
Persistence: Raid & File Systems
CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2023

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems



Administrivia

Project 6 due Nov 22nd @ 11:59pm
Tests should be out now
Run pip3 install grequests for library for some tests

Exam 2 Grades later this week
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Review IO Devices, Disks, and Scheduling

The cannonical IO Device has a hardware interface, OS communicates to
device via layers, typically, from File-system layer, to block layer, to driver
Disks physical properties and layout limit performance

Calculate time to handle IO request (seek + rotation + transfer)
Calculate rate = size / time

Scheduling of IO requests can dramatically improve performance from
random requests to more sequential requests
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Quiz 15: Disks Transfer Rates

https://tinyurl.com/cs537-fa23-q15
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RAID Agenda

RAID Systems
Understand Levels 0 (striping), 1 (mirroring), 4 (parity), and 5 (rotating
parity)
Measuring Capacity, Performance, and Reliability compared to a single disk

File Systems
Creating, Reading, Writing, Deleting files and directories
Permissions, Access Control Lists
Make and Mounting File Systems
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Redundant Arrays of Inexpensive Disks

Externally, a RAID looks like a disk (it is transparent to the OS)
Works just like a single disk

Internally, there are lots of configurationtypes to:
RAID Level 0, 1, 2, 3, 4, 5, 6
Be larger than a single disk (Capacity)
Work faster (Performance)

IO is often a bottleneck to performance
Highly dependent on workload type (random and sequential)

Provide Reliability
Functioning with failure of one or more disks
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RAID Level 0 - Striping

No redundancy, blocks are striped across the array of disks
Blocks in the same row are called a stripe.
Chunk size can vary between RAID arrays (1 block (4KB), 2 block, etc.)

Small chunk size means files will be striped across many disks, increasing
parallelism
Reduces intra-file parallelism, relies on multiple concurrent requests

Disk 0 Disk 1 Disk 2 Disk 3

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Disk 0 Disk 1 Disk 2 Disk 3

0 2 4 6
1 3 5 7
8 10 12 14
9 11 13 15

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems



RAID 0 Analysis

RAID 0 of N disks

Capacity: perfect – the same as N individual disks
Reliability: perfectly horrible – any disk failure and data is lost
Performance:

Single Read latency
Steady-state bandwidth

Sequential
Random

Assume single disk performance:
Holds B blocks
S MB/s for sequential workload
R MB/s for random workload

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems



RAID 0 Analysis (Performance)

Can use all disks at once (Maximize Parallelism):

single read latency – nearly identical to that of a single disk
Sequential Rate – N · S MB/s
Random Rate – N · R MB/s
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RAID Level 1 - Mirroring

Make more than one copy of each block in the system; each copy should
be placed on a separate disk
When reading a block there is a choice (can read from either)
When writing, need to write both copies (can be done in parallel)

RAID 1 + 0
Mirrored pairs and then stripes

Disk 0 Disk 1 Disk 2 Disk 3

0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7

RAID 0 + 1
Stripes and then mirrors

Disk 0 Disk 1 Disk 2 Disk 3

0 1 0 1
2 3 2 3
4 5 4 5
6 7 6 7
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RAID 1 Analysis

Capacity: (N · B)/2 blocks
Reliability: Tolerate 1 failure (if lucky up to N/2 failures)
Performance:

Latency: Same as a single disk
Sequential Write: 2 physical writes for each logical write
(N/2) · S MB/s
Sequential Read: Each disk skips every other block
(N/2) · S MB/s
Random Read: N · R MB/s (can parallelize requests)
Random Write: N

2 · R MB/s
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RAID Level 4 - Saving Space with Parity

Disk 0 Disk 1 Disk 2 Disk 3 Disk 3

0 1 2 3 P0
4 5 6 7 P1
8 9 10 11 P2
12 13 14 15 P3

Use XOR Parity, xor-ing the blocks

C0 C1 C2 C3 P

0 0 1 1 XOR(0,0,1,1)=0
0 1 0 0 XOR(0,1,0,0)=0
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RAID 4 Analysis

Capacity: (N − 1) · B blocks
Reliability: Tolerate 1 disk failure
Performance:

Latency: same as single disk for read, twice as long for write (why?)
Sequential Read: (N − 1) · S MB/s
Sequential Write: (N − 1) · S MB/s

Utilize full-stripe write
Random Read: (N − 1) · R MB/s
Random Write: (R/2) MB/s

Parity Disk is a bottleneck
subtractive parity: Pnew = (Cold ⊕ Cnew ) ⊕ Pold
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RAID 5 - Rotating Parity

Rotate the parity block across drives
Now the parity disk is not the bottleneck

Performance on Random Writes goes to N
4 · R

Disk 0 Disk 1 Disk 2 Disk 3 Disk 3

0 1 2 3 P0
4 5 6 P1 7
8 9 P2 10 11
12 P3 13 14 15
P4 16 17 18 19
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Comparing RAID Levels

RAID-0 RAID-1 RAID-4 RAID-5

Capacity N · B (N · B)/2 (N − 1) · B (N − 1) · B
Reliability 0 1 (maybe more) 1 1

Sequential Read N · S (N/2) · S (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S (N − 1) · S (N − 1) · S
Random Read N · R N · R (N − 1) · R N · R
Random Write N · R (N/2) · R 1

2 · R N
4 · R

Latency Read T T T T
Latency Write T T 2T 2T
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File Systems

A file system is an abstraction of a persistent device, containing data
structures and access methods for interacting with this system. The two main
abstractions are:

File – A linear array of bytes
that you can read or write (has
a user-level name and low-level
name(inode number))
Directory – Contains list of
mappings between (user-level
name to low-level name) of files
and other directories. This
creates a directory tree.
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User-level Names

A file or directory has an absolute pathname. They also have a relative
pathname depending on the current working directory.
/foo/bar.txt
/bar/foo/bar.txt
/bar/bar/

Relative pathnames if current
working directory is /foo:

bar.txt
../bar/foo/bar.txt
../bar/bar/

File extensions (e.g. .txt) are often used to
indicate the content of the file.
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Creating Files

int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);

"foo" – the relative or absolute pathname of the file to be opened
O_CREAT|O_WRONLY|O_TRUNC – flags indicating creation, write-only,
and truncate if file already exists
S_IRUSR|S_IWUSR – permissions, readable and writable by the owner
fd – file descriptor, an integer into array of opened files, managed by OS
on per-process basis.

struct proc {
...
struct file *ofile[NOFILE]; // Open files
...

}
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Reading and Writing Files

prompt> echo hello > foo
prompt> cat foo
hello
prompt>

prompt> strace cat foo -- prints system calls performed by program
...
open("foo", O_RDONLY|O_LARGEFILE) = 3
read(3, "hello\n", 4096) = 6
write(1, "hello\n", 6) = 6
hello
read(3, "", 4096) = 0
close(3) = 0
...
prompt>
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Reading and Writing, But Not Sequentially

off_t lseek(int fildes, off_t offset, int whence);

fildes – the file descriptor
offset – position within the file
whence – How offset is used

SEEK_SET – the offset is set to the offset in bytes
SEEK_CUR – the offset is set to its current location plus offset bytes
SEEK_END – the offset is set to the size of the file plus offset bytes

struct file {
int ref;
char readable;
char writable;
struct inode *ip;
uint off;

}
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Shared File Table Entries – fork() and dup()

File table entries are shared when calling fork() or dup():
int main(int argc, char *argv[]) {

int fd = open("file.txt", O_RDONLY);
int rc = fork();
if (rc == 0) {

rc = lseek(fd, 10, SEEK_SET);
printf("child: offset %d\n", rc);

} else if (rc > 0) {
(void) wait(NULL);
printf("parent: offset %d\n", (int) lseek(fd, 0, SEEK_CUR));

}
}

prompt> ./fork-seek
child: offset 10
parent: offset 10
prompt>

When file table entry shared, reference count incremented; both processes close file before removed
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Writing Immediately with fsync()

Typically, writes are buffered by the OS for some time (say 5 seconds, or 30
seconds)
fsync(int fd) – forces all dirty data to disk, Only returns after all writes
are complete.

Renaming Files
rename(char *oldpath, char *newpath);
An atomic instruction – file will either be oldpath name or newpath name.
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Information About Files

The inode keeps metadata about a file or directory. You can see some of
this information by using the command line tool stat:
prompt> echo hello > file
prompt> stat file

File: 'file'
Size: 6 Blocks: 8 IO Block: 4096 regular file

Device: 811h/2065d Inode: 67158084 Links: 1
Access: (0640/-rw-r-----) Uid: (30686/ remzi) Gid: (30686/ remzi)
Access: 2011-05-03 15:50:20.157594748 -500
Modify: 2011-05-03 15:50:20.157594748 -500
Change: 2011-05-03 15:50:20.157594748 -500
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Removing Files
prompt> rm foo

unlink("foo");

Making Directories
prompt> mkdir foo

mkdir("foo",0777);

An “empty” directory has two entries: "." refers to itself, and ".." refers to
its parent. You can see these by passing the -a flag to ls:
prompt> ls -a
./ ../
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Reading Directories
int main() {

DIR *dp = opendir(".");
struct dirent *d;
while ((d = readdir(dp)) != NULL) {

printf(%lu %s\n", (unsigned long) d->d_ino, d->d_name);
}
closedir(dp);

}

struct dirent {
char d_name[256]; // filename
ino_t d_ino; // inode number
off_t d_off; // offset to next dirent
unsigned short d_reclen; // length of record
unsigned char d_type; // type of file

}

Deleting Directories
prompt> rmdir directory
rmdir("directory");

Can only delete “empty” directories.
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Hard Links and Symbolic Links

Hard links create another name to the same inode number:
echo hello > file
ln file file2

That is why unlink is the same as removing a file (if no more references then
inode is deleted)

Symbolic (soft) links are special files containing linking information. If
underlying file is deleted you can get dangling references.

prompt> echo hello > file
prompt> ln -s file file2
prompt> rm file
prompt> cat file2
cat: file2: No such file or directory
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Permission Bits and Access Control Lists
Unix permission bits control who has access to a file. You can see these
permissions with ls:

prompt> ls -l foo.txt
-rw-r--r-- 1 remzi wheel 0 Aug 24 16:29 foo.txt

First entry is file-type followed by 3 bits (rwx) of owner-permission, 3 bits
(rwx) of group permissions, and 3 bits (rwx) of other permissions.

Access Control List in AFS
You can read about The CS departments AFS system
https://csl.cs.wisc.edu/docs/csl/2012-08-16-file-storage/.

fs listacl <path> – lists the access control list for the directory
fs setacl <path> <user> <acl> – Set the access control list for the
user to the path.
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Making and Mounting File Systems

mkfs <device> – creates an empty file system on the given device.

mount -t <type> <device> <mount point> – mounts the filesystem on
the device to the given mount point. After running the command the
contents under will be the file system on the device.
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