
Concurrency: Condition Variables
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Administrivia

Project 4 due Mar 12th @ 11:59pm

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Review: Locked Data Structures

Making thread safe data structures
One big lock, then worry above performance if still not
performing efficiently enough

Approximate Counter, Linked List, Queue, Hash Table examples

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Quiz: Locked Data Structures

https://tinyurl.com/cs537-sp24-q11

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables

https://tinyurl.com/cs537-sp24-q11


Condition Variables Agenda

A mechanism for threads to check if a condition is true before
continuing execution

Example in pthread_join()
Example in producer/consumer (bounded buffer) problem

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



CV Definition

A condition variable is an explicit queue that threads can put
themselves on when some state of execution is not as desired. Some
other thread, when it changes said state, can wake one of the
waiting threads thus allowing them to continue.

pthread_cond_wait(pthread_cond_t *c, pthread_mutex_t *m);
pthread_cond_signal(pthread_cond_t *c);

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Parent Waiting for Child

void *child(void *arg) {
printf("child\n");
thr_exit(); //OUR IMPLEMENTATION OF EXIT
return NULL;

}
int main(int argc, char *argv[]) {

printf("parent: begin\n");
pthread_t p;
Pthread_create(&p,NULL,child,NULL);
thr_join(); //OUR IMPLEMENTATION OF JOIN
printf("parent: end\n");
return 0;

}

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Parent Waiting for Child (cont)
int done = 0;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t c = PTHREAD_COND_INITIALIZER;

void thr_exit() {
Pthread_mutex_lock(&m);
done = 1;
Pthread_cond_signal(&c);
Pthread_mutex_unlock(&m);

}

void thr_join() {
Pthread_mutex_lock(&m);
while (done == 0)

Pthread_cond_wait(&c,&m);
Pthread_mutex_unlock(&m);

}
Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



wait() and signal()

The wait() call assumes the mutex is locked when it is called. The
call releases the lock and puts the thread to sleep.

After another thread calls signal(), the thread is awoken, the lock
is reacquired before returning from the call to wait().

In the implementation of thr_join() and thr_exit() all three
variables are important for this correct implementation: done,
mutex, and cv.

Imagine no done variable and child runs immediately and calls
thr_exit()
Imagine no mutex (and if statement) and parent calls
thr_join(), checks done, but before calling signal child runs.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Producer Consumer Example

One or more producer threads generating data items and
placing them in a buffer
One or more consumer threads grabbing items from the
buffer and consuming them in some way.

Lots of problems can be seen in this way:

Multi-threaded web server
producer takes incoming requests and puts them in a queue
consumer threads take requests from the queue to process them

Linux Pipes: grep foo file.txt | wc -l
First program is producer (given output to OS)
Second program is consumer (reading data from the OS)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Producer/Consumer Setup

To understand this scenario we will use a buffer of a single integer
and a counter that will be one if the buffer is full (holding a value)
or 0 if it is empty. Idea can be extended to larger buffers.
int buffer;
int counter = 0; //initially empty

void put(int value) {
assert(count == 0);
count = 1;
buffer = value;

}

int get() {
assert(count == 1);
count = 0;
return buffer;

}

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Producer/Consumer Threads
Now we need the code for the producer and consumer threads.
void *producer(void *arg) {

int i;
int loops = (int) arg;
for(i=0;i<loops; i++) {

put(i);
}

}

void *consumer(void *arg) {
int i;
while(1) {

int tmp = get();
printf("%d\n",tmp);

}
}

A clear problem: producer can put() into a full buffer, consumer
can get() from an empty buffer.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Attempt 2 (still broken)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Broken Solution Analysis

Producer waits for buffer to be empty (lines p1-p3), then puts a
value in the buffer, signals, and releases the lock (lines p4-p6)
Consumer waits for buffer to be full (lines c1-c3), then gets a
value, signals, and releases the lock (lines c4-c6)

This works for a single producer thread and single consumer thread.

What happens with 2 consumers and one producer – The 2nd
consumer might context-switch and get the value while the first
consumer is waiting.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Broken Solution Thread Trace

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Meaning of Signal

When a thread signals, just hint that state has changed – no
guarantee state is what thread wants (Mesa semantics).

Hoare semantics guarantees that the woken thread will run
immediately upon being woken.

Virtually every system ever built employs Mesa semantics.

Can fix this problem using while instead of if to check the
condition again

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Failed Attempt 3

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Another Broken Solution Analysis

imagine two consumers, one producer – but both consumers
run first, find buffer empty, go to sleep
Producer runs, buffer is empty, fills it, sends a signal to wake
one other thread, loops finds buffer full and sleeps.
First consumer wakes, reads out data, sends signal (WHO IS
WAITING TO BE SIGNALLED?), loop, finds buffer empty and
sleeps.
One of the waiting threads is awoken, if it is consumer 2 then
problem. Since buffer is empty it goes back to sleep.
EVERYONE IS WAITING. Signalling needs to be directed
(consumers signal producers and vice versa). Need 2 signal
variables.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Broken Solution Thread Trace

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Correct Producer / Consumer Solution (One Buffer)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Correct Put / Get (Larger Buffer)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Correct Producer / Consumer (Larger Buffer)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Free Memory / Allocate Memory Example

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables



Covering Condition Scenario

Imagine all of memory is full, and a thread calls allocate(100)
and another thread calls allocate(10).

Now another thread calls free(50), but it wakes the thread that
needs 100 (problem) – it just goes back to sleep because there is
not enough free memory.

solution – wake all the threads (pthread_cond_broadcast())

Guaranteed that any thread that should be woken up are.
Down side is negative performance impact since most threads
will just go back to sleep (not enough memory).

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Concurrency: Condition Variables


