
Persistence: Raid & File Systems
CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2023

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Administrivia

Project 6 due Nov 22nd @ 11:59pm
Tests should be out now
Run pip3 install grequests for library for some tests

Exam 2 Grades later this week

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Review IO Devices, Disks, and Scheduling

The cannonical IO Device has a hardware interface, OS communicates to
device via layers, typically, from File-system layer, to block layer, to driver
Disks physical properties and layout limit performance

Calculate time to handle IO request (seek + rotation + transfer)
Calculate rate = size / time

Scheduling of IO requests can dramatically improve performance from
random requests to more sequential requests

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Quiz 15: Disks Transfer Rates

https://tinyurl.com/cs537-fa23-q15

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

https://tinyurl.com/cs537-fa23-q15

RAID Agenda

RAID Systems
Understand Levels 0 (striping), 1 (mirroring), 4 (parity), and 5 (rotating
parity)
Measuring Capacity, Performance, and Reliability compared to a single disk

File Systems
Creating, Reading, Writing, Deleting files and directories
Permissions, Access Control Lists
Make and Mounting File Systems

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Redundant Arrays of Inexpensive Disks

Externally, a RAID looks like a disk (it is transparent to the OS)
Works just like a single disk

Internally, there are lots of configurationtypes to:
RAID Level 0, 1, 2, 3, 4, 5, 6
Be larger than a single disk (Capacity)
Work faster (Performance)

IO is often a bottleneck to performance
Highly dependent on workload type (random and sequential)

Provide Reliability
Functioning with failure of one or more disks

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

RAID Level 0 - Striping

No redundancy, blocks are striped across the array of disks
Blocks in the same row are called a stripe.
Chunk size can vary between RAID arrays (1 block (4KB), 2 block, etc.)

Small chunk size means files will be striped across many disks, increasing
parallelism
Reduces intra-file parallelism, relies on multiple concurrent requests

Disk 0 Disk 1 Disk 2 Disk 3

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

Disk 0 Disk 1 Disk 2 Disk 3

0 2 4 6
1 3 5 7
8 10 12 14
9 11 13 15

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

RAID 0 Analysis

RAID 0 of N disks

Capacity: perfect – the same as N individual disks
Reliability: perfectly horrible – any disk failure and data is lost
Performance:

Single Read latency
Steady-state bandwidth

Sequential
Random

Assume single disk performance:
Holds B blocks
S MB/s for sequential workload
R MB/s for random workload

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

RAID 0 Analysis (Performance)

Can use all disks at once (Maximize Parallelism):

single read latency – nearly identical to that of a single disk
Sequential Rate – N · S MB/s
Random Rate – N · R MB/s

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

RAID Level 1 - Mirroring

Make more than one copy of each block in the system; each copy should
be placed on a separate disk
When reading a block there is a choice (can read from either)
When writing, need to write both copies (can be done in parallel)

RAID 1 + 0
Mirrored pairs and then stripes

Disk 0 Disk 1 Disk 2 Disk 3

0 0 1 1
2 2 3 3
4 4 5 5
6 6 7 7

RAID 0 + 1
Stripes and then mirrors

Disk 0 Disk 1 Disk 2 Disk 3

0 1 0 1
2 3 2 3
4 5 4 5
6 7 6 7

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

RAID 1 Analysis

Capacity: (N · B)/2 blocks
Reliability: Tolerate 1 failure (if lucky up to N/2 failures)
Performance:

Latency: Same as a single disk
Sequential Write: 2 physical writes for each logical write
(N/2) · S MB/s
Sequential Read: Each disk skips every other block
(N/2) · S MB/s
Random Read: N · R MB/s (can parallelize requests)
Random Write: N

2 · R MB/s

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

RAID Level 4 - Saving Space with Parity

Disk 0 Disk 1 Disk 2 Disk 3 Disk 3

0 1 2 3 P0
4 5 6 7 P1
8 9 10 11 P2
12 13 14 15 P3

Use XOR Parity, xor-ing the blocks

C0 C1 C2 C3 P

0 0 1 1 XOR(0,0,1,1)=0
0 1 0 0 XOR(0,1,0,0)=0

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

RAID 4 Analysis

Capacity: (N − 1) · B blocks
Reliability: Tolerate 1 disk failure
Performance:

Latency: same as single disk for read, twice as long for write (why?)
Sequential Read: (N − 1) · S MB/s
Sequential Write: (N − 1) · S MB/s

Utilize full-stripe write
Random Read: (N − 1) · R MB/s
Random Write: (R/2) MB/s

Parity Disk is a bottleneck
subtractive parity: Pnew = (Cold ⊕ Cnew) ⊕ Pold

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

RAID 5 - Rotating Parity

Rotate the parity block across drives
Now the parity disk is not the bottleneck

Performance on Random Writes goes to N
4 · R

Disk 0 Disk 1 Disk 2 Disk 3 Disk 3

0 1 2 3 P0
4 5 6 P1 7
8 9 P2 10 11
12 P3 13 14 15
P4 16 17 18 19

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Comparing RAID Levels

RAID-0 RAID-1 RAID-4 RAID-5

Capacity N · B (N · B)/2 (N − 1) · B (N − 1) · B
Reliability 0 1 (maybe more) 1 1

Sequential Read N · S (N/2) · S (N − 1) · S (N − 1) · S
Sequential Write N · S (N/2) · S (N − 1) · S (N − 1) · S
Random Read N · R N · R (N − 1) · R N · R
Random Write N · R (N/2) · R 1

2 · R N
4 · R

Latency Read T T T T
Latency Write T T 2T 2T

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

File Systems

A file system is an abstraction of a persistent device, containing data
structures and access methods for interacting with this system. The two main
abstractions are:

File – A linear array of bytes
that you can read or write (has
a user-level name and low-level
name(inode number))
Directory – Contains list of
mappings between (user-level
name to low-level name) of files
and other directories. This
creates a directory tree.

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

User-level Names

A file or directory has an absolute pathname. They also have a relative
pathname depending on the current working directory.
/foo/bar.txt
/bar/foo/bar.txt
/bar/bar/

Relative pathnames if current
working directory is /foo:

bar.txt
../bar/foo/bar.txt
../bar/bar/

File extensions (e.g. .txt) are often used to
indicate the content of the file.

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Creating Files

int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);

"foo" – the relative or absolute pathname of the file to be opened
O_CREAT|O_WRONLY|O_TRUNC – flags indicating creation, write-only,
and truncate if file already exists
S_IRUSR|S_IWUSR – permissions, readable and writable by the owner
fd – file descriptor, an integer into array of opened files, managed by OS
on per-process basis.

struct proc {
...
struct file *ofile[NOFILE]; // Open files
...

}

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Reading and Writing Files

prompt> echo hello > foo
prompt> cat foo
hello
prompt>

prompt> strace cat foo -- prints system calls performed by program
...
open("foo", O_RDONLY|O_LARGEFILE) = 3
read(3, "hello\n", 4096) = 6
write(1, "hello\n", 6) = 6
hello
read(3, "", 4096) = 0
close(3) = 0
...
prompt>

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Reading and Writing, But Not Sequentially

off_t lseek(int fildes, off_t offset, int whence);

fildes – the file descriptor
offset – position within the file
whence – How offset is used

SEEK_SET – the offset is set to the offset in bytes
SEEK_CUR – the offset is set to its current location plus offset bytes
SEEK_END – the offset is set to the size of the file plus offset bytes

struct file {
int ref;
char readable;
char writable;
struct inode *ip;
uint off;

}

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Shared File Table Entries – fork() and dup()

File table entries are shared when calling fork() or dup():
int main(int argc, char *argv[]) {

int fd = open("file.txt", O_RDONLY);
int rc = fork();
if (rc == 0) {

rc = lseek(fd, 10, SEEK_SET);
printf("child: offset %d\n", rc);

} else if (rc > 0) {
(void) wait(NULL);
printf("parent: offset %d\n", (int) lseek(fd, 0, SEEK_CUR));

}
}

prompt> ./fork-seek
child: offset 10
parent: offset 10
prompt>

When file table entry shared, reference count incremented; both processes close file before removed

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Writing Immediately with fsync()

Typically, writes are buffered by the OS for some time (say 5 seconds, or 30
seconds)
fsync(int fd) – forces all dirty data to disk, Only returns after all writes
are complete.

Renaming Files
rename(char *oldpath, char *newpath);
An atomic instruction – file will either be oldpath name or newpath name.

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Information About Files

The inode keeps metadata about a file or directory. You can see some of
this information by using the command line tool stat:
prompt> echo hello > file
prompt> stat file

File: 'file'
Size: 6 Blocks: 8 IO Block: 4096 regular file

Device: 811h/2065d Inode: 67158084 Links: 1
Access: (0640/-rw-r-----) Uid: (30686/ remzi) Gid: (30686/ remzi)
Access: 2011-05-03 15:50:20.157594748 -500
Modify: 2011-05-03 15:50:20.157594748 -500
Change: 2011-05-03 15:50:20.157594748 -500

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Removing Files
prompt> rm foo

unlink("foo");

Making Directories
prompt> mkdir foo

mkdir("foo",0777);

An “empty” directory has two entries: "." refers to itself, and ".." refers to
its parent. You can see these by passing the -a flag to ls:
prompt> ls -a
./ ../

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Reading Directories
int main() {

DIR *dp = opendir(".");
struct dirent *d;
while ((d = readdir(dp)) != NULL) {

printf(%lu %s\n", (unsigned long) d->d_ino, d->d_name);
}
closedir(dp);

}

struct dirent {
char d_name[256]; // filename
ino_t d_ino; // inode number
off_t d_off; // offset to next dirent
unsigned short d_reclen; // length of record
unsigned char d_type; // type of file

}

Deleting Directories
prompt> rmdir directory
rmdir("directory");

Can only delete “empty” directories.
Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Hard Links and Symbolic Links

Hard links create another name to the same inode number:
echo hello > file
ln file file2

That is why unlink is the same as removing a file (if no more references then
inode is deleted)

Symbolic (soft) links are special files containing linking information. If
underlying file is deleted you can get dangling references.

prompt> echo hello > file
prompt> ln -s file file2
prompt> rm file
prompt> cat file2
cat: file2: No such file or directory

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

Permission Bits and Access Control Lists
Unix permission bits control who has access to a file. You can see these
permissions with ls:

prompt> ls -l foo.txt
-rw-r--r-- 1 remzi wheel 0 Aug 24 16:29 foo.txt

First entry is file-type followed by 3 bits (rwx) of owner-permission, 3 bits
(rwx) of group permissions, and 3 bits (rwx) of other permissions.

Access Control List in AFS
You can read about The CS departments AFS system
https://csl.cs.wisc.edu/docs/csl/2012-08-16-file-storage/.

fs listacl <path> – lists the access control list for the directory
fs setacl <path> <user> <acl> – Set the access control list for the
user to the path.

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

https://csl.cs.wisc.edu/docs/csl/2012-08-16-file-storage/

Making and Mounting File Systems

mkfs <device> – creates an empty file system on the given device.

mount -t <type> <device> <mount point> – mounts the filesystem on
the device to the given mount point. After running the command the
contents under will be the file system on the device.

Louis Oliphant University of Wisconsin - Madison
Persistence: Raid & File Systems

