Persistence: Raid & File Systems
CS 537: Introduction to Operating Systems

Louis Oliphant
University of Wisconsin - Madison

Fall 2023

Louis Oliphant

Persistence: Raid & File Systems

Administrivia

@ Project 6 due Nov 22nd © 11:59pm
o Tests should be out now
e Run pip3 install grequests for library for some tests

@ Exam 2 Grades later this week

Louis Oliphant

Persistence: Raid & File Systems

Review |O Devices, Disks, and Scheduling

@ The cannonical IO Device has a hardware interface, OS communicates to
device via layers, typically, from File-system layer, to block layer, to driver
@ Disks physical properties and layout limit performance
o Calculate time to handle IO request (seek + rotation + transfer)
o Calculate rate = size / time
@ Scheduling of 10 requests can dramatically improve performance from
random requests to more sequential requests

Louis Oliphant

Persistence: Raid & File Systems

Quiz 15: Disks Transfer Rates

https://tinyurl.com/cs537-fa23-q15

Louis Oliphant

Persistence: Raid & File Systems

https://tinyurl.com/cs537-fa23-q15

RAID Agenda

o RAID Systems

o Understand Levels 0 (striping), 1 (mirroring), 4 (parity), and 5 (rotating

parity)

o Measuring Capacity, Performance, and Reliability compared to a single disk
o File Systems

o Creating, Reading, Writing, Deleting files and directories

o Permissions, Access Control Lists

e Make and Mounting File Systems

Louis Oliphant

Persistence: Raid & File Systems

Redundant Arrays of Inexpensive Disks

e Externally, a RAID looks like a disk (it is transparent to the OS)
o Works just like a single disk
@ Internally, there are lots of configurationtypes to:
o RAID Level 0,1,2,3,4,5,6
o Be larger than a single disk (Capacity)
o Work faster (Performance)
o 10 is often a bottleneck to performance
o Highly dependent on workload type (random and sequential)
o Provide Reliability
e Functioning with failure of one or more disks

Louis Oliphant

Persistence: Raid & File Systems

——
RAID Level 0 - Striping

@ No redundancy, blocks are striped across the array of disks
@ Blocks in the same row are called a stripe.
@ Chunk size can vary between RAID arrays (1 block (4KB), 2 block, etc.)
e Small chunk size means files will be striped across many disks, increasing
parallelism
o Reduces intra-file parallelism, relies on multiple concurrent requests

Disk 0 Disk 1 Disk 2 Disk 3 Disk 0 Disk 1 Disk 2 Disk 3
0 1 2 3 0 2 4 6

4 5 6 7 1 3 5 7

8 9 10 11 8 10 12 14

12 13 14 15 9 11 13 15

Louis Oliphant

Persistence: Raid & File Systems

——
RAID 0 Analysis

RAID 0 of N disks

o Capacity: perfect — the same as N individual disks
o Reliability: perfectly horrible — any disk failure and data is lost
@ Performance:
e Single Read latency
o Steady-state bandwidth
e Sequential
o Random
@ Assume single disk performance:
e Holds B blocks
e S MB/s for sequential workload
e R MB/s for random workload

Louis Oliphant

Persistence: Raid & File Systems

RAID 0 Analysis (Performance)

Can use all disks at once (Maximize Parallelism):

@ single read latency — nearly identical to that of a single disk
@ Sequential Rate — N - S MB/s
e Random Rate - N - R MB/s

Louis Oliphant

Persistence: Raid & File Systems

RAID Level 1 - Mirroring

@ Make more than one copy of each block in the system; each copy should

be placed on a separate disk
@ When reading a block there is a choice (can read from either)

@ When writing, need to write both copies (can be done in parallel)

RAID1 + 0

Mirrored pairs and then stripes

Disk 0 Disk1 Disk2 Disk 3
0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7

Louis Oliphant

RAID 0 + 1
Stripes and then mirrors

Disk 0 Disk 1 Disk2 Disk 3
0 1 0 1
2 3 2 3
4 5 4 5
6 7 6 7

Persistence: Raid & File Systems

RAID 1 Analysis

e Capacity: (N - B)/2 blocks
o Reliability: Tolerate 1 failure (if lucky up to N/2 failures)
@ Performance:
o Latency: Same as a single disk
e Sequential Write: 2 physical writes for each logical write
(N/2)-S5 MB/s
o Sequential Read: Each disk skips every other block
(N/2)-S MB/s
o Random Read: N - R MB/s (can parallelize requests)

o Random Write: ¥ - R MB/s

Louis Oliphant

Persistence: Raid & File Systems

RAID Level 4 - Saving Space with Parity

Disk 0 Disk 1 Disk2 Disk3 Disk 3

0 1 2 3 PO
4 5 6 7 P1
8 9 10 11 P2
12 13 14 15 P3

Use XOR Parity, xor-ing the blocks

co C1 C2 C3 P

0 0 1 1 XOR(0,0,1,1)=0
0 1 0 0 XOR(0,1,0,0)=0

Louis Oliphant

Persistence: Raid & File Systems

——
RAID 4 Analysis

e Capacity: (N —1) - B blocks
o Reliability: Tolerate 1 disk failure
@ Performance:
o Latency: same as single disk for read, twice as long for write (why?)
e Sequential Read: (N —1)-5 MB/s
o Sequential Write: (N —1)-S MB/s
o Utilize full-stripe write
Random Read: (N —1)- R MB/s
Random Write: (R/2) MB/s
o Parity Disk is a bottleneck
o subtractive parity: Ppew = (Coid ® Chew) D Poid

Louis Oliphant

Persistence: Raid & File Systems

RAID 5 - Rotating Parity

@ Rotate the parity block across drives

@ Now the parity disk is not the bottleneck
o Performance on Random Writes goes to % R

Disk 0 Disk 1 Disk2 Disk3 Disk 3

0 1 2 3 PO
4 5 6 P1 7

8 9 P2 10 11
12 P3 13 14 15
P4 16 17 18 19

Louis Oliphant

Persistence: Raid & File Systems

Comparing RAID Levels

RAID-0 RAID-1 RAID-4 RAID-5
Capacity N-B (N-B)/2 (N-1)-B (N-1)-B
Reliability 0 1 (maybe more) 1 1
Sequential Read N -S (N/2)-S (N-1)-S (N-1)-5
Sequential Write N - S (N/2)-S (N-1)-5 (N-1)-S
Random Read ~ N-R N-R (N-1)-R N-R
Random Write N-R (N/2)-R 1R 4.R
Latency Read T T T T
Latency Write T T 2T 2T

Louis Oliphant

Persistence: Raid & File Systems

File Systems

A file system is an abstraction of a persistent device, containing data
structures and access methods for interacting with this system. The two main
abstractions are:

o File — A linear array of bytes
that you can read or write (has
a user-level name and low-level
name(inode number))

@ Directory — Contains list of
mappings between (user-level
name to low-level name) of files bar it
and other directories. This
creates a directory tree.

bar.txt bar foo

Louis Oliphant

Persistence: Raid & File Systems

User-level Names

A file or directory has an absolute pathname. They also have a relative
pathname depending on the current working directory.

/foo/bar.txt
/bar/foo/bar.txt

/

/bar/bar/ Koo bar
Relative pathnames if current bar. 1 bar foo
working directory is /foo:

bar.txt
bar.txt File extensions (e.g. .txt) are often used to
../bar/foo/bar.txt indicate the content of the file.
../bar/bar/

Louis Oliphant

Persistence: Raid & File Systems

Creating Files

int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);

@ "foo" — the relative or absolute pathname of the file to be opened

@ O_CREAT|O_WRONLY|O_TRUNC — flags indicating creation, write-only,
and truncate if file already exists

@ S_TRUSR|S_IWUSR — permissions, readable and writable by the owner

o fd — file descriptor, an integer into array of opened files, managed by OS
on per-process basis.

struct proc {

struct file *ofile[NOFILE]; // Open files

Louis Oliphant

Persistence: Raid & File Systems

Reading and Writing Files

prompt> echo hello > foo
prompt> cat foo

hello

prompt>

prompt> strace cat foo -- prints system calls performed by program
open("foo", O_RDONLY|O_LARGEFILE) =3

read(3, "hello\n", 4096) =6

write(1, "hello\n", 6) =6

hello

read(3, "", 4096) =0

close(3) =0

prompt>

Louis Oliphant

Persistence: Raid & File Systems

Reading and Writing, But Not Sequentially

off t lseek(int fildes, off_t offset, int whence);

o fildes — the file descriptor

@ offset — position within the file

@ whence — How offset is used
o SEEK_SET — the offset is set to the offset in bytes
o SEEK_CUR — the offset is set to its current location plus offset bytes
e SEEK_END — the offset is set to the size of the file plus offset bytes

struct file {
int ref;
char readable;
char writable;
struct inode *ip;
uint off;

}

Louis Oliphant

Persistence: Raid & File Systems

Shared File Table Entries — fork() and dup()

File table entries are shared when calling fork () or dup(O):

int main(int argc, char *argv[]) {
int fd = open("file.txt", O_RDONLY);
int rc = fork();
if (rc == 0) {
rc = lseek(fd, 10, SEEK_SET);
printf("child: offset %d\n", rc);
} else if (rc > 0) {
(void) wait (NULL);
printf ("parent: offset %d\n", (int) lseek(fd, 0, SEEK_CUR));
}

prompt> ./fork-seek
child: offset 10
parent: offset 10
prompt>

When file table entry shared, reference count incremented; both processes close file before removed

Louis Oliphant

Persistence: Raid & File Systems

Writing Immediately with £sync ()

Typically, writes are buffered by the OS for some time (say 5 seconds, or 30
seconds)

fsync(int fd) — forces all dirty data to disk, Only returns after all writes
are complete.

Renaming Files

rename (char *oldpath, char *newpath);
An atomic instruction — file will either be oldpath name or newpath name.

Louis Oliphant

Persistence: Raid & File Systems

Information About Files

The inode keeps metadata about a file or directory. You can see some of
this information by using the command line tool stat:

prompt> echo hello > file
prompt> stat file

File: 'file'

Size: 6 Blocks: 8 I0 Block: 4096 regular file
Device: 811h/2065d Inode: 67158084 Links: 1
Access: (0640/-rw-r-----) Uid: (30686/ remzi) Gid: (30686/ remzi)

Access: 2011-05-03 15:50:20.157594748 -500
Modify: 2011-05-03 15:50:20.157594748 -500
Change: 2011-05-03 15:50:20.157594748 -500

Louis Oliphant

Persistence: Raid & File Systems

Removing Files

prompt> rm foo

unlink("foo");

Making Directories

prompt> mkdir foo
mkdir("foo",0777) ;

An “empty” directory has two entries: "." refers to itself, and ".." refers to
its parent. You can see these by passing the -a flag to 1s:
prompt> 1ls -a

./ 4

Louis Oliphant

Persistence: Raid & File Systems

Reading Directories

int main() {

}

DIR *dp = opendir(".");
struct dirent *d;
while ((d = readdir(dp)) != NULL) {
printf (%lu %s\n", (unsigned long) d->d_ino, d->d_name);
}
closedir(dp) ;

struct dirent {

}

Deleting Directories

char d_name[256]; // filename

ino_t d_ino; // inode number

off_t d_off; // offset to next dirent
unsigned short d_reclen; // length of record
unsigned char d_type; // type of file

prompt> rmdir directory

rmdir("directory");

Can only delete “empty” directories.

Louis Oliphant

Persistence: Raid & File Systems

——
Hard Links and Symbolic Links

@ Hard links create another name to the same inode number:

echo hello > file
In file file2

That is why unlink is the same as removing a file (if no more references then
inode is deleted)

@ Symbolic (soft) links are special files containing linking information. If
underlying file is deleted you can get dangling references.

prompt> echo hello > file

prompt> 1n -s file file2

prompt> rm file

prompt> cat file2

cat: file2: No such file or directory

Louis Oliphant

Persistence: Raid & File Systems

Permission Bits and Access Control Lists

Unix permission bits control who has access to a file. You can see these
permissions with 1s:

prompt> 1s -1 foo.txt
-rw-r—-r-- 1 remzi wheel O Aug 24 16:29 foo.txt

First entry is file-type followed by 3 bits (rwx) of owner-permission, 3 bits
(rwx) of group permissions, and 3 bits (rwx) of other permissions.

Access Control List in AFS

You can read about The CS departments AFS system
https://csl.cs.wisc.edu/docs/csl/2012-08-16-file-storage/ .

e fs listacl <path> - lists the access control list for the directory

o fs setacl <path> <user> <acl> — Set the access control list for the

user to the path.

Louis Oliphant

Persistence: Raid & File Systems

https://csl.cs.wisc.edu/docs/csl/2012-08-16-file-storage/

Making and Mounting File Systems

mkfs <device> — creates an empty file system on the given device.

mount -t <type> <device> <mount point> — mounts the filesystem on
the device to the given mount point. After running the command the
contents under will be the file system on the device.

Louis Oliphant
Persistence: Raid & File Systems

