
Concurrency: Locks
CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2023

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Administrivia

Project 4 due Oct 24th @ 11:59pm
Exam 1

Taking me a bit to upload grades into Canvas, should be done
over the weekend

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Review: Threads

A thread is similar to a process in that it is a point of execution and
can be scheduled. The main difference is threads share virtual
address space (code and heap data). Each thread has its own call
stack. Understand the race condition between threads accessing
shared data.

Remember how to:

Create a thread
Wait for a thread to finish executing
Pass arguments to a thread
Get return values after a thread has finished

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Review Threads: looping-race-nolock.s
assumes %bx has loop count in it
.main
.top
critical section
mov 2000, %ax # get 'value' at address 2000
add $1, %ax # increment it
mov %ax, 2000 # store it back

see if we're still looping
sub $1, %bx
test $0, %bx
jgt .top

halt

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Review: x86.py

./x86.py -p looping-race-nolock.s -t 1 -a bx=2

2000 ax Thread 0
0 0
0 0 1000 mov 2000, %ax
0 1 1001 add $1, %ax
1 1 1002 mov %ax, 2000
1 1 1003 sub $1, %bx
1 1 1004 test $0, %bx
1 1 1005 jgt .top
1 1 1000 mov 2000, %ax
1 2 1001 add $1, %ax
2 2 1002 mov %ax, 2000
2 2 1003 sub $1, %bx
2 2 1004 test $0, %bx
2 2 1005 jgt .top
2 2 1006 halt

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

./x86.py -p looping-race-nolock.s -t 2 -a bx=2
2000 ax Thread 0 Thread 1

0 0
0 0 1000 mov 2000, %ax
0 1 1001 add $1, %ax
1 1 1002 mov %ax, 2000
1 1 1003 sub $1, %bx
1 1 1004 test $0, %bx
1 1 1005 jgt .top
1 1 1000 mov 2000, %ax
1 2 1001 add $1, %ax
2 2 1002 mov %ax, 2000
2 2 1003 sub $1, %bx
2 2 1004 test $0, %bx
2 2 1005 jgt .top
2 2 1006 halt
2 0 ----- Halt;Switch ----- ----- Halt;Switch -----
2 2 1000 mov 2000, %ax
2 3 1001 add $1, %ax
3 3 1002 mov %ax, 2000
3 3 1003 sub $1, %bx
3 3 1004 test $0, %bx
3 3 1005 jgt .top
3 3 1000 mov 2000, %ax
3 4 1001 add $1, %ax
4 4 1002 mov %ax, 2000
4 4 1003 sub $1, %bx
4 4 1004 test $0, %bx
4 4 1005 jgt .top
4 4 1006 halt

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

./x86.py -p looping-race-nolock.s -t 2 -a bx=2

2000 ax Thread 0 Thread 1
0 0
0 0 1000 mov 2000, %ax
0 1 1001 add $1, %ax
1 1 1002 mov %ax, 2000
1 1 1003 sub $1, %bx
1 1 1004 test $0, %bx
1 1 1005 jgt .top
1 0 -- Interrupt ------ -- Interrupt -----
1 1 1000 mov 2000, %ax
1 2 1001 add $1, %ax
2 2 1002 mov %ax, 2000
2 2 1003 sub $1, %bx
2 2 1004 test $0, %bx
2 1 -- Interrupt ------ -- Interrupt -----
2 2 1000 mov 2000, %ax
2 3 1001 add $1, %ax
3 3 1002 mov %ax, 2000
3 2 -- Interrupt ------ -- Interrupt -----
3 2 1005 jgt .top
3 3 1000 mov 2000, %ax

2000 ax Thread 0 Thread 1
3 2 -- Interrupt ------ -- Interrupt -----
3 2 1005 jgt .top
3 3 1000 mov 2000, %ax
3 3 -- Interrupt ------ -- Interrupt -----
3 3 1003 sub $1, %bx
3 3 1004 test $0, %bx
3 3 1005 jgt .top
3 3 1006 halt
3 3 -- Halt;Switch ----- -- Halt;Switch ---
3 3 -- Interrupt ------ -- Interrupt -----
3 4 1001 add $1, %ax
4 4 1002 mov %ax, 2000
4 4 1003 sub $1, %bx
4 4 -- Interrupt ------ -- Interrupt -----
4 4 1004 test $0, %bx
4 4 1005 jgt .top
4 4 1006 halt

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Quiz 9: Intro to Threads

https://tinyurl.com/cs537-fa23-q9

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

https://tinyurl.com/cs537-fa23-q9

Locks (Programmer’s Perspective)

#include <pthread.h>

pthread_mutex_t lock;
pthread_mutex_lock(&lock);
x=x+1; //or whatever your critical section is
pthread_mutex_unlock(&lock);

Use different locks to protect different variables / data structures

Rest of lecture is to understand how locks are built (hardware and
OS support)
Next lecture on using locks with different data structures

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Lock Implementation Goals

1 Correctness

mutual exclusion
Only one thread in critical section at a time
Progress (deadlock-free)
If several simultaneous requests, must allow one to proceed
Bounded (starvation-free)
Must eventually allow each waiting thread to enter

2 Fairness – Each thread waits for same amount of time
3 Performance – CPU is not used unnecessarily

case 1 – no contention
case 2 – multiple threads contending, single CPU
case 3 – multiple threads contending, multiple CPUs

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Earliest Solution: Disable Interrupts

void lock() {
DisableInterrupts();

}

void unlock() {
EnableInterrupts();

}

On single CPU, thread assured no other thread will interfere (including OS)

This approach used sparingly by OS itself
Disadvantages

User program has control of CPU, could lock() and run forever
Doesn’t work on multiprocessor systems
Can lead to lost interrupts (imagine OS not being notified of I/O completion)
Very inefficient

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Failed Attempt: Using Loads/Stores

Why doesn’t this work?
typedef struct __lock_t {int flag; } lock_t;

void init(lock_t *mutex) {
//0 -> lock is available, 1 -> held
mutex->flag = 0;

}

void lock(lock_t *mutex) {
while (mutex->flag == 1) // TEST the flag

;
mutex->flag = 1;

}

void unlock unlock(lock_t *mutex) {
mutex->flag = 0;

}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Failed Attempt: Reason

No Mutual Exclusion!
Wasteful Spin-waiting

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Hardware Support: Test-and-Set

on x86 it is the locked version of the atomic exchange (xchg)
Happens Atomically:
//xchg(int *addr, int newVal)
int TestAndSet(int *old_ptr, int new) {

int old = *old_ptr; //fetch old value at old_ptr
*old_ptr = new; //store 'new' into old_ptr
return old; //return the old value

}

movl 4(%esp), %edx
movl 8(%esp), %eax
xchgl (%edx), %eax
ret

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Lock Implementation with TestAndSet

typedef struct __lock_t {
int flag;

} lock_t;

void init(lock_t *lock) {
lock->flag = 0;

}

void lock(lock_t *lock) {
while(TestAndSet(&lock->flag, 1) == 1)

; //spin-wait (do nothing)
}

void unlock(lock_t *lock) {
lock->flag = 0;

}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Other Atomic HW Instructions

int CompareAndSwap(int *addr, int expected, int new) {
int actual = *addr;
if (actual == expected)

*addr = new;
return actual;

}

void lock(lock_t *lock) {
while (CompareAndSwap(&lock->flag,0,1)== 1)

; //spin
}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

A Pair of Atomic HW Instructions

int LoadLinked(int *ptr) {
return *ptr;

}
int StoreConditional(int *ptr, int value) {

if (no one has updated *ptr since the LoadLinked to this address) {
*ptr = value;
return 1; //success

} else {
return 0; //failed to update

}
}
void lock(lock_t *lock) {

while (1) {
while (LoadLinked(&lock->flag) == 1)

; //spin until it's zero
if (StoreConditional(&lock->flag, 1) == 1)

return; //if set-it-to-1 was a success: all done
//otherwise: try it all over again

}
}
void unlock(lock_t *lock) {

lock->flag = 0;
}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Basic Spinlocks Are Unfair

Scheduler is unaware of locks/unlocks!

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Fairness: Ticket Locks – Based on Atomic HW Instruction

int FetchAndAdd(int *ptr) {
int old = *ptr;
*ptr = old + 1;
return old;

}

typedef struct __lock_t {
int ticket; //thread's ticket number
int turn; //whose turn it is

}
void lock_init(lock_t *lock) {

lock->ticket = 0;
lock->turn = 0;

}
void lock(lock_it *lock) {

//first, reserve this thread's turn
int myturn = FetchAndAdd(&lock->ticket);
while (lock->turn != myturn)

; //spin until thread's turn
}

void unlock(lock_t *lock) {
lock->turn = lock->turn+1;

}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Ticket Lock Example

A lock():
B lock():
C lock():

A unlock():

A lock():
B unlock():

C unlock():
A unlock():

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Spinlock Performance

Fast when. . .

many CPUs
locks held a short time
advantage: avoid context switch

Slow when. . .

one CPU
locks held a long time
disadvantage: spinning is wasteful

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

CPU Scheduler is Ignorant of Spinlocks

CPU scheduler may run B,C,D instead of A
even though B,C,D are waiting for A

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Ticket Lock With Yield (OS Call)

Instead of spinning, give up CPU with special yield() instruction
typedef struct __lock_t {

int ticket; //thread's ticket number
int turn; //whose turn it is

}
void lock_init(lock_t *lock) {

lock->ticket = 0;
lock->turn = 0;

}
void lock(lock_it *lock) {

int myturn = FetchAndAdd(&lock->ticket); // Reserve turn
while (lock->turn != myturn)

yield(); //give up rest of time-slice
}

void unlock(lock_t *lock) {
lock->turn = lock->turn+1;

}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Yield Instead of Spin

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Spinlock Performance

Waste of CPU cycles?

Without yield: O(threads * time_slice)
With yield: O(threads * context_switch)

Even with yield, spinning is slow with high thread contention

Next improvement: put thread on waiting queue and block instead
of spinning

New OS call:

park() – put calling thread to sleep
unpark() – wake a particular thread

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Lock Implementation

typedef struct __lock_t {
int flag;
int guard;
queue_t *q;

}

void lock_init(lock_t *m) {
m->flag = 0;
m->guard = 0;
queue_init(m->q);

}

void lock(lock_t *m) {
while (TestAndSet(&m->guard, 1) == 1)

; //acquire guard lock by spinning
if (m->flag == 0) {

m->flag = 1; //lock is acquired
m->guard = 0;

} else {
queue_add(m->q, gettid());
m->guard = 0;
park();

}
}

void unlock(lock_t *m) {
while (TestAndSet(&m->guard, 1) == 1)

; //acquire guard lock by spinning
if (queue_empty(m->q))

m->flag = 0; //let go of lock, no one wants it
else

unpark(queue_remove(m->q)); //hold for next
m->guard = 0;

}

What would happen if release of guard came after the park()?

Think about possible wakeup/waiting race condition just before
the call to park()

Add setpark() OS call to indicate about to park(). Add call to
setpark() just before releasing guard:
queue_add(m->q, gettid());
setpark();
m->guard = 0;
park();

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

Spin-Waiting vs. Blocking

Each approach is better under different circumstances:

Uniprocessor
Waiting process is scheduled -> Process holding lock is not
Waiting process should always relinquish processor
Associate queue of waiters with each lock (as in previous
implementation)

Multiprocessor
Waiting process is scheduled -> Process holding lock might be
spin or block depends on how long, t, before lock is released:

Lock released quickly -> Spin-wait
Lock released slowly -> Block
Quick and slow are relative to context-switch cost, C

Louis Oliphant University of Wisconsin - Madison
Concurrency: Locks

