
CPU Virtualization: Processes
CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2023

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Administrivia

Check that you have a ~cs537-1/handin/<username>/P1/
directory and that you can write to it. This is where you should
turn in your project 1 solution.
Want to learn the GNU/Linux Command Line? Read the online
book at https://linuxcommand.org/
UPDATE: The wgroff instructions were showing the
wrong slash for the beginning of an ANSI command.
ANSI commands should begin with a backslash (\)
(e.g. bold is \033[1m) .

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

http://linuxcommand.org/tlcl.php

Agenda

Today
What is a process and what is its lifecycle? (abstraction)
How does an OS manage processes? (mechanism)
How can you create and work with processes? (API)

Next Time
How should the OS decide which process gets to execute and
for how long (policy)

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Aside – CS Terms

Abstraction a concept-object that mirrors common features or
attributes of non-abstract objects.

Mechanism Low-level machinery (methods or protocols) that
implement a needed piece of functionality.

Policy An algorithm for making some decision within the OS.
API Application Program Interface is a type of public

interface a program offers as a service to other
programs.

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Process

While a computer program is a
passive collection of instructions
typically stored in a file on disk, a
process is the execution of those
instructions after being loaded
from the disk into memory. –
wikipedia

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

https://en.wikipedia.org/wiki/Process_(computing)

Creation of A Process by OS

Load data from disk to memory
Allocate space for the run-time stack and initialize the stack
with arguments (i.e. fill in the parameters for argc and argv)
Allocate memory for program’s heap. Initially small, but OS
may grow the heap as needed.
Setup initial file descriptors (stdin, stdout, stderr).
Transfer control of the CPU to the newly-created process
(i.e. main()).

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

OS Control of Processes

Create – When you type a command (or click on an
application icon), the OS is invoked to create a new process.
Destroy – OS provides a way to forcefully destroy a process.
Wait – It is useful to be able to wait for a process to stop
running.
Miscellaneous Control – e.g. suspend (temporarily stop) a
process and resume it again.
Status – Get information about a process (e.g. how long has it
run for?)

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Machine State of a Process (Context)

The machine state: What a program can read or change when it is
running.

Registers (general purpose, stack pointer, PC, IP, frame
pointer, etc.)
Address space (heap, stack, etc.)
Open files

If the OS wants to suspend and later resume a process, the OS
must keep track of the context of the process.

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Aside – OSTEP Homeworks

Optional homeworks corresponding to chapters in book
Little simulators to help you understand
Can generate problems and solutions

https:
//pages.cs.wisc.edu/~remzi/OSTEP/Homework/homework.html

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

https://pages.cs.wisc.edu/~remzi/OSTEP/Homework/homework.html
https://pages.cs.wisc.edu/~remzi/OSTEP/Homework/homework.html

Process State

./process.py -l 3:100,3:50

All IO takes 5 time slices

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Direct Execution
Allow user process to run directly on hardware
OS creates process and transfers control to the start of the
process (i.e. main())

Problems
1 Process could do something restricted

Could read/write to other processes data (disk or memory)
2 Process could run forever

OS needs to be able to switch between processes
3 Process could do something slow

OS wants to use resources efficiently

Solution
LIMITED DIRECT EXECUTION – OS and hardware maintain
some control

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Limited Direct Execution Prob #1 – Restricted Ops

How can we ensure user process can’t harm others?

Solution – Privilege Levels Suppported by Hardware (bit of status)
User processes run in user mode (restricted mode)
OS runs in kernel mode (not restricted)

Instructions for interacting with devices
Could have many privilege levels (advanced topic)

How can process perform restricted instruction?
Ask the OS to do it through a system call
Change privilege level as system call is made (trap)

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

System Call

Figure 1: System Call

P can only see its own memory because it runs in user mode.
P wants to call read() but no way to call it directly.

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

XV6 Traps and Sys Calls

trap.h syscall.h

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

System Call

Figure 2: System Call

movl $5, %eax;

int $64

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

System Call

Figure 3: System Call

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Figure 4: Limited Direct Execution
Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Limited Direct Execution Prob #2 CPU Sharing

Could wait for current process to yield the CPU
(Cooperative Approach)
Could interrupt current process to regain control
(True Multi-tasking)

Guarantee OS can obtain control periodically
Hardware generates timer interrupt, running OS’s dispatcher:

while (1) {
run process A for some time-slice
stop process A and save its context
load context of another process B

}

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Context Switch

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Intialize Trap Table and Start Timer

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

OS Data Structures for Managing Processes

Process Control Block (PCB) in xv6

Process List – A list containing a PCB for each process

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Linux API for Processes

fork() – Used to create a new process
exec() – Replaces the current process image with a new
process image (whole family of functions: execl(), execlp(),
execle(), execv(), execvp(), execvpe())
wait() – Waits for a child process to stop or terminate

Demo
Run chapter 5’s demo code p1, p2, p3, and p4 to see how these
three system calls work.

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

Quiz 1 - Processes

Processes
You must use your UW-Madison account to access.

https://tinyurl.com/cs537-fa23-q1

Louis Oliphant University of Wisconsin - Madison
CPU Virtualization: Processes

https://tinyurl.com/cs537-fa23-q1

