
Concurrency: Common Problems
CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2023

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Administrivia

Project 5 due Nov 7th @ 11:59pm
Exam 2, Nov 9th 7:30-9pm

Bring ID and #2 Pencil, same format as Exam 1
Lec 001 – Humanities 3650
Lec 002 – Humanities 2340
McBurney – 5:45-8pm, CS 1325

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Review: Semaphores

A semaphore is an object with an integer value that must be initialized and can be
manipulated with two routines:
#include <semaphore.h>
sem_t s;
sem_init(&s, 0, 1); //initializes to 1 (3rd arg)

int sem_wait(sem_t *s) {
decrement the value of semaphore s by one
wait if value of semaphore s is negative

}

int sem_post(sem_t *s) {
increment the value of semaphore s by one
if there are threads waiting, wake one

}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Quiz: Semaphores

https://tinyurl.com/cs537-fa23-q13

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems

https://tinyurl.com/cs537-fa23-q13


Concurrency Problems Agenda

Non-Deadlock Bugs
Atomicity Violation
Order Violation

Deadlock Bugs

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Concurrency Study

Lu Et al. [ASPLOS 2008]:

For four major projects, search for concurrency bugs among >500K bug
reports
Analyze small sample to identify common types of concurrency bugs

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Fix Atomicity Violations with Locks

Thread 1:
pthread_mutex_lock(&lock);
if (thd->proc_info) {

...
fputs(thd->proc_info,...);
...

}
pthread_mutex_unlock(&lock);

Thread 2:
pthread_mutex_lock(&lock);
thd->proc_info = NULL;
pthread_mutex_unlock(&lock);

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Fix Order Violations with Condition Variables

Thread 1:
void init() {

...
mThread =
PR_CreateThread(mMain,...);

pthread_mutex_lock(&mtLock);
mtInit = 1;
pthread_cond_signal(&mtCond);
pthread_mutex_unlock(&mtLock);
...

}

Thread 2:
void mMain(...) {
...
mutex_lock(&mtLock);
while (mtInit == 0)

Cond_wait(&mtCond, &mtLock);
Mutex_unlock(&mtLock);
mState = mThread->State;
...

}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Why Deadlocks Occur

No progress can be made because two or more threads are waiting for the
other to take some action and thus neither ever does (Circular
Dependency).

Thread 1:
lock(&A);
lock(&B);

Thread 2:
lock(&B);
lock(&A);

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Fix by Removing Circular Dependencies

Have an order that locks are obtained:
Thread 1:
lock(&A);
lock(&B);

Thread 2:
lock(&A);
lock(&B);

This becomes trickier with encapsulated code, e.g. Vector class in Java:

Thread 1
v1.addAll(v2);

Thread 2
v2.addAll(v1);

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Conditions for Deadlock

1 Mutual Exclusion – Threads claim exclusive control of resources that
they require (e.g. a thread grabs a lock)

2 Hold-and-wait – Threads hold resources allocated to them while
waiting for additional resources

3 No preemption – Resources cannot be forcibly removed from threads
4 Circular wait – Circular chain of threads hold resources that other

threads need

Remove any one of these criteria and deadlock cannot occur.

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Prevention Technique 2 – Hold-and-wait

Acquire all locks at once:
pthread_mutex_lock(prevention);
pthread_mutex_lock(L1);
pthread_mutex_lock(L2);
...
pthread_mutex_unlock(prevention);

Can be problematic:
Encapsulation (must know what locks are required for each function call
and get them)
Decreases concurrency since all locks must be acquired at once

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Prevention Technique 3 – No Preemption

Stop holding onto lock if you can’t acquire the other needed locks:
top:

pthread_mutex_lock(L1);
if (pthread_mutex_trylock(L2) != 0) {

pthread_mutex_unlock(L1);
goto top;

}

New Problem: Livelock – two threads can repeatedly attempt this
sequence and repeatedly fail to acquire both locks.

Encapsulation still a problem (if a lock acquisition is buried in some
routine, difficult to jump back).

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Final Prevention Technique – Avoid Mutual Exclusion

Avoid needing mutual exclusion by using thread safe, lock-free data
structures. These use the hardware instructions that do multiple things
atomically.

int CompareAndSwap(int *a, int e, int new) {
if (*a == e) {

*a = new;
return 1; //success

}
return 0; //failure

}

Insert into a List:
void insert(int value) {

node_t *n = malloc(sizeof(node_t));
assert(n != NULL);
n->value = value;
do {

n->next = head;
} while (CompareAndSwap(&head,

n->next, n)==0);
}

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Other Strategies

Deadlock Avoidance
A smart scheduler that is aware of which threads require which locks can
schedule threads such that deadlock cannot occur.

Deadlock Recovery
Allow deadlocks to occur (hopefully occasionally), have process to detect a
deadlock, and then take some action to fix it.

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems



Concurrency Summary

Threads and shared memory
Locks and protection surrounding critical code sections

Use of Locks to create thread-safe data structures
Condition Variables controlling thread execution / sleeping on some
program state.
Semaphores are flexible primitives that can replace locks and condition
variables
Use concurrency primitives to prevent common concurrency problems
like deadlock, starvation, guarantee atomicity and thread order.

Louis Oliphant University of Wisconsin - Madison
Concurrency: Common Problems


