A Specialized Learner for Inferring

Structured cis-Regulatory Modules

Keith Noto and Mark Craven

noto@cs.wisc.edu

craven@biostat.wisc.edu

Department of Computer Sciences
Department of Biostatistics and Medical Informatics
University of Wisconsin–Madison

This research was supported in part by NIH/NLM training grant 5T15LM005359, NSF grand IIS-0093016, and NIH/NLM grant R01-LM07050-01.

Abstract

We present an approach to identifying cis-regulatory modules (CRMs) in terms of binding site motifs and the arrangement of their locations relative to the transcriptional start site. It is expressive enough to capture important structural aspects of a CRM, yet the search algorithm is specifically tailored to this context.

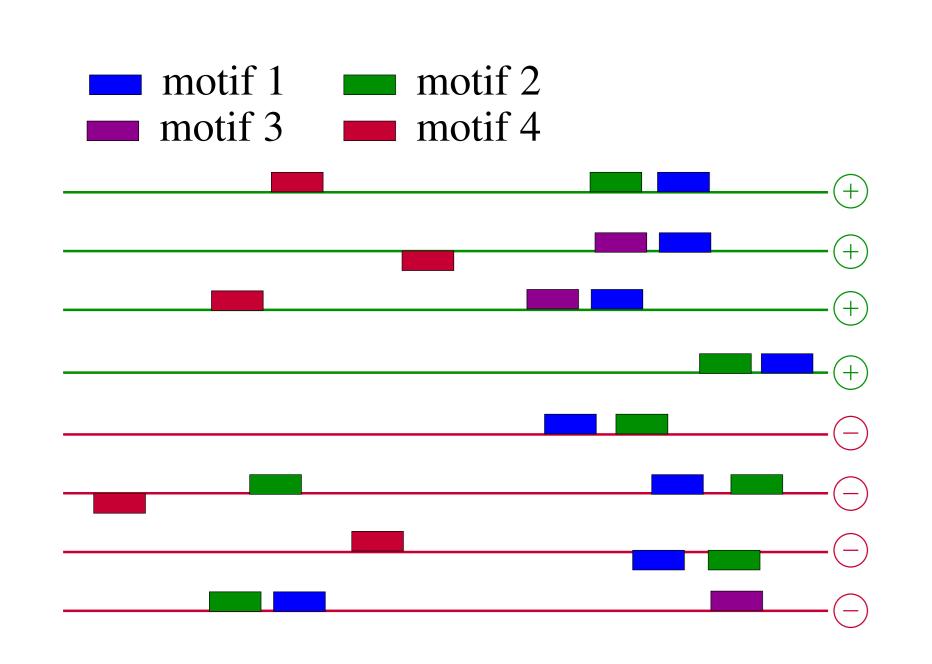
1. An Expressive CRM Representation

Transcription factors bind to DNA in specific arrangements and interact with each other. This system is called a cis-regulatory module (CRM). Our work is motivated by the need for more expressive CRM representations which can capture important structural *aspects* (right).

Multiple Binding Sites **Repressor Motifs** A collection of cooperative transcription Binding of factors which factor binding sites deactivate a CRM AAAAAGCSTCTTTTT **Transcription Order Constraints** 40bp 60bp Specify the order of transcription factors upstream ATTTTGGCAA **GCGC** AGC AS AA AGGGAC_TCCCT

Distance Constraints

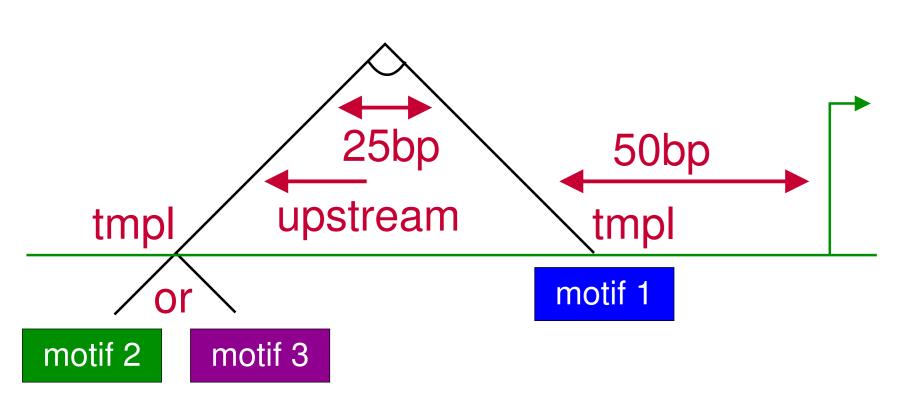
Explicit upper-bounds on the distance between binding sites, and between the CRM and the start of transcription


Strand Constraints

Binding site strand preferences relative to the transcribed unit (e.g. "tcx" denotes the transcribed strand)

Multiple Binding Sites

Represent either multiple binding motifs or multiple transcription factors playing the same role


2. Task: Learn a CRM Model from data

Given: A set of DNA sequences thought to contain a CRM, a set thought not to, and a set of motifs

Do: Learn a CRM model that distinguishes between positive and negative examples

A CRM model for the task above:

3. Learning a CRM Model

We start with an "empty" model. New solutions are added to the queue. AGGGAC_TCCCT AGCASAA GCGCAATT We keep a limited number of Add a binding site solutions. AGGGAC_TCCCT Add a motif AGGGAC_TCCCT GCGCAATT Constrain distance AGGGAC_TCCCT **GCGC** Each solution is evaluated AGGGAC_TCCCT **GCGC** and changed slightly. Constrain order

4. Controlling Expressivity

The CRM aspects determine the set of possible models.

We decide on the set of aspects to employ using a held-aside validation set.

Start with all aspects (dense search space).

Start with all aspects (dense search space).

Remove an entire aspect and compare with the previous space.

Keep only the CRM aspects that are statistically

supported

GCGC AATT ATTITGGCAA

by the

data.

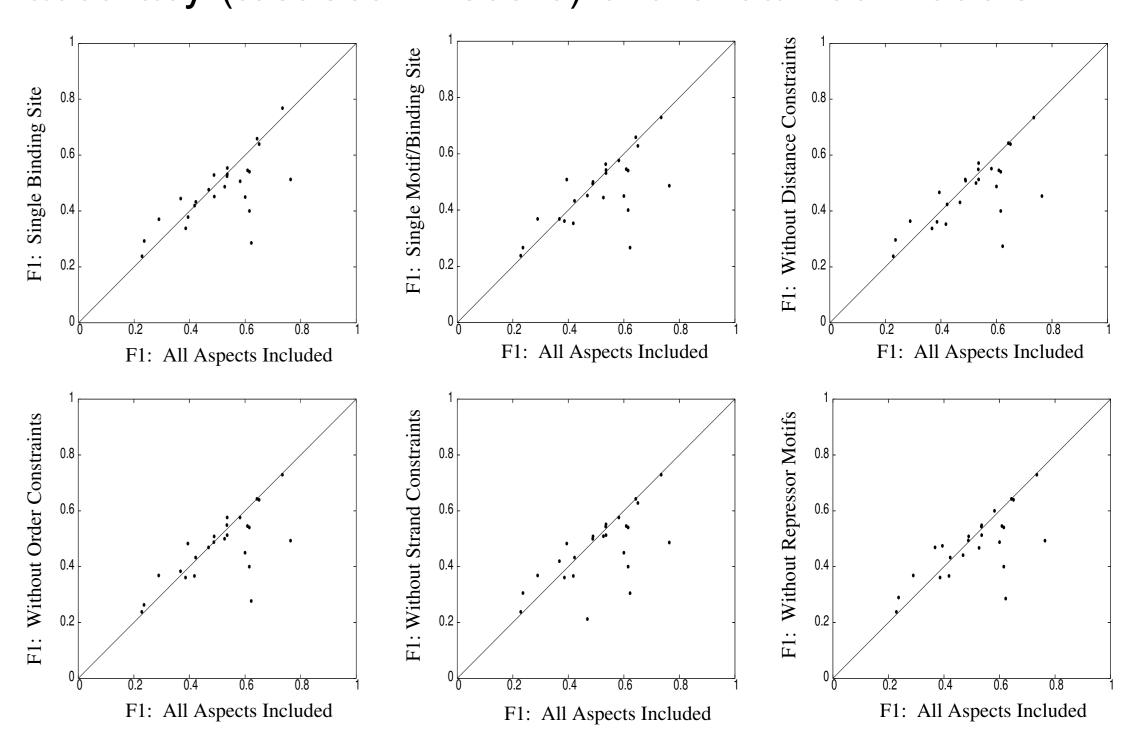
AGGGAC_TCCCT

Constrain strand

AGGGAC_TCCCT GCGCAATT

Add a repressor site

5. Results


We find significant CRMs (test set p-value < 0.01) in 17 of 25 data sets from *Saccharomyces cerevisiae*.

Data set	TP	FP	TN	FN	Р	R	F1	p-value	Data set	TP	FP	TN	FN	P	R	F1	p-valu
GAT3, RGM1	4	16	84	11	0.200	0.267	0.229	0.246783	GAL4, YAP5	8	2	98	8	0.800	0.500	0.615	7.95E-00
GAT3, PDR1	12	10	90	5	0.545	0.706	0.615	3.27E-007	CIN5, NRG1	14	13	87	4	0.519	0.778	0.622	7.11E-00
RGM1, YAP5	9	3	97	9	0.750	0.500	0.600	9.47E-007	NDD1, SWI4	11	12	88	11	0.478	0.500	0.489	0.00020
SKN7, SWI4	11	60	40	11	0.155	0.500	0.237	0.864014	PDR1, YAP5	11	23	77	12	0.324	0.478	0.386	0.01861
FKH2, SWI4	14	33	67	10	0.298	0.583	0.394	0.020587	PHD1, YAP6	15	25	75	9	0.375	0.625	0.469	0.000699
FHL1, YAP5	15	16	84	10	0.484	0.600	0.536	2.36E-005	FKH2, MCM1	15	16	84	10	0.484	0.600	0.536	2.36E-00
MBP1, NDD1	11	40	60	14	0.216	0.440	0.289	0.442532	ACE2, SWI5	42	17	83	9	0.712	0.824	0.764	4.22E-01
FKH2, MBP1	20	35	62	7	0.364	0.741	0.488	0.000460	MCM1, NDD1	21	20	80	7	0.512	0.750	0.609	1.26E-00
RAP1, YAP5	16	10	90	13	0.615	0.552	0.582	1.03E-006	NRG1, YAP6	16	41	59	14	0.281	0.533	0.368	0.16247
GAT3, YAP5	27	18	82	12	0.600	0.692	0.643	1.79E-008	CIN5, YAP6	25	30	70	15	0.455	0.625	0.526	0.00041
MBP1, SWI4	27	34	66	13	0.443	0.675	0.535	0.000305	SWI4, SWI6	28	63	37	15	0.308	0.651	0.418	0.48218
MBP1, SWI6	40	39	61	4	0.506	0.909	0.650	1.73E-009	FKH2, NDD1	34	77	23	16	0.306	0.680	0.422	0.91538
FHL1, RAP1	94	48	52	20	0.662	0.825	0.734	8.43E-008									

Data sets from Segal and Sharan, *A Discriminative Model for Identifying Spatial cis-Regulatory Modules*, RECOMB 2004.

Precision P=TP/TP+FP. Recall R=TP/TP+FN. F1 score = 2PR/P+R.

All CRM aspects have predictive value. Each aspect, when removed from consideration during the search phase (previous section), tends to decrease the accuracy (test set F1 score) of the learned models.

