

we compare our approach to that of Segal and Sharan (2004) on the

same datasets. We recreated 25 yeast datasets where each gene in a

given set has evidence (P-value < 0.001) from the genome-wide

analysis of Lee et al. (2002) that two particular proteins bind some-

where in its upstream region. For each dataset, we use 500 bp

promoter sequences, and choose 100 yeast promoter sequences at

random to use as negative examples.

To show that the predictions of our learned models on held-aside

data are more accurate than could be obtained by chance, we

compute a classification margin (following Segal and Sharan)

which is the largest difference between the true positive rate and

the false positive rate as a threshold is varied on what is called a

positive example. If there is <1% chance that a randomly-labeled

test set with the same cardinality of positive and negative examples

would have the classification margin of one of our test sets (or a

higher one), then we consider this result statistically significant.

Our results are shown in Table 1. We find significant results in

21 of 25 datasets, compared to 12 of 25 found by the approach

developed by Segal and Sharan.

Recall that we train our models using a discriminative approach.

Our experiments show that our learner is more accurate than models

learned using a standard, generative training approach. Of the

30 datasets mentioned in this section, the discriminative method

finds more accurate models for 20 of them, especially on the yeast

datasets described in the next section.

3.2 Evaluating the effectiveness of logical and spatial

aspects

In order to evaluate whether the logical structure and spatial aspects

of our representation improve the ability of our learner to recover

CRMs, we compare our approach to a restricted version wherein we

do not allow logical structure beyond AND, and all our spatial

Fig. 6. Precision–recall curves from four datasets described in Table 2. The

accuracy of our models dominates that of the bag-of-motifs approach over

almost all of the recall space in these datasets.
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probabilities are fixed by a uniform distribution. That is, the model

space of this restricted version is simply a conjunction of motifs

which may appear in any order, in any location, and so we refer to it

as the ‘bag-of-motifs’ approach. The classification margin is higher

using our approach than using the bag-of-motifs approach on 16 of

the 25 Lee et al. datasets described above.

We test our approach on four additional datasets from both yeast

and fly, for which we obtain promoter sequences from genes known

to be co-regulated. Table 2 describes these datasets and includes a

classification margin and P-value showing that we find statistically

significant CRMs in all four datasets. Since there is a large discrep-

ancy between the number of positive and negative examples in these

datasets, we create precision–recall (PR) curves, which show the

tradeoff between precision and recall over classification thresholds.

These results are shown in Figure 6.

In each case, the PR curve for our model dominates the PR curve

for the bag-of-motifs model over all or almost all of the recall space.

The yeast ESR PAC/RRPE genes described in Table 2 contain

two known elements in their upstream regions, the PAC element

(consensus sequence GCGATGAG) and the RRPE element (consen-

sus sequence AAAAAwTTTTT). Figure 7 shows the hypothesis

CRM model learned by our approach (Figure 7a and b) and that

of the bag-of-motifs approach (Figure 7c), when trained on the

entire dataset.

The PWMs recovered by our algorithm are shown in Figure 7a as

sequence logos (Crooks et al., 2004), which show a high amount of

overlap with the known consensus sequences. The bag-of-motifs

approach did not recover the PAC element. This example illustrates

how the inclusion of spatial preferences in the representation can aid

the learner in finding better motif models. Moreover, the inclusion

of these aspects leads to more accurate classifications even when the

‘right’ motifs have been learned.

3.3 CRMs in human

In order to determine whether or not our approach can be effective

in finding CRMs in DNA sequences in more complex organisms

than yeast and fly, we test our approach on several human promoter

sequences annotated with GO term 3677 (DNA binding proteins).

This set consists of 95 positive examples of 4000 bp regions that

have evidence of being bound by a transcription factor called TAF1,

and 284 negative examples with evidence of not having a TAF1

binding site (these data were obtained from the Thomson lab at the

University of Wisconsin; unpublished data).

The classification margin we obtain from this dataset is 0.220

(P-value ¼ 8.9e � 4). The comparison of precision and recall with

the bag-of-motifs approach is shown in Figure 8.

4 CONCLUSION

We have presented a probabilistic learning algorithm which is capa-

ble of learning multiple motifs and rich representations of logical

and spatial relationships among them simultaneously. Our models

can be thought of as generalized HMMs, but they are specifically

designed to represent aspects of CRMs. We learn their structure by

Fig. 7. (a, b) The hypothesis CRM model learned by our algorithm for the yeast PAC/RRPE dataset (Table 2). Both the PAC element (consensus sequence

GCGATGAG) and theRRPEelement (consensus sequenceAAAAAwTTTTT) appear as overrepresented in our learnedPWMs. (c) Themodel learned by the bag-of-

motifs approach on the same dataset.

Fig. 8. The precision–recall curve for our approach compared with the bag-

of-motifs approach on human DNA sequences.
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searching for the logical structure of the underlying CRM, and our

representation is compact because of extensive parameter sharing.

We have also presented a learning algorithm to train these HMMs,

which uses a heuristic approach to make it efficient enough to learn

from mammalian sequence data.

We have shown that our motif learner performs better than a

current state-of-the-art approach on the 25 yeast datasets from

Lee et al. and we have shown that learning information about

the logical structure and spatial aspects of a CRM helps our learner

find better models on five datasets, as measured by predictive

accuracy.
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