Persistence: Log-structured File System
CS 537: Introduction to Operating Systems

Louis Oliphant
University of Wisconsin - Madison

Fall 2023

Louis Oliphant

Persistence: Log-structured File System

Administrivia

@ Project 7 due Dec 8th @ 11:59pm

@ Midterm 3 scheduled for Dec 12th in-class
o Alternate time Dec 18th @ 12:25pm (email me)
o Alternate time also for McBurney accommodations

Louis Oliphant

Persistence: Log-structured File System

Review FSCK & Journaling

o File system consistency can be prevented (journaling) or recovered after
a crash (fsck)
o fsck attempts to scan and correct inconsistencies found in the file

system.
o build used data blocks from inode table, checks inodes and directory

entries for consistency

e Data Journaling and Metadata (or ordered) Journaling
e Understand protocol of what gets written where and what waits occur to

insure consistency

Louis Oliphant
Persistence: Log-structured File System

Quiz 19 FSCK

https://tinyurl.com/cs537-fa23-q19

Opte=10
I

Louis Oliphant
Persistence: Log-structured File System

https://tinyurl.com/cs537-fa23-q19

LOG STRUCTURED FILE SYSTEM (LFS)

LFS PERFORMANCE GOAL

Motivation:
— Growing gap between sequential and random I/O performance
— Especially true in SSDs!
— RAID-5 especially bad with small random writes

Idea: use disk purely sequentially

Design for writes to use disk sequentially — how?

WHERE DO INODES GO?

A0

blk[0]:AO
|

A0

LFS STRATEGY

File system buffers writes in main memory until “enough” data
— How much is enough?
— Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

BUFFERED WRITES

Elﬁ{?}:ﬁ? blk[0]:A5
D, Dy D Djs | bki2ja2 | D
1101 .11 li2] .31 blk[3]: e k0]
A0 Al A2 A3 Inodelj] A5 Inode[K]

WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has LFS removed?

allocation structs: data + inode bitmaps

How to do reads?
Inodes are no longer at fixed offset

Use imap structure to map:
inode number => inode location on disk

IMAP EXPLAINED

blk[0]:A0
|
A0
blk[0]:AQ |map[k]:A1
Ik] | imap
A0 At

READING IN LFS

1
bIK[0]-AD

imap map[k]:A1
[k...k+N]: .
A2 Ik] | imap
CR
0 A0 A1 A2

I. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read a file:
I. Lookup inode location in imap
2. Read inode
3. Read the file block

GARBAGE COLLECTION

blk[!];A4
Do | ik D1 | K]

WHAT TO DO WITH OLD DATA?

Old versions of files > garbage

Approach |: garbage is a feature!
— Keep old versions in case user wants to revert files later
— Versioning file systems

— Example: Dropbox

Approach 2: garbage collection

GARBAGE COLLECTION

Need to reclaim space:
I.When no more references (any file system)

2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwites to be to sequential areas

- Tricky, since segments are usually partly valid

GARBAGE COLLECTION

60% 10% 95% 35%

disk segments:

GARBAGE COLLECTION

60% 10% 95% 35% 95%

U

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
How does LFS know whether data in segments is valid?

Policy:
Which segments to compact?

GARBAGE COLLECTION MECHANISM

Is an inode the latest version?
— Check imap to see if this inode is pointed to
— Fast!
Is a data block the latest version?
— Scan ALL inodes to see if any point to this data
— Very slow!
How to track information more efficiently?

— Segment summary lists inode and data offset corresponding to each data
block in segment (reverse pointers)

SEGMENT SUMMARY

bIk[0]:A0 |map[k]:A1
D I[k] | imap

A0 A1

(N, T) = SegmentSummary[A];
inode = Read(imap[N]);

if (inode[T] == A)

// block D is alive
else

// block D is garbage

GARBAGE COLLECTION

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
Use segment summary, imap to determine liveness

Policy:
Which segments to compact?
* clean most empty first
* clean coldest (ones undergoing least change)

* more complex heuristics...

GRASH RECOVERY

What data needs to be recovered after a crash?
— Need imap (lost in volatile memory)
Better approach?

— Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?
— Checkpoint often: random 1/O
— Checkpoint rarely: lose more data, recovery takes longer
— Example: checkpoint every 30 secs

CRASH RECOVERY

memory:
Y after last

checkpoint

so | st |'s2r] 3 R

l tail after last
checkpoint

checkpoint

CHECKPOINT SUMMARY

Checkpoint occasionally (e.g., every 30s)

Upon recovery:

- read checkpoint to find most imap pointers and segment tail
- find rest of imap pointers by reading past tail

What if crash during checkpoint?

CHECKPOINT STRATEGY

Have two checkpoint regions
Only overwrite one checkpoint at a time

Use checksum/timestamps to identify newest checkpoint

dis

LFS SUMMARY

Journaling:
Put final location of data wherever file system chooses

(usually in a place optimized for future reads)

LFS:
Puts data where it’s fastest to write, assume future reads cached in memory

Other COW file systems:WAFL, ZFS, btrfs

Solid State Devices (SSDs) covered next lecture

Louis Oliphant

Persistence: Log-structured File System

