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ABSTRACT
Recently it’s been shown that neural networks can use images of
human faces to accurately predict Body Mass Index (BMI), a widely
used health indicator. In this paper we demonstrate that a neural
network performing BMI inference is indeed vulnerable to test-time
adversarial attacks. This extends test-time adversarial attacks from
classification tasks to regression. The application we highlight is
BMI inference in the insurance industry, where such adversarial
attacks imply a danger of insurance fraud.

1 INTRODUCTION
Body Mass Index (BMI) is a widely used health quantity calculated
as kд/m2. The world health organization categorizes BMI broadly
into Underweight [0, 18.5), Normal [18.5, 25), Overweight [25, 30),
and Obese [30,+∞) [11]. Kocabey et al. recently developed a re-
gression task Face-to-BMI [6], where they accurately predicted
BMI from images of human faces. The motivation for their study
was identifying how an individual’s BMI affects their treatment by
others on social media platforms [7].

In this paper we instead focus on the application of Face-to-BMI
in the insurance industry, where adversarial attacks could become
a issue. Suppose an insurance company uses a neural network to
predict the BMI of their clients from photos and then uses this infor-
mation to influence coverage. There are two scenarios in which an
adversarial attacker may want to manipulate the input photo inper-
ceptibly to attack the BMI predictor: (1) the attacker may want to
make someone appear healthier to lower their rates; (2) conversely,
make someone appear unhealthy to sabotage that person’s insur-
ance application.We demonstrate that a neural network performing
Face-to-BMI is indeed vulnerable to test-time adversarial attacks.
This extends test-time adversarial attacks from classification tasks
(e.g. [2, 4, 9, 10]) to regression.

2 ADVERSARIAL ATTACKS ON FACE-TO-BMI
PREDICTION

The victim neural network f : R227×227×3 → R takes as input
a 227 × 227 × 3 face image and outputs a BMI estimate. We use
Alexnet [8] layers conv1 to fc7 plus one linear layer after fc7 to
perform regression.

The threatmodel assumes a whitebox attacker with full knowl-
edge of the victim weights and architecture. The attacker can edit
any pixels in the photo, including those not on the human. We
consider targeted attacks to force f prediction into a pre-specified
target range [L,U ] ⊂ R.

The attack formulation find theminimumperturbation δ such
that for input input X , f (X + δ ) ∈ [L,U ]. Both X and X + δ must
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be valid images with integer pixel values in 0–255. We measure
perturbation by its ℓp norm ∥δ ∥p for some p ∈ (0,∞] [2, 4, 9, 10].
Thus, the ideal attack solves

min
δ ∈R227×227×3

∥δ ∥p (1)

subject to L ≤ f (X + δ ) ≤ U , and

(X + δ ) ∈ I := {0, . . . , 255}227×227×3.

However, this is a difficult integer program.We heuristically solve a
related problem to simply find a small enough δ . We reformulate the

attack goal as follows: L ≤ f (X +δ ) ≤ U ⇔
(
f (X + δ ) − U+L

2

)2
≤(

U−L
2

)2
. We relax the integral constraint on δ and change the

objective:

min
δ ∈R227×227×3

(
f (X + δ ) −

U + L

2

)2
(2)

subject to (X + δ ) ∈ [0, 255]227×227×3.

We initialize δ = 0 and perform early-stopping as soon as f (X +
Round(δ )) ∈ [L,U ] to encourage small norm on δ .

3 EXPERIMENTS
Datasets. We use two datasets of (photo, BMI) pairs: (1) Federal
Corrections Body Mass Index (FCBMI) consists of 9045 public pho-
tos at multiple federal and state corrections facilities. (2) VisualBMI
dataset with 4206 photos collected by [6] from Reddit.

Training the victim network. We train the BMI prediction
network with transfer-learning. We load weights pre-trained on
the ILSVRC 2012 data set for the conv1 to fc7 layers of Alexnet.
Then we randomly initialize the last linear layer using Xavier [3].
Finally we fine tune the entire network’s weights using our own
training images. We use a random subset of 7000 images in FCBMI
for fine-tuning, and keep the remaining 2045 images in FCBMI
and the whole VisualBMI for testing. We pre-process the images
identically to in AlexNet [8]: images are converted from RGB to
BGR, re-sized to 227 × 227 × 3. Finally we subtract the grand mean
pixel value from each pixel in the images in the training set. This
means that we provide an input in [−255, 255]227×227×3 to the neural
network at test time. During training we use ℓ2 loss. We use the
Adam [5] optimizer with β1 = 0.9, β2 = 0.999. The batch size is 64
and learning rate is 0.0001.

Attack implementation. To solve (2) the attacker simulates
the victim by pre-pending an extra input layer with X and 1s: The
attacker freezes the weights of the entire network except δ and
trains the network using projected gradient descent on the objective
in (2). The architecture of this implementation is shown in Figure 1
Once training is complete, the attacker takes a final projection step
and rounds δ so that (X + δ ) ∈ I .
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Figure 1: A cartoon of the architecture used to implement our regression attacks.

Algorithm 1 Adversarially attacking the BMI prediction network
Input: f : BMI prediction network,

X : victim image,
K > 0: Max iterations

Output: δ : perturbation such that f (X + δ ) ∈ [L, U ] and (X + δ ) ∈ I
δ ← 0
k ← 0
while k < K or f (X + Round(δ )) < [L, U ] do

δ ← δ − ηk ∇δ
(
f (X + δ ) − U +L

2

)2
{gradient descent with step size ηk }

Project δ such that (X + δ ) ∈ [0, 255]227×227×3
k ← k + 1

end while
δ ← Round(δ ) {rounds δ such that X + δ is moved to the nearest point in I }
return δ {flags a failure if final δ is unsuccessful after K iterations}

Qualitative results. Figure 3 shows the BMI attack on 8 photos
from the VisualBMI data set. We obscured the eyes with black
boxes to preserve partial anonymity of those pictured. The boxes
are not present in the original data set, so neither the prediction
network nor the attacker saw or were influenced by them. Here
the attack goal is to force BMI predictions into the normal range
[L,U ] = [18.7, 24.9]. The attacker succeeds at this. We note that all
changes have small infinite norm: ∥δ ∥∞ ≤ 2. Also, δs have more
nonzero elements and vary more the further the original BMI is
from the target range.

Quantitative results.We demonstrate two attacks separately:
“make-healthy” where the attacker forces BMI predictions into
[L,U ] = [18.7, 24.9] corresponding to normal weight, and “make-
obese” with attack target range of [L,U ] = [30, 40] corresponding
to obesity. We use the 2045 test images from the FCBMI data set and
all 4206 images in the VisualBMI data set. Fig. 4 (left) shows BMI
before and after attack on VisualBMI. One may expect the attack
to just project the predicted BMI onto the boundary of the target
range. We see almost exactly that, but there is some minor variance
within the target region due to rounding of δ . Infrequently, there
are large outliers where the rounding shifts the prediction to the
other side of the target range. One example of this phenomenon is
the right-most face in Fig. 3. Fig. 4 (right) shows ∥δ ∥2 under both
attacks. As expected, the further a victim’s initially predicted BMI
from the target region, the larger the norm of the perturbation δ .
Fig. 5 shows ∥δ ∥∞ on the FCBMI test set. The same trend holds.
Also note the maximum pixel value change is small (∼5 out of 255).
These attacks will be difficult for humans to perceive.

It is worth noting that the reason we see norms this high is en-
tirely due to the rounding to integer pixels for our attacks. Without
this constraint, the attack is successful with ∥δ ∥∞ on the order
of 10−2, or roughly 100 times smaller. The success of unrounded
attacks and integer attacks for various infinity norms in shown
in Figure 2. In the literature, primarily FGSM-type perturbations
result in integer attacks as opposed to arbitrary pixel values in the
continuum of [0,255] usually seen in PGD attacks. FGSM [4] and
iterative modifications of it are actually special cases of our attack
when the step size η is an integer and we fix a smal maximum
number of iterations. These attacks seem to result in strictly worse
results than when we use a tiny step size and round.
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Figure 2: Portion of attacks which are successful for values
of ∥δ ∥∞ less than or equal to integers between 0 and 11. Note
that unrounded attacks are always successful for infinity
norms less than or equal to 1.

4 CONCLUSIONS AND FUTUREWORK
We have demonstrated that naïve whitebox adversarial attacks can
be a threat to Face-to-BMI regression. For this reason, we urge
caution when using BMI predicted from images in applications
such as insurance, as they can be manipulated to make someone’s
rates artificially lower or higher.

The attacks in this paper requires the ability to modify any
pixels. A more realistic attack would be physical, e.g. have the
person wear make-up or accessories like glasses. An intermediate
simulated attack could restrict the attack within face or skin pixels.
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Combining these with e.g. Expectation-Over-Transformation as in
[1] might allow someone to design adversarial make-up they could
wear to influence the predicted BMI.
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(a) f (X ) : 17.38 19.39 21.46 23.49 25.48 27.89 29.41 31.51

(b) (∥δ ∥∞ = 1, ∥δ ∥2 = 100) (0, 0) (0, 0) (0, 0) (1, 72.42) (1, 158.4) (1, 206.9) (1, 312.0)

(c) f (X + δ ) : 19.72 19.39 21.46 23.49 24.01 23.64 23.18 18.76

Figure 3: Attacks forcing BMI predictions into the “normal weight” range [18.7, 24.9]. Row (a): Original BMI prediction f (X ).
Row (b): Attack δ and its norms. δ ’s color scale maps [-2, 2] linearly to [0, 255] (gray = no attack). Row (c): Attacked BMI
prediction f (X + δ ).

Figure 4: Left: x-axis: the initial BMI prediction f (X ),y-axis: the corresponding attacked BMI prediction f (X +δ ) for each image
in the VisualBMI data set. We have highlighted the relevant target ranges. Right: x-axis: f (X ), y-axis: the corresponding ∥δ ∥2
of the first successful rounded δ for each victim image in the VisualBMI data set.
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Figure 5: Attack ∥δ ∥∞ on the FCBMI test set for make-healthy (Left) and make-obese (Right) attacks. To help visualize the
distribution of data we dithered the norms using iid Gaussian noise with mean 0 and variance .005
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