
Persistence: Log-structured File System
CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2023

Louis Oliphant University of Wisconsin - Madison
Persistence: Log-structured File System

Administrivia

Project 7 due Dec 8th @ 11:59pm
Midterm 3 scheduled for Dec 12th in-class

Alternate time Dec 18th @ 12:25pm (email me)
Alternate time also for McBurney accommodations

Louis Oliphant University of Wisconsin - Madison
Persistence: Log-structured File System

Review FSCK & Journaling

File system consistency can be prevented (journaling) or recovered after
a crash (fsck)
fsck attempts to scan and correct inconsistencies found in the file
system.

build used data blocks from inode table, checks inodes and directory
entries for consistency

Data Journaling and Metadata (or ordered) Journaling
Understand protocol of what gets written where and what waits occur to
insure consistency

Louis Oliphant University of Wisconsin - Madison
Persistence: Log-structured File System

Quiz 19 FSCK

https://tinyurl.com/cs537-fa23-q19

Louis Oliphant University of Wisconsin - Madison
Persistence: Log-structured File System

https://tinyurl.com/cs537-fa23-q19

LOG STRUCTURED FILE SYSTEM (LFS)

LFS Performance Goal
Motivation:

– Growing gap between sequential and random I/O performance
– Especially true in SSDs!
– RAID-5 especially bad with small random writes

Idea: use disk purely sequentially
Design for writes to use disk sequentially – how?

WHERE DO INODES GO?

LFS Strategy

File system buffers writes in main memory until “enough” data
– How much is enough?
– Enough to get good sequential bandwidth from disk (MB)

Write buffered data sequentially to new segment on disk

Never overwrite old info: old copies left behind

BUFFERED WRITES

WHAT ELSE IS DIFFERENT FROM FFS?

What data structures has LFS removed?

allocation structs: data + inode bitmaps

How to do reads?

Inodes are no longer at fixed offset

Use imap structure to map:
inode number => inode location on disk

IMAP EXPLAINED

READING IN LFS

1. Read the Checkpoint region
2. Read all imap parts, cache in mem
3. To read a file:

1. Lookup inode location in imap
2. Read inode
3. Read the file block

GARBAGE COLLECTION

What to do with old data?

Old versions of files à garbage

Approach 1: garbage is a feature!
– Keep old versions in case user wants to revert files later
– Versioning file systems
– Example: Dropbox

Approach 2: garbage collection

Garbage Collection

Need to reclaim space:
1. When no more references (any file system)
2. After newer copy is created (COW file system)

LFS reclaims segments (not individual inodes and data blocks)
- Want future overwites to be to sequential areas
- Tricky, since segments are usually partly valid

FREEFREE

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35%

FREEUSED

Garbage Collection

USEDUSEDdisk segments: USEDUSED

60% 10% 95% 35% 95%

compact 2 segments to one

When moving data blocks, copy new inode to point to it
When move inode, update imap to point to it

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
How does LFS know whether data in segments is valid?

Policy:
Which segments to compact?

Garbage Collection Mechanism

Is an inode the latest version?
– Check imap to see if this inode is pointed to
– Fast!

Is a data block the latest version?
– Scan ALL inodes to see if any point to this data
– Very slow!

How to track information more efficiently?
– Segment summary lists inode and data offset corresponding to each data

block in segment (reverse pointers)

SEGMENT SUMMARY

(N, T) = SegmentSummary[A];

inode = Read(imap[N]);

if (inode[T] == A)
// block D is alive

else
// block D is garbage

Garbage Collection

General operation:
Pick M segments, compact into N (where N < M).

Mechanism:
Use segment summary, imap to determine liveness

Policy:
Which segments to compact?

• clean most empty first
• clean coldest (ones undergoing least change)

• more complex heuristics…

Crash Recovery

What data needs to be recovered after a crash?
– Need imap (lost in volatile memory)

Better approach?
– Occasionally save to checkpoint region the pointers to imap pieces

How often to checkpoint?
– Checkpoint often: random I/O
– Checkpoint rarely: lose more data, recovery takes longer
– Example: checkpoint every 30 secs

CRASH RECOVERY

S1S0disk: S3S2

ptrs to
imap piecesmemory:

checkpoint
after last

checkpoint

tail after last
checkpoint

Checkpoint Summary

Checkpoint occasionally (e.g., every 30s)

Upon recovery:
- read checkpoint to find most imap pointers and segment tail
- find rest of imap pointers by reading past tail

What if crash during checkpoint?

Checkpoint Strategy

Have two checkpoint regions
Only overwrite one checkpoint at a time
Use checksum/timestamps to identify newest checkpoint

S1S0disk: S3S2

LFS SUMMARY

Journaling:
Put final location of data wherever file system chooses
(usually in a place optimized for future reads)

LFS:
Puts data where it’s fastest to write, assume future reads cached in memory

Other COW file systems: WAFL, ZFS, btrfs

Solid State Devices (SSDs) covered next lecture

Louis Oliphant University of Wisconsin - Madison
Persistence: Log-structured File System

