
Concurrency: Threads
CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2023

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Administrivia

Project 2 Grading
Questions / Corrections? email Danial (saleem5@wisc.edu) and
Aditya (adassarma@cs.wisc.edu)

Project 3 Grading
Very Challenging Project (especially job control)
Extra Credit Possible
Fork()/Exec()/Wait() 45 pts

Project 4 due Oct 24th @ 11:59pm
Discussion section cover:

P4 concepts
Steps you should follow to find your own bugs (before asking
for help)

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

mailto:saleem5@wisc.edu
mailto:adassarma@cs.wisc.edu

Administrivia (cont.)

Exam 1
Mean: 74.1% Max: 93.3% Min: 43.3% Std: 5.87 points
Will release solution and grades after Epic takes exam

Survey (10-18 thru 10-24)
You should receive an email inviting you to provide feedback
about your course learning experience.
Please provide constructive feedback

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Review: Virtualization

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Concurrency: Motivation
CPU Performance

CPU Trend: Multiple cores – each same speed
Goal: Write applications that fully utilize many cores

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Option 1: Communicating Processes

Build Application using multiple processes
Example: Google Chrome (each tab is a process)
Communicate via pipe() or something similar

Pros
Don’t need knew abstraction
Good for security

Cons
Cumbersome programming
High communication overheads
Expensive context switch

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Option 2: Threading

New abstraction: thread
Threads like processes, except:

Multiple threads of same process share an address space
Divide large task across several cooperative threads
Communicate through shared address space

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Common Programming Models

Multi-threaded progams tend to be structured as:

Producer/Consumer
Multiple producer threads create data (or work) that is handled
by one of the multiple consumer threads

Pipeline
Task is divided into series of subtasks, each of which is handled
in series by a different thread

Defer work with background thread
One thread performs non-critical work in the background (when
CPU would be idle)

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Thread vs. Process

Multiple threads share:
Process ID (PID)
Address space: Code (instructions),
Most data (heap)
Open file descriptors
Current working directory
User and group ID

Each thread has its own:
Thread ID (TID)
Set of registers, including PC and SP
Stack for local vars and return address

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Example Thread Trace 1

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Example Thread Trace 2

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Example Thread Trace 3

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Example Sharing Data

prompt> ./threads 100000
B: begin
A: begin
A: done
B: done
main: done
[counter: 1094044]
[should: 2000000]

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Uncontrolled Scheduling – Race Condition

counter=counter+1; // Critical Section

mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

What value is counter? Starting value = 50
Thread 1 Thread 2
mov 0x8049a1c, %eax
add $0x1, %eax

mov 0x8049a1c, %eax
mov %eax, 0x8049a1c

add $0x1, %eax
mov %eax, 0x8049a1c

Thread 1 Thread 2
mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

Thread 1 Thread 2
mov 0x8049a1c, %eax

mov 0x8049a1c, %eax
add $0x1, %eax

add $0x1, %eax
mov %eax, 0x8049a1c

mov %eax, 0x8049a1c

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

What value is counter? Starting value = 50
Thread 1 Thread 2
mov 0x8049a1c, %eax
add $0x1, %eax

mov 0x8049a1c, %eax
mov %eax, 0x8049a1c

add $0x1, %eax
mov %eax, 0x8049a1c counter = 51

Thread 1 Thread 2
mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c counter = 52

Thread 1 Thread 2
mov 0x8049a1c, %eax

mov 0x8049a1c, %eax
add $0x1, %eax

add $0x1, %eax
mov %eax, 0x8049a1c

mov %eax, 0x8049a1c counter = 51

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Non-Determinism

Concurrency leads to non-deterministic results

Different results even with same inputs
Race Condition – results depend upon the scheduling order

Whether bug manifests depends on CPU scheduling!

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

What We Want

Want 3 instructions to execute as an uninterruptable group

mov 0x8049a1c, %eax
add $0x1, %eax
mov %eax, 0x8049a1c

Want them to be Atomic – “as a unit” or “all or nothing”. The
three instructions should all run together (or not at all).

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Synchronization Primitives

Hardware support helps to build Synchronization primitives:
Monitor
Lock
Semaphore
Condition Variable

Used to create atomicity for critical sections

Also used to make one thread wait for another thread to
complete some action before continuing

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Why in OS Class?

OS is the first concurrent program
Page tables, process lists, file system structures, and most
kernel data must be accessed using proper synchronization
primitives.

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Thread Creation

#include <pthread.h>

typedef struct __myarg_t {
int a;
int b;

} myarg_t;

void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
printf("%d %d\n", m->a, m->b);
return NULL;

}

int main(int argc, char *argv[]) {
pthread_t p;
myarg_t args;
args.a = 10;
args.b = 20;
rc = pthread_create(&p, NULL, mythread, &args); //success returns 0

}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

Thread Joining (and returning values)

typedef struct __myret_t {
int x;
int y;

} myret_t;

void *mythread(void *arg) {
...
myret_t *r = Malloc(sizeof(myret_t));
r->x = 1;
r->y = 2;
return (void *) r;

}

int main(int argc, char *argv[]) {

myret_t *m;
...
rc=pthread_create(...);
rc=pthread_join(p, (void **) &m); //success returns 0
printf("returned %d %d\n", m->x, m->y);
free(m);

}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Threads

