Paging
CS 537: Introduction to Operating Systems

Louis Oliphant
University of Wisconsin - Madison

Fall 2023

Louis Oliphant

Administrivia

@ Project 2 Due Sep 26 @ 11:59pm
@ Project 3 out — Due Oct 10 @ 11:59pm

Louis Oliphant

Agenda

o Disadvantages of Segmentation Model
@ Understand Paging Model
e Advantages/Disadvantages of Paging

Louis Oliphant

Review: Segmentation

e Divides address space into logical segments (code/static,
stack, heap)

@ Have separate base/bounds pairs for each segment

@ Segments grows and are placed independently

@ Logical Addresses broken into segment ID and offset (for
explicit approach)

@ Extra protection bits and growth direction for segments

Louis Oliphant

Review: Segmentation

./segmentation.py -c

address space size 1k
phys mem size 16k

Segment register information:

Segment 0 base (grows positive) : Oxlaea (decimal 6890)
Segment 0 limit 1 472

Segment 1 base (grows negative) : 0x1254 (decimal 4692)
Segment 1 limit 1 450

Virtual Address Trace
VA 0: 0x020b (decimal: 523) --> SEGMENTATION VIOLATION (SEG1)
VA 1: 0x019e (decimal: 414) --> VALID in SEGO: 0x1c88 (decimal: 7304)
VA 2: 0x0322 (decimal: 802) --> VALID in SEGl: 0x1176 (decimal: 4470)
VA 3: 0x0136 (decimal: 310) --> VALID in SEGO: 0x1c20 (decimal: 7200)
VA 4: 0x0le8 (decimal: 488) --> SEGMENTATION VIOLATION (SEGO)

For each virtual address, either write down the physical address it translates to
OR write down that it is an out-of-bounds address (a segmentation violation). For
this problem, you should assume a simple address space with two segments: the top
bit of the virtual address can thus be used to check whether the virtual address

is in segment © (topbit=0) or segment 1 (topbit=1). Note that the base/limit pairs
given to you grow in different directions, depending on the segment, i.e., segment 0
grows in the positive direction, whereas segment 1 in the negative.

Louis Oliphant

Quiz 5 : Segmentation Base/Bounds Translation

https://tinyurl.com/cs537-fa23-q5

Louis Oliphant

Paging

https://tinyurl.com/cs537-fa23-q5

Segmentation Disadvantages

- Each segment must be kg ot Compacted
allocated contiguously
8KB Operating System
- May not have sufficient physical 16KB
memory for large segments RN
24KB
- External Fragmentation (makes ok Allocated
managing free memory hard!) (notin use)
40KB Allocated
48KB .
(not in use)
56KB
Allocated
64KB

Louis Oliphant

Goal: Eliminate requirement that address space is contiguous

Eliminate external fragmentation
Grow segments as needed

|dea:
Divide address spaces and physical
memory into fixed-sized pages

Size: 2", Example: 4KB

PAGING

Process |

>

| —

—

—— [

Process 2 Process 3

Logical View

Physical View

TRANSLATION OF PAGE ADDRESSES

How to translate logical address to physical address!?
— High-order bits of address designate page number
— Lowe-order bits of address designate offset within page

20 bits |2 bits 32 bits
page number page offset Logical address
v
translate l
v
frame number page offset Physical address

No addition needed; just append bits correctly!

ADDRESS FORMAT

Given known page size, how many bits are needed in address to specify offset in page!?

Page Size Low Bits (offset)

|6 bytes
| KB
| MB
512 bytes
4 KB

ADDRESS FORMAT

Given number of bits in virtual address and bits for offset,

how many bits for virtual page number?

Page Size Low Bits(offset) EI/';';;’IA\;:; High Bits(vpn)
|6 bytes 4 10
| KB 10 20
| MB 20 32
512 bytes 9 |6
4 KB 12 32

ADDRESS FORMAT

Given number of bits for vpn, how many virtual pages can there be in an address space!?

Page Size Low Bits (offset) Virt Addr Bits High Bits (vpn) | Virt Pages
|6 bytes 4 10 6
| KB 10 20 10
| MB 20 32 12
512 bytes 9 |6 7
4 KB 12 32 20

VIRTUAL —> PHYSICAL PAGE MAPPING

Number of bits in
virtual address

need not equal \4

number of bits in
physical address

VPN offset
0 I 0 I 0 I
=annl
Addr Mapper
I A /
I 0 I I 0 I 0 I
PPN offset

How should OS translate VPN to PPN?

PAGETABLES

What is a good data structure ?

Simple solution: Linear page table aka array

0

2Mn

PN

3130292827 262524232221 20191817 161514131211 10 9 8 7 6 5 4 3 2 1
- Q =

a L
PFN ol <8§DE

PER-PROCESS PAGETABLE

Pl P2

Virt Mem .§!!\
~—
\ \~

Phys Mem

< g N

P3

>
_

FILL IN PAGETABLE

Pl P2 P3
vireMem (IR
\
\\\- \~
< a T T—
Phys Mem H B Il Il
o I 2 3 4 5 6 7 8 9 10 Il
Pl P2 P3

Page Tables:

PageTable Size

Consider a 32-bit address space with 4 KB pages. Assume each PTE is 4 bytes

How many bits do we need to represent the offset within a page?
How many virtual pages will we have in this case?

What will be the overall size of the page table?

WHERE ARE PAGETABLES STORED?

Implication: Store each page table in memory

Hardware finds page table base with register (e.g., CR3 on x86)

What happens on a context-switch!?
Change contents of page table base register to newly scheduled process

Save old page table base register in PCB of descheduled process

OTHER PAGETABLE INFO

What other info is in pagetable entries besides translation?
— valid bit
— protection bits
— present bit (needed later)
— reference bit (needed later)
— dirty bit (needed later)

Pagetable entries are just bits stored in memory

— Agreement between HW and OS about interpretation

MEMORY ACCESSES WITH PAGING

|4 bit addresses Fetch instruction at logical addr 0x0010

0x0010: movl ©x1100, %edi Access page table to get ppn for vpn 0

Mem ref |:

Assume PT is at phys addr 0x5000
Assume PTFE’s are 4 bytes , ,
Assume 4KB pages Fetch instruction at (Mem ref 2)

How many bits for offset? 12

Learn vpn O is at ppn

Simplified view | 0
of page table | 80

MEMORY ACCESSES WITH PAGING

|4 bit addresses Exec, load from logical addr Ox 1100

0x0010: movl ©x1100, %edi Access page table to get ppn for vpn |

Mem ref 3:
Assume PT is at phys addr 0x5000
Assume PTFE’s are 4 bytes ,
Assume 4KB pages Movl from into reg (Mem ref 4)

How many bits for offset? 12

Learn vpn | is at ppn

Simplified view | 0
of page table | 80

MEMORY ACCESSES WITH PAGING

|4 bit addresses Fetch instruction at logical addr 0x0010

0x0010: movl ©x1100, %edi Access page table to get ppn for vpn 0

Memref I: O0x5000
Assume PT is at phys addr 0x5000
Assume PTFE’s are 4 bytes , ,
Assume 4KB pages Fetch instruction at __ 0x2010__ (Mem ref 2)

How many bits for offset? 12

Learn vpn O is at ppn 2

Exec, load from logical addr Ox 1100

2 Access page table to get ppn for vpn |
Simplified view | 0
of page table 80 Mem ref 3: 0x5004

99 Learn vpn | is at ppn 0

Movl from __0x0100___into reg (Mem ref 4)

PROS/CONS OF PAGING

No external fragmentation

Any page can be placed in any frame in
physical memory

Fast to allocate and free

— Alloc: No searching for suitable free
space

— Free: Doesn’t have to coalesce with
adjacent free space

Internal fragmentation
— Page size may not match process needs
— Wasted memory grows with larger pages

Additional memory reference to page table =
— Page table must be stored in memory

— MMU stores only base address of page
table

Storage for page tables may be substantial
— Requires PTE for all pages in address
space
— Entry needed even if page not allocated ?

SUMMARY: PAGE TRANSLATION STEPS

For each mem reference:

|. extract VPN (virt page num) from VA (virt addr)
2. calculate addr of PTE (page table entry)

3.read PTE from memory

4. extract PFN (page frame num)

5. build PA (phys addr)

6. read contents of PA from memory into register

Which steps are expensive!?

