Virtualizing Memory
CS 537: Introduction to Operating Systems

Louis Oliphant
University of Wisconsin - Madison

Fall 2023

Louis Oliphant

Virtualizing Memory

Administrivia

@ Project 1 Due Sep 19th, 11:59pm (TONIGHT!)
@ Project 2 Released Today, Due Sep 26th © 11:59pm

Louis Oliphant

Virtualizing Memory

Agenda

Goals of Memory Virtualization
Understand Address Space

Memory APl (malloc() and free())
Address Translation (Base & Bounds)

CPU Virtualization (2 lectures: mechanism + policy)
Memory Virtualization (6 lectures)

Louis Oliphant

Virtualizing Memory

——
Review: CPU Scheduling

@ Design scheduling policy:
o Understanding Workload (interactive vs. batch programs)
e Using metrics to optimize type of performance (turnaround
time, response time)
e Incorporating non-preemptive or preemptive concepts
@ Scheduler Types & Issues:
e FIFO/FCFS, SJF, STCF, RR
o MLFQ
@ Using past behavior to predict future behavior
e Handling mix of 10 vs CPU bound jobs
@ Handling tricky processes
@ Tuning length of time slice, number of queues, boosting length

@ Other Goals/Metrics (fairness) and Policies (Lottery)

Louis Oliphant

Virtualizing Memory

-
MLFQ Review

Quiz 3 MLFQ: https://tinyurl.com/cs537-fa23-q3

[High Priority] - Qi
Q
Q
Q
Q
Q
Q

[Low Priority] Q

Louis Oliphant

OO,
7

6

5
—©

3

2
=

RULES:
Rule 1: If Priority(A) > Priority(B) then A runs
Rule 2: If Priority(A) == Priority(B) then
A&B run in RR

Rule 3: Processes start at top priority

Rule 4: Once a job uses up its time allotment
at a given level (regardless of how many times
it has given up the CPU), its priority is reduced
Rule 5: After some time period S, move all the
jobs in the system to the topmost queue.

Virtualizing Memory

https://tinyurl.com/cs537-fa23-q3

Memory Early Days Multiprogramming Goals

Uniprogramming: One process
runs at a time
0KB

@ Transparency: Process is

Operating System H
(tode, data, etc.) unaware of sharing
@ Protection: Cannot corrupt OS
B4KB or other processes’” memory

o Efficiency: Do not waste
memory or slow down processes
@ Sharing: Enable sharing between
Current Program .
(code, data, etc.) cooperating processes

max

Louis Oliphant

Virtualizing Memory

Alternative 1: Time Sharing

Memory
Create

code
data
heap

stack

Process 1

Memory
create

code
data
heap

stack

Program2

Process 2

Louis Oliphant

Memory

@ Storing process and loading
another is extremely slow!

@ Better Alternative: Space
Sharing!

Virtualizing Memory

Alternative 2: Space Sharing

OKB

64KB

128KB

192KB

256KB

320KB

384KB

448KB

512KB

Louis Oliphant

Operating System
(code, data, etc.)

(free)

Process C
(code, data, etc.)

Process B
(code, data, etc.)

(free)

Process A
(code, data, etc.)

(free)

(free)

Protection becomes extremely important,
don’'t want a process to be able to read
or write some other process's memory.

Virtualizing Memory

Abstraction: Address Space

the code segment:
where instructions live

O0KB
Program Code

1KB

Heap
2KB

(free)
15KB

Stack
16KB

the heap segment:
contains malloc’d data
dynamic data structures

(it grows positively)

(it grows negatively)
the stack segment:
contains local variables
arguments to routines,
return values, etc.

Louis Oliphant

Virtualizing Memory

View of memory from program'’s
perspective.
@ Heap can become
fragmented
@ Stack does not

Demo

vm-intro/va.c

-
What Variables Go Where (Stack, Heap, Code/Static)?

int J;

int* foo(int Y, int *Z) {
int *A = malloc(sizeof(int));
A= 2;
Y = 3;
*Z =4,
return A;
}

void main()

int *B;
B = malloc(sizeof(int));
*¥B = 5;

printf("A:
printf("C:®
free(B);
free(C);

ox
o@
O 0 o

é ",A,*B);
d\n”,*C J);

}

Louis Oliphant

Virtualizing Memory

Memory Access

#include <stdio.h> 0x10: movl 0x8(%rbp), %edi
#include <stdlib.h> 0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)
int main() {
int x; %rbp is the base pointer: points
X = x + 3; to base of current stack frame

Louis Oliphant

Virtualizing Memory

Memory Access (cont.)

Initial %rip = 0x10 Fetch instruction at addr 0x10
%rbp = 0x200 Exec: load from addr 0x208

0x10: movl 0x8(%rbp), %edi Fetch instruction at addr 0x13
0x13: addl $0x3, %edi Exec: no memory access
0x19: movl %edi, 0x8(%rbp)

Fetch instruction at addr 0x19
%rbp is the base pointer: points Exec: store to addr 0x208
to base of current stack frame
%rip is instruction pointer
(program counter)

Louis Oliphant

Virtualizing Memory

Space Sharing Attempt 1 (Static Relocation)

Idea: OS rewrites each program as it is loaded and placed in memory
Change jumps, loads of static data, etc.

0x1010: movl ©0x8(%rbp), %edi
0x1013: addl $0x3, %edi

rW 0x1019: movl %edi, @x8(%rbp)

0x10: movl Ox8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

0x3010:mov1 Ox8(%rbp), %edi
rewrite 0x3013:addl $0x3, %edi
0x3019:movl %edi, 0x8(%rbp)

Louis Oliphant

Virtualizing Memory

Static Relocation Memory Layout

4 KB

Program Code
Heap

process |
free)

stack

8 KB

(free)

12 KB

Program Code
Heap

process 2
free)

stack

16 KB

Louis Oliphant

Virtualizing Memory

0x1010:
0x1013:
0x1019:

0x3010:
0x3013:
0x3019:

mov 1
addl
movl

mov 1
addl
mov 1

0x8(%rbp), %edi
$0x3, %edi
%edi, 0x8(%rbp)

@x8(%rbp), %edi
$0x3, %edi
%edi, @x8(%rbp)

Static Relocation Disadvantages

@ No Protection
e Process can destroy OS or other processes
e No privacy

@ Cannot move address space after it has been placed
e May not be able to allocate new process

Louis Oliphant

Virtualizing Memory

Space Sharing Attempt 2 (Dynamic Relocation)

@ Requires hardware support (Memory Management Unit
(MMU))
o MMU dynamically changes process address at every memory
reference
o Process generates logical or virtual addresses (in their address
space)
e Memory hardware uses physical or real addresses

Process runs here OS can control MMU

| — MMU <

A 4

CPU

Memory

Logical address Physical address

Louis Oliphant

Virtualizing Memory

Dynamic Relocation Hardware Support

e Kernel Mode: OS runs
e Allows instructions for manipulating MMU
e OS access to all of physical memory

@ User mode: process runs
e Perform translation of logical address to physical address

Louis Oliphant

Virtualizing Memory

-
Dynamic Relocation with Base+Bounds

Translation on every memory access of user process

© MMU compares logical address to bounds register
if logical address is greater, then generate error
o MMU adds base register to logical address to form physical

address
32 bits 32 bits | bit
registers | base | | bounds | F’node|
logical physical
address address
+
base
error
P —

Louis Oliphant

Virtualizing Memory

Base+Bounds Example

0KB
I KB I base register
2KB bounds register
3KB
4KB

5 KB

N —

6 KB

Louis Oliphant

Every process has its own set of
base and bounds register values

OS sets registers when loading
process

Process can be moved, just need
to update its base register

Process is restricted to its
address space

Virtualizing Memory

Hardware Requirements

Hardware Requirements Notes

Privileged mode Needed to prevent user-mode processes
from executing privileged operations

Base/bounds registers Need pair of registers per CPU to support

address translation and bounds checks
Ability to translate virtual addresses Circuitry to do translations and check

and check if within bounds limits; in this case, quite simple
Privileged instruction(s) to OS must be able to set these values
update base/bounds before letting a user program run
Privileged instruction(s) to register OS must be able to tell hardware what
exception handlers code to run if exception occurs
Ability to raise exceptions When processes try to access privileged

instrictions or out-of-bounds memory

Figure 15.3: Dynamic Relocation: Hardware Requirements

Louis Oliphant

Virtualizing Memory

OS Requirements

OS Requirements

Notes

Memory management

Need to allocate menory for new processes;
Reclaim memory from terminated processes;
Generally manage memory via free list

Base/bounds management

Must set base/bounds properly upon context switch

Exception handling

Code to run when exceptions arise;
likely action is to terminate offending process

Louis Oliphant

Virtualizing Memory

Limited Direct Execution (Dynamic Relocation) @ Boot

OS @ boot Hardware (No Program Yet)
(kernel mode)
initialize trap table

remember addresses of...
system call handler
timer handler
illegal mem-access handler
illegal instruction handler
start interrupt timer
start timer; interrupt after X ms
initialize process table
initialize free list

Figure 15.5: Limited Direct Execution (Dynamic Relocation) @ Boot

Louis Oliphant

Virtualizing Memory

Good Running Process

OS @ run Hardware Program
(kernel mode) (user mode)
To start process A:

allocate entry

in process table

alloc memory for process

set base/bound registers

return-from-trap (into A)

restore registers of A
move to user mode
jump to A’s (initial) PC
Process A runs
Fetch instruction
translate virtual address
perform fetch
Execute instruction
if explicit load /store:
ensure address is legal
translate virtual address
perform load /store
(A runs...)

Louis Oliphant

Virtualizing Memory

Context Switch

(A runs...)
Timer interrupt
move to kernel mode
jump to handler
Handle timer
decide: stop A, run B
call switch () routine
save regs(A)
to proc-struct(A)
(including base/bounds)
restore regs(B)
from proc-struct(B)
(including base /bounds)
return-from-trap (into B)
restore registers of B
move to user mode
jump to B's PC
Process B runs
Louis Oliphant

Virtualizing Memory

Bad Process

Process B runs
Execute bad load
Load is out-of-bounds;
move to kernel mode
jump to trap handler
Handle the trap

decide to kill process B

deallocate B's memory

free B's entry

in process table

Figure 15.6: Limited Direct Execution (Dynamic Relocation) @ Runtime

Louis Oliphant

Virtualizing Memory

Advantages and Disadvantages

@ Provides protection across address spaces

@ Supports Dynamic relocation — Can place process at different
locations initially and move address spaces later

@ Simple, inexpensive implementation: few registers, little logic in
MMU

@ Fast: add and compare in parallel

Disadvantages

@ Each process must be allocated contiguously in physical
memory — must allocate memory that may not be used by
process

@ No partial sharing: Cannot share parts of address space

Louis Oliphant

Virtualizing Memory

Disadvantages

@ Each process must be allocated contiguously 0
@ Must allocate memory that may not be used T

Heap
by process 7
@ No partial sharing: Cannot share parts of N

address space

2|

Louis Oliphant

Virtualizing Memory

