
Setting Up SNAP&CANAL

Ning Zhang #1, Yuanyuan Tian ∗2, Jignesh M. Patel #3

#Computer Sciences Department, University of Wisconsin-Madison, USA
1nzhang@cs.wisc.edu 3jignesh@cs.wisc.edu

∗IBM Almaden Research Center, USA
2ytian@us.ibm.com

March 15, 2010

1 Installing Dependencies

In order to install the SNAP&CANAL, you have to make sure that PostgreSQL (http://www.
postgresql.org/), GUESS (http://graphexploration.cond.org/), gcc (http://gcc.gnu.org/),
and Java Version 6 (http://www.java.com/en/download/index.jsp) are correctly installed on your
machine. PostgreSQL is used to store and index graph data; gcc is used for compiling the source
codes; GUESS is used for visualizing the graph summarizations.

1.1 Installing PostgreSQL

For some Linux machines, PostgreSQL is installed by default. However, since SNAP&CANAL
needs the libpq C library, but most default installation doesn’t include this library, PostgreSQL
needs to be installed from source code in your local directory.

1. Download PostgreSQL (version 8.1 or higher) from http://www.postgresql.org/download/.

2. Install PostgreSQL. If you are installing from source code, follow the instructions on http:
//www.postgresql.org/docs/8.1/interactive/installation.html. By default, the Post-
greSQL executables are installed in directory /usr/local/pgsql/bin, PostgreSQL libraries are
in directory /usr/local/pgsql/lib, and the data directory is /usr/local/pgsql/data. However, we
strongly suggest that a local directory is set as the data directory. As SNAP&CANAL uses
PostgreSQL libraries to communicate to the database, please set LD LIBRARY PATH prop-
erly (Refer to http://www.postgresql.org/docs/8.1/interactive/install-post.html
for detail). Besides, please set the PATH environment variable to be able to conveniently run
any commands provided by PostgreSQL. Please refer to http://www.linuxheadquarters.
com/howto/basic/path.shtml for how to set PATH variable.

3. Change PostgreSQL configuration.

The default PostgreSQL buffer pool size is 8MB. In addition, the amount of memory to be
used by internal sort operations and hash tables before switching to temporary disk files is
set to 1MB by default. These values are too small for even a moderate database. So, the
PostgreSQL configuration must be changed to improve the database efficiency.

1



One way of changing the configuration is to edit the configuration file postgresql.conf, which
is normally kept in the data directory (/usr/local/pgsql/data by default). For details on
how to change the configuration, please refer to http://www.postgresql.org/docs/8.1/
interactive/runtime-config.html. Please make the following changes to the postgresql.conf :
assuming that you have a 2GB memory, set the shared buffers to at least 512MB (shared buffers=65536),
the work mem to at least 128MB (work mem=131072) and the maintenance work mem to at
least 256MB (maintenance work mem=262144). (Please refer to http://www.postgresql.
org/docs/8.1/interactive/runtime-config-resource.html#RUNTIME-CONFIG-RESOURCE-MEMORY
for the description of each parameter.) Note that these parameters are commented by default
in postgresql.conf, please first remove the comment mark #.

shared buffers=65536

work mem=131072

maintenance work mem=262144

Increasing the shared buffers parameter may cause PostgreSQL to request more System V
shared memory than your operating system’s default configuration allows. One way to change
the restriction on the System V shared memory is to edit the /etc/sysctl.conf file by adding
the following two lines (assume that we want to set the shared memory to 671088640 bytes):

kernel.shmall=671088640

kernel.shmmax=671088640

Then run the command “sysctl -p”. Note that you need root access to change the System V
shared memory size. Please refer to http://www.postgresql.org/docs/8.1/interactive/
kernel-resources.html#SYSVIPC for more details.

1.2 Installing gcc

Most linux machines have installed gcc. To check, type “g++ -v” in the terminal. If the output
contains some configuration and version information, then it shows that gcc has been installed
in the machine. Otherwise, download the current version of gcc from http://gcc.gnu.org/ and
follow the instruction in the release package to install it.

1.3 Installing Java 6

Java 6 can be downloaded from http://www.java.com/en/download/index.jsp. Please follow the
instructions in the release package to install Java 6. Please also set the PATH and CLASSPATH
properly.

1.4 Installing GUESS

GUESS can be downloaded from http://graphexploration.cond.org/download.html. Please
follow the instructions in README.TXT in the release package and tutorial/walk through in the
manual (http://guess.wikispot.org/manual) to install GUESS. There is also a new tutorial for
Mac users (http://graphexploration.cond.org/MacGUESSinstall.pdf).

Before visualizing graph summarizations, first modify the GUESS HOME and GUESS LIB
variables in guess.sh. GUESS HOME needs to point to where you have GUESS installed and
GUESS LIB is the path of GUESS HOME/lib.

2



To visualize the graph summarization, first enter into the GUESS HOME folder, and type
“./guess YourGraph.gdf” in the terminal, where “YourGraph.gdf” is the input file of graph sum-
marization. Or just type “./guess” and select “Load GDF/GraphML” button in the pop-up window
and then select the location of the input file.

2 Installing SNAP&CANAL

2.1 Compile SNAP&CANAL

The SNAP&CANAL directory has 3 sub-directories. Directory toolkit contains the main source
codes. Directory data contains the data used in SNAP&CANAL. And directory guess scripts
contains the scripts for visualizing graphs in GUESS.

2.1.1 Edit Makefile

First change directory to the toolkit subdirectory (cd toolkit). Before compiling the SNAP&CANAL
code, the Makefile should be edited first.

Please change the values of the variables PG HOMEDIR at the top of Makefile to the home
directory of PostgreSQL. For example, if PostgreSQL is installed under /home/user/pgsql, then
the variables PG HOMEDIR is set as
PG HOMEDIR = /home/user/pgsql.

Also change the CC3 variable to the full path of g++. For example, if g++ is installed under
directory /usr/bin. Then set
CC3 = /usr/bin/g++.

2.1.2 Compile SNAP&CANAL

First run the command “make clean”. And then run the command “make” to generate the binaries.
After compilation, the following executables are generated:

bulkload A program to load a list of graphs into the database.

querysnap SNAP executable.

canal CANAL executable.

3 How to Use SNAP&CANAL

3.1 Starting PostgreSQL Server

Before running SNAP&CANAL, please make sure that PostgreSQL is already running Command
pg ctl can be used to start or stop the PostgreSQL database server (http://www.postgresql.
org/docs/7.3/static/app-pg-ctl.html).

3.2 Creating the Database

Use createdb command to create a database. All the data will be stored in this database.
createdb -E LATIN1 demo

3



3.3 Loading Data into the Database

Please run the loaddata.sh script to load the data into the database.
./loaddata.sh

This script loads the following two datasets:

dblp num The Database coauthorship graph with numerical attribute. This dataset is only used
for CANAL.

dblp The Database coauthorship graph with 2 cutoffs. This dataset is only used for SNAP.

Also, editing “dblp.list” file and changing the first line to: ../data/dblp canal 3.gdf will load
the database coauthorship graph with 3 cutoffs, and so on so forth.

3.4 Configuring SNAP&CANAL

The file periscope.config contains the runtime configuration of SNAP&CANAL. Before executing
any programs in SNAP&CANAL, first modify the file periscope.config. Change the DB USER
variable to your username in PostgreSQL (the default username is postgres). And change the
TEMP DIR variable to the absolute directory of a temporary directory. The descriptions of these
two variables as well as other variables are as follows:

DB NAME The postgreSQL database name where the data are stored. The default name is
demo.

DB USER The user who has the access to the database.

DB PWD The password for the database user.

TEMP DIR The absolute path of a temporary directory. This temporary directory is used
to store some temporary files generated during the loading process. The SNAP&CANAL
loading program does not load data into the database by inserting one tuple at a time.
Instead, SNAP&CANAL first store all the tuples in temporary files, and bulkload all the
data into the database. Bulkloading dramatically decreases the loading time. The temporary
directory is used for these intermediate files. Make sure that the temporary directory has
enough space (has least several GB and 50 times of input graph data size) to hold all the
temporary files. These files are deleted after the loading process. The users can use /tmp for
the temporary directory.

3.5 Description of SNAP&CANAL Commands

3.5.1 bulkload : Load a List of Graphs into the Database

The graphs will be loaded into the PostgreSQL database named by the DB NAME parameter in
the configuration file. Make sure that the database DB NAME is already created by the user
DB USER and the database DB NAME is empty (you can use the dropdb command first and
then createdb command in PostgreSQL to create an empty database). The executable for loading
graphs is called bulkload. The synopsis of the usage is:

bulkload [Configuration File] [List of Graphs] [Orthology File Name] [Dataset Name]
[Index Choice] [Directed Graph]

The descriptions of the parameters are as follows:

4



Configuration File This parameter is the name of the SNAP&CANAL configuration file.

List of Graphs This parameter is the name of a file listing all the graphs to be loaded. This file
contains the paths of all the graph files, each line for one graph file. The graph files must
conform to the GUESS .gdf format.

Orthology File Name The file name that contains the list of orthologous groups, the loading or
querying algorithms will assign an integer id to each group.

Dataset Name The name of the dataset. Make sure this dataset is NOT already in the database.

Index Choice Default value is 0, do not change.

Directed Graph 0 for undirected graph; 1 for directed graph.

3.5.2 querysnap: K-SNAP Queries

The following is how to use the querysnap script:
querysnap [Configuration File] [Dataset Name] [Graph ID] [Attribute Name] [Edge Type]

[Resolution] [Output Directory]
For example: ./querysnap periscope.config dblp 1 prolific coauthor 4 /home/nzhang/
The descriptions of the parameters are as follows:

Configuration File This parameter is the name of the SNAP&CANAL configuration file.

Dataset Name The name of the dataset. Make sure this dataset is in the database, and is
consistent with DB NAME in periscope.config.

Graph ID The ID of the graph in the dataset that you want to generate a summary from.

Attribute Name The name of user selected attribute, based on which the summary will be
generated.

Edge Type The type of the edges, based on which the summary will be generated.

Resolution The resolution of the summary (the number of groups in the summary).

Output Directory The directory where the summary file will be written to.

3.5.3 canal : CANAL algorithm

The following is how to use the canal script:
canal [Configuration File] [Dataset Name] [Graph ID] [Attribute Name] [Edge Type]

[Number of Cutoffs]
For example, ./canal periscope.config dblp num 1 prolific coauthor 3
The descriptions of the parameters are as follows:

Configuration File This parameter is the name of the SNAP&CANAL configuration file.

Dataset Name The name of the dataset. Make sure this dataset is in the database, and is
consistent with DB NAME in periscope.config.

5



Graph ID The ID of the graph in the dataset.

Attribute Name The name of numerical attribute, based on which the cutoffs will be generated.

Edge Type The type of the edges.

Number of Cutoffs The number of cutoffs on the numerical attribute domain (e.g. 2 cutoffs).

4 GUESS scripts

Some scripts were written for visualizing graph summarizations. To use the scripts, first load the
file of graph summarization into GUESS, click “File” and then click “Run Script”. Select the
corresponding script for the specific dataset. The descriptions of the scripts are as follows:

dblp canal 3.py visualize all graph summarizations of DBLP dataset based on 2 cutoffs.

dblp canal 3.py visualize all graph summarizations of DBLP dataset based on 3 cutoffs.

wiki.py visualize all graph summarizations of wikipedia dataset.

5 Dealing with Large Graphs

If the graph to be summarized is very large, we suggest keeping some auxiliary information in
memory to speed up the process of summarizing graph. To use this feature, compile the program
with LARGE DATASET (in summarizer.h) switched on, and the value of MEM PREFETCH in
(in summarizer.h) should be equal to the number of nodes in the graph. If there is a segmentation
fault, it means the machine memory is not big enough to hold the auxiliary information. (e.g. in
our testing, 8GB memory can easily deal with a graph with 200,000 nodes.) In this release package,
we simply provide the most straightforward strategy to store the auxiliary information (e.g. use a
two-dimensional array), and there must be some more efficient methods that use less memory to
do the same jobs.

6 Frequently Asked Questions

Those questions are frequently seen when first using SNAP&CANAL:

Question 1: error occurs when execute select nodeID, attrValue from dblp num Node where
graphID=1 and attrName=’prolific’ order by attrValue; command failed: ERROR: relation
”dblp num node” does not exist

Solution: check DB NAME in periscope.config to see if it is consistent with [Dataset Name]
in your input.

Question 2: Error: wrong edgetype or graph id

Solution: check [Edge Type] in your input to see if it is consistent with the “type” attribute in
your *.gdf data file. Also, check [Graph ID] in your input. By default, [Graph ID] is 1.

6



Question 3: Error: wrong attribute name or graph id

Solution: check [Attribute Name] in your input to see if it is consistent with the node attribute
(the first line in your *.gdf data file). Also, check [Graph ID] in your input. By default,
[Graph ID] is 1.

References

[1] Y. Tian, J. M. Patel, V. Nair, S. Martini, and M. Kretzler. Periscope/GQ: A graph querying
toolkit. In VLDB, 2008.

[2] Y. Tian, R. Hankins, J. M. Patel Efficient Aggregation for Graph Summarization. SIGMOD,
567-580, 2008.

[3] N. Zhang, Y. Tian, J. M. Patel Discovery-Driven Graph Summarization. ICDE, 2010.

7


