Concurrency: Threads
CS 537: Introduction to Operating Systems

Louis Oliphant
University of Wisconsin - Madison

Fall 2023

Louis Oliphant

Concurrency: Threads

Administrivia

@ Project 2 Grading
o Questions / Corrections? email Danial (saleem5@wisc.edu) and
Aditya (adassarma@cs.wisc.edu)
@ Project 3 Grading
o Very Challenging Project (especially job control)
o Extra Credit Possible
o Fork()/Exec()/Wait() 45 pts
@ Project 4 due Oct 24th @ 11:59pm

e Discussion section cover:
@ P4 concepts
@ Steps you should follow to find your own bugs (before asking
for help)

Louis Oliphant

Concurrency: Threads

mailto:saleem5@wisc.edu
mailto:adassarma@cs.wisc.edu

Administrivia (cont.)

@ Exam 1
o Mean: 74.1% Max: 93.3% Min: 43.3% Std: 5.87 points
o Will release solution and grades after Epic takes exam
e Survey (10-18 thru 10-24)
e You should receive an email inviting you to provide feedback
about your course learning experience.
o Please provide constructive feedback

Louis Oliphant

Concurrency: Threads

Review: Virtualization

_— Context Switch

CPU
T Schedulers

Virtualization Allocation

M ASegmentation TLBs
emory J o Multilevel
Paging Swapping

Louis Oliphant

Concurrency: Threads

Concurrency: Motivation

CPU Performance

@ CPU Trend: Multiple cores — each same speed
@ Goal: Write applications that fully utilize many cores

10,000 el Xoon, 36 GHz _ 64bi Intel Xeon SEGHZ
AMD Opteran, 2.2 GHz g—=
Intel Pentium 4,3.0 GHz g 5384 > 0%
Ties
1000

Performance (vs.VAX-11/780)
8

VAX-11/780_.aee""

52%lyear

~20%

0
1978 1980 1982 1984 1986 1988 1990 1992 1984

Louis Oliphant

C rrency: Threads

1996

1998 2000 2002 2004

2006

Option 1: Communicating Processes

o Build Application using multiple processes
o Example: Google Chrome (each tab is a process)
e Communicate via pipe() or something similar
@ Pros
e Don't need knew abstraction
e Good for security
o Cons
e Cumbersome programming
e High communication overheads
o Expensive context switch

Louis Oliphant

Concurrency: Threads

Option 2: Threading

@ New abstraction: thread

@ Threads like processes, except:
o Multiple threads of same process share an address space

@ Divide large task across several cooperative threads
@ Communicate through shared address space

Louis Oliphant

Concurrency: Threads

Common Programming Models

Multi-threaded progams tend to be structured as:

e Producer/Consumer
o Multiple producer threads create data (or work) that is handled
by one of the multiple consumer threads
o Pipeline
e Task is divided into series of subtasks, each of which is handled
in series by a different thread
o Defer work with background thread
o One thread performs non-critical work in the background (when
CPU would be idle)

Louis Oliphant

Concurrency: Threads

Thread vs. Process

OKB
e Process ID (PID) 1KB
@ Address space: Code (instructions), KB
Most data (heap)
@ Open file descriptors
@ Current working directory (free)
@ User and group ID

—
e Thread ID (TID)
@ Set of registers, including PC and SP (free)
o Stack for local vars and return address 15KB

Heap

Stack (1)

16KB

Louis Oliphant

Concurrency: Threads

void *mythread(void *arg) {
printf("%s\n", (char *) arg);
return NULL;

}

int main(int argc, char *argv[]) {
if (argc !'= 1) {
fprintf(stderr, "usage: main\n");
exit(1);
}

pthread t pl, p2;
printf("main: begin\n");
Pthread create(&pl, NULL, mythread, "A");
Pthread create(&p2, NULL, mythread, "B");
// join waits for the threads to finish
Pthread join(pl, NULL);
Pthread join(p2, NULL);
printf("main: end\n");
return 0;

I3

Louis Oliphant

Concurrency: Threads

Example Thread Trace 1

main Thread1 Thread2
starts running

prints “main: begin”

creates Thread 1

creates Thread 2

waits for T1

runs
prints “A”
returns
waits for T2
runs
prints “B”
returns

prints “main: end”

Louis Oliphant

Concurrency: Threads

Example Thread Trace 2

main Thread 1 Thread2
starts running

prints “main: begin”

creates Thread 1

runs
prints “A”
returns
creates Thread 2
runs
prints “B”
returns

waits for T1

returns immediately; T1 is done
waits for T2

returns immediately; T2 is done
prints “main: end”

Louis Oliphant

Concurrency: Threads

Example Thread Trace 3

main Thread 1

Thread2

starts running
prints “main: begin”
creates Thread 1
creates Thread 2

waits for T1
runs
prints “A”
returns
waits for T2
returns immediately; T2 is done
prints “main: end”

Louis Oliphant

runs
prints “B”
returns

Concurrency: Threads

Example Sharing Data

int max; int main(int argc, char *argv[]) {

volatile int counter = 0; // shared global variable if (arge !=2) { L
fprintf(stderr, "usage: main-first <loopcount>\n");
exit(1);

void *mythread(void *arg) {
char *letter = arg;

}
= atoi 11);
int i; // stack (private per thread) max = atoi(argv[1])

printf("%s: begin [addr of i: %p]\n", letter, &i); pthread_t pl, p2;
for (1 =0; 1 <max; i++) { printf("main: begin [counter = %d] [%x]\n", counter,
counter = counter + 1; // shared: only one (unsigned int) &counter);
} Pthread_create(&pl, NULL, mythread, "A");
printf("ss: done\n", letter); Pthread_create(&p2, NULL, mythread, "B");
return NULL; // join waits for the threads to finish
} Pthread_join(pl, NULL);

Pthread_join(p2, NULL);
printf("main: done\n [counter: %d]\n [should: %d]\n",
counter, max*2);

return 0;
}
prompt> ./threads 100000
B: begin
A: begin
A: done
B: done

main: done
[counter: 1094044]
[should: 2000000]

Louis Oliphant

Concurrency: Threads

Uncontrolled Scheduling — Race Condition

counter=counter+1l; // Critical Section

mov 0x8049alc, %eax
add $0x1, %eax
mov %eax, 0x8049alc

oS Thread 1 Thread 2

(after instruction)
PC eax counter

before critical section
mov 8049alc, %eax
add $0xl, %eax

interrupt
save T1
restore T2
mov 8049%alc, %eax
add $0xl1, %eax
mov %eax, 8049%alc
interrupt
save T2
restore T1

mov %eax, 804%alc

Louis Oliphant

100 0 50

105 50 50
108 51 50
100 0 50
105 50 50
108 51 50
113 51 51
108 51 51
113 51 51

Concurrency: Threads

Thread 1
mov 0x8049alc, %eax
add $0x1, %eax

mov %eax, 0x8049alc

Thread 1

mov 0x8049alc, %eax
add $0x1, %eax
mov %eax, 0x8049alc

Thread 1
mov 0x8049alc, %eax
add $0x1, %eax

mov %eax, 0x8049alc

Louis Oliphant

: Threads

What value is counter? Starting value = 50

Thread 2

mov 0x8049alc, %eax

add $0x1, %eax
mov %eax, 0x8049alc

Thread 2

mov 0x8049alc, %eax
add $0x1, %eax

mov %eax, 0x8049alc

Thread 2
mov 0x8049alc, %eax

add $0x1, %eax

mov %eax, 0x8049alc

What value is counter? Starting value = 50

Thread 1 Thread 2
mov 0x8049alc, %eax
add $0x1, %eax
mov 0x8049alc, %eax
mov %eax, 0x8049alc
add $0x1, %eax
mov %eax, 0x8049alc counter = 51

Thread 1 Thread 2
mov 0x8049alc, %eax
add $0x1, %eax
mov %eax, 0x8049alc
mov 0x8049alc, %eax
add $0x1, %eax
mov %eax, 0x8049alc counter = 52

Thread 1 Thread 2
mov 0x8049alc, %eax
mov 0x8049alc, %eax
add $0x1, %eax
add $0x1, %eax
mov %eax, 0x8049alc
mov %eax, 0x8049alc counter = 51

Louis Oliphant
: Threads

Non-Determinism

Concurrency leads to non-deterministic results

o Different results even with same inputs
@ Race Condition — results depend upon the scheduling order

Whether bug manifests depends on CPU scheduling!

Louis Oliphant

Concurrency: Threads

e
What We Want

Want 3 instructions to execute as an uninterruptable group

mov 0x8049alc, %eax
add $0x1, %eax
mov %eax, 0x8049alc

Want them to be Atomic — “as a unit” or “all or nothing”. The
three instructions should all run together (or not at all).

Louis Oliphant

Concurrency: Threads

Synchronization Primitives

@ Hardware support helps to build Synchronization primitives:

Monitor

Lock

Semaphore
Condition Variable

@ Used to create atomicity for critical sections

@ Also used to make one thread wait for another thread to
complete some action before continuing

Louis Oliphant

Concurrency: Threads

Why in OS Class?

@ OS is the first concurrent program

@ Page tables, process lists, file system structures, and most
kernel data must be accessed using proper synchronization
primitives.

Louis Oliphant

Concurrency: Threads

Thread Creation

#include <pthread.h>

typedef struct
int a;
int b;

} myarg_t;

myarg_t {

void *mythread(void *arg) {
myarg_t *m = (myarg_t *) arg;
printf ("/d %d\n", m->a, m->b);
return NULL;

int main(int argc, char *argv[]) {
pthread_t p;
myarg_t args;
args.a = 10;
args.b = 20;
rc = pthread_create(&p, NULL, mythread, &args); //success returns 0

Louis Oliphant

Concurrency: Threads

Thread Joining (and returning values)

typedef struct
int x;
int y;

} myret_t;

myret_t {

void *mythread(void *arg) {

myret_t *r = Malloc(sizeof (myret_t));
r->x = 1;

r->y = 2;

return (void *) r;

int main(int argc, char *argv([]) {
myret_t *m;

rc=pthread_create(...);

rc=pthread_join(p, (void **) &m); //success returns 0
printf ("returned %d %d\n", m->x, m->y);

free(m) ;

}

Louis Oliphant

Concurrency: Threads

