
Translation-Lookaside Buffer
CS 537: Introduction to Operating Systems

Louis Oliphant

University of Wisconsin - Madison

Fall 2023

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

Administrivia

Project 3 out – Due Oct 10 @ 11:59pm
Updated instructions last night about job list – check out new
instructions on repo

Lab/Office Hours
First try to get help in B109 (still submit a ticket) if there is
room, Second stay where you are (and submit a ticket)
Tickets older than 6 hours will be ignored (i.e. submit again)
Staff have been told to email students if they can’t find them
/ can’t connect to Zoom

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

Review: Paging

Paging is dividing up a process’s address space into equally
sized sections (called pages) and dividing memory into the
same sized sections (called page frames)
A process’s page table keeps track of the mappings from
virtual page number (VPN) to physical frame number
(PFN)
Virtual Address Translation Process:

1 Extract VPN from virtual address
2 Calculate address of PTE
3 Read PTE from memory
4 Extract PFN
5 Build Physical Address
6 Read contents of PA from memory into register

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

Paging Example

./paging-linear-translate.py

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

Paging Example

./paging-linear-translate.py -c

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

Quiz 6: Memory Models and Paging

https://tinyurl.com/cs537-fa23-q6

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

https://tinyurl.com/cs537-fa23-q6

Paging Disadvantages

What was one memory access becomes two
first to look up the VPN->PFN translation (in the page table)
second to access the memory location

Additional memory must be used to store the page tables
4KB pages with 32-bit virtual addresses requires storing 1M
page table entries per process

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

MMU’s Cache – Reducing Memory Accesses for PTE
lookups

The translation-lookaside buffer (TLB) is part of the CPU’s
memory management unit
It is a hardware cache of popular virtual-to-physical address
translations
Typical TLBs might have 32, 64, or 128 entries and are fully
associative (search the entire TLB in parallel)
The MMU first checks the TLB to see if translation mapping is
there
Having high hit rate (# hits / # lookups) in TLB is
extremely important for runtime performance

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

TLB Control Flow Algorithm

VPN = (VirtualAddress & VPN_MASK) >> SHIFT
(Success, TlbEntry) = TLB_Lookup(VPN)
if (Success == True) // TLB Hit

if (CanAccess(TLBEntry.ProtectBits) == True)
Offset = VirtualAddress & OFFSET_MASK
PhysAddr = (TlbEntry.PFN << SHIFT) | Offset
Register = AccessMemory(PhysAddr)

else
RaiseException(PROTECTION_FAULT)

else // TLB Miss (OS or MMU handles)
PTEAddr = PTBR + (VPN*sizeof(PTE))
PTE = AccessMemory(PTEAddr)
if (PTE.Valid == False)

RaiseException(SEGMENTATION_FAULT)
else if (CanAccess(PTE.ProtectBits) == False)

RaiseException(PROTECTION_FAULT)
else

TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)
RetryInstruction()

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

Example: Accessing An Array

Sequential access is fast – only
the first access to an element on
the page yields a TLB miss.
Takes advantage of spatial
locality (referencing items close
in address space)
TLB also takes advantage of
temporal locality
(re-referencing of same address
close in time).
How would hit rate of sequential
access compare to hit rate of
random access?

int sum = 0;
for (i=0; i<10; i++)
{

sum += a[i];
}

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

Context Switches

Recall that a page table is unique to a specific process
On a context switch the TLB will be full of translations for old
process
Could flush the TLB (but lots of TLB misses after switch)
Could mark entries with an Address Space Identifier (ASID) to
keep entries from multiple processes

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

TLB Contents

Example MIPS TLB Entry

VPN – used for lookup
PFN – change the Virtual address VPN to PFN
G – global bit (shared by all processes, don’t check ASID)
ASID – Address Space Identifier (which process’s Page Table)
D – dirty bit (changed when page has been written to)
V – valid bit (valid translation present in entry)

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

TLB Replacement Policy

When installing a new entry in the TLB, need to replace an
old one – which one?
One common approach is evict the Least Recently Used
(LRU) entry
Another typical approach is to evict a random entry

random avoids corner-case behaviors; for example, when a
program loops over n+1 pages with a TLB of size n
– in this case the LRU misses upon every access.

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

Summary

TLB solves (or at least significantly reduces) the number of
memory lookups for pagetable entries
TLB misses can be handled by hardware (the MMU) or
software (the OS)
Different Strategies for Context Switches (flush or ASID
portion)
Different Replacement policies for TLB entries

Next Time talk about how to shrink the page table

Louis Oliphant University of Wisconsin - Madison
Translation-Lookaside Buffer

