Persistence: Solid-State Storage Devices CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2023

Louis Oliphant

University of Wisconsin - Madisor

Persistence: Solid-State Storage Devices

Administrivia

- Project 7 due Dec 8th @ 11:59pm
- Discussion Section tomorrow
 - Project 7 Support
 - Midterm 3 Preparation
- Midterm 3 scheduled for Dec 12th in-class
 - Alternate time Dec 18th @ 12:25pm (email me)
 - Alternate time also for McBurney accommodations

Review Journaling & Log-Structured File Systems

- Data Journaling and Metadata (or ordered) Journaling
 - Understand protocol of what gets written where and what waits occur to insure consistency
- Log-structured File System
 - Layout on disk checkpoint region, segments (data, inodes, imap, segment summary),
 - Memory caching imap and buffered writes
 - Garbage Collection block liveness, which blocks to clean
 - Crash Recovery multiple CRs, roll forward

Quiz 20 Journaling

https://tinyurl.com/cs537-fa23-q20

Louis Oliphant

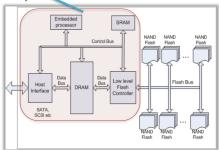
Persistence: Solid-State Storage Devices

Solid-State Storage Devices

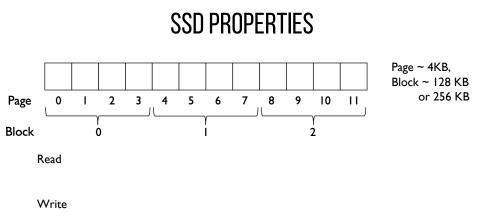
- Physical Storage System
 - SLC, MLC, TLC
 - Banks, Blocks, and Pages
- Flash-based Operations
 - Read (a page), Erase (a block), Program (a page)
- Flash Translation Layer (FTL)
- Log-Structured FTL
- Garbage Collection
- Mapping Tables
- SSD Performance and Cost

NAND FLASH

Single Level Cell (SLC) = 1 bit per cell (faster, more reliable)


Multi Level Cell (MLC) = 2 bits per cell (slower, less reliable)

Triple Level Cell (TLC) = 4 bits per cell (even more so)



SSD STRUCTURE

Flash Translation Layer (Proprietary firmware)

Simplified block diagram of an SSD

Failures: Block likely to fail after a certain number of erases (~10000 for MLC flash, ~100,000 for SLC flash)

SSD OPERATIONS

Read a page: Retrieve contents of entire page (e.g., 4 KB)

- Cost: 25-75 microseconds
- Independent of page number, prior request offsets

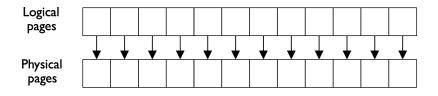
Erase a block: Resets each page in the block to all Is

- Cost: 1.5 to 4.5 milliseconds
- Much more expensive than reading!
- Allows each page to be written

Program (i.e., write) a page: Change selected 1s to 0s

- Cost is 200 to I 400 microseconds
- Faster than erasing a block, but slower than reading a page

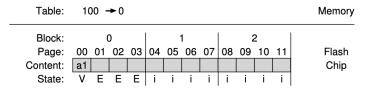
FLASH TRANSLATION LAYER


I. Translate reads/writes to logical blocks into reads/erases/programs

2. Reduce write amplification (extra copying needed to deal with block-level erases)

3.Implement wear leveling (distribute writes equally to all blocks)

Typically implemented in hardware in the SSD, but in software for some SSDs


FTL: DIRECT MAPPING

Cons?

FTL: LOG-BASED MAPPING

Idea: Treat the physical blocks like a log

FTL: LOG-STRUCTURED ADVANTAGES

Avoids expensive read-modify-write behavior

Better wear levelling: writes get spread across pages, even if there is spatial locality in writes at logical level

Challenges? Garbage!

GARBAGE COLLECTION

Т	able:	10	- 00	►0	10)1 -	≻ 1	20	000-	►2	20	001-	►3		Mem	ory
E	Block:	0			1				2							
F	Page:	00	01	02	03	04	05	06	07	08	09	10	11		Flas	sh
Cor	ntent:	a1	a2	b1	b2									1	Chi	р
5	State:	V	V	V	٧	i	i	i	i	i	i	i	i			
Та	able:	10	0 →	►4	10 ⁻	1 -	►5	20	00-	-2	20	01-	►3		Memo	orv
			-		-							-				_

Block:	0			1				2					
Page:	00	01	02	03	04	05	06	07	08	09	10	11	Flash
Content:	a1	a2	b1	b2	c1	c2							Chip
State:	V	٧	۷	٧	V	۷	Е	Е	i	i	i	i	

GARBAGE COLLECTION

Steps:	Table:	100 → 4 101 → 5 2000 → 2 2001 → 3	Memory
Read all pages in physical block	Block: Page: Content: State:	0 1 2 00 01 02 03 04 05 06 07 08 09 10 11 a1 a2 b1 b2 c1 c2 </td <td>Flash Chip</td>	Flash Chip
Write out the alive entries to the end of the log			
	Table:	100 → 4 101 → 5 2000 → 6 2001 → 7	Memory
Erase block (freeing it for later use)	Block: Page: Content: State:	0 1 2 00 01 02 03 04 05 06 07 08 09 10 11 Image: Image in the stress of the st	Flash Chip

OVERHEADS

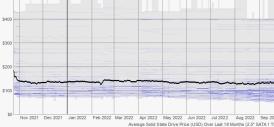
Garbage collection requires extra read+write traffic

Overprovisioning makes GC less painful

- SSD exposes logical space that is smaller than the physical space
- By keeping extra, "hidden" pages around, the SSD tries to defer GC to a background task (thus removing GC from critical path of a write)

Occasionally shuffle live (i.e., non-garbage) blocks that never get overwritten

- Enforces wear levelling


OVERALL PERFORMANCE

	Ran	dom	Sequential		
	Reads	Writes	Reads	Writes	
Device	(MB/s)	(MB/s)	(MB/s)	(MB/s)	
Samsung 840 Pro SSD	103	287	421	384	
Seagate 600 SSD	84	252	424	374	
Intel SSD 335 SSD	39	222	344	354	
Seagate Savvio 15K.3 HDD	2	2	223	223	

COST?

\$500

ITB ~ \$150 on average ~15 cents / GB

~1.5 cents / GB

Next Time - Data Integrity, Student Projects, Review

Louis Oliphant

Iniversity of Wisconsin - Madiso

Persistence: Solid-State Storage Devices