
Persistence: I/O and Disk Devices
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

Administrivia

Project 5 due Tue Apr 2nd @ 11:59pm

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

I/O Devices Agenda

How OS interacts with I/O Devices
How HDD is organized
Disk Performance
Disk Scheduling

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

Prototypical Systems Architecture

Multiple Bus Levels
Faster busses are shorter, more
expensive

Direct Media Interface
Slow devices connect through
an I/O chip

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

OS Communication with Cannonical Device

while (STATUS == BUSY)
; //wait until device is not busy

write data to DATA register
write command to COMMAND register

(Doing so starts the device and executes the command)
while (STATUS == BUSY)

; //wait until device is done with request

OS uses polling to check
status
Programmed I/O (PIO)
when main CPU controls
data movement
Motivates Hardware
Interrupts for effeciency

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

More Efficient I/O
Polling

Interrupts (allow other process to run)

OS still copies data to device

OS uses Direct Memory Access (DMA) which handles the copy portion of IO
Just pass data location and size to DMA Controller

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

Methods of I/O Interactions

Explicit I/O Instructions
on x86, the in and out instructions used to communicate with device
OS conrols register with data, and knows specific port which names the
device, issues instruction.

Memory-mapped I/O
Device appears as memory location
OS uses same load/store commands as for regular memory
Hardware routes the instruction to the device instead

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

Device Driver

Many, many devices, each has its own protocol
Device driver for each device, rest of OS just interacts with driver
OS often has raw interface to directly read and write blocks
70% of OS code is found in device drivers

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

Simple IDE Disk Driver (xv6)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

Simple IDE Disk Driver (xv6) (cont.)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

Hard Disk Interface

Consists of sectors (512 byte
blocks)
Sectors numbered from 0 to
n − 1, address space
Many file systems read/write
4KB at a time
Sectors written along tracks
Arm moves head as disk rotates
Sectors have a skew from one
track to another
In multi-zoned disk, tracks in
different zone have more sectors

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

Hard Disk Mechanics

Platters has two surfaces and
rotate around spindle
Head and arm on each side of
platter
Rate of Rotation: RPM
Time to read/write divided into
three components:

Seek time
Rotation time
Transfer time

TI/O = Tseek + Trotation + Ttransfer

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

Seek, Rotate, Transfer

Seek cost: Function of cylinder distance
Not purely linear cost
Must accelerate, coast, decelerate, settle
Settling alone can take 0.5 - 2 ms

Entire seeks often takes 4 - 10 ms
Average seek = 1/3 of max seek

Depends on rotations per minute (RPM)
7200 RPM is common, 15000 RPM is high end

Average rotation: Half of time for 1 rotation

Pretty fast: depends on RPM and sector density.

100+ MB/s is typical for maximum transfer rate

Total time = seek + rotation + transfer time

Workload Performance

So…

- seeks are slow
- rotations are slow

- transfers are fast

How does the kind of workload affect performance?

Sequential: access sectors in order
Random: access sectors arbitrarily

Disk Spec

Cheetah Barracuda
Capacity 300 GB 1 TB
RPM 15,000 7,200
Avg Seek 4 ms 9 ms
Max Transfer 125 MB/s 105 MB/s
Platters 4 4
Cache 16 MB 32 MB

Sequential read 100MB: what is throughput for each?

Quiz 14: Disk Performance & Scheduling

https://tinyurl.com/cs537-sp24-q14

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

https://tinyurl.com/cs537-sp24-q14

I/O SCHEDULERS

I/O Schedulers

Given a stream of I/O requests, in what order should they be served?

Much different than CPU scheduling

Position of disk head relative to request position matters more than length of job

FCFS (First-Come-First-Serve)

Assume seek+rotate = 10 ms for random request

How long (roughly) does the below workload
take?Requests are given in sector numbers

300001, 700001, 300002, 700002, 300003, 700003

300001, 300002, 300003, 700001, 700002, 700003

SSTF (Shortest SEEK Time First)

Strategy always choose request that requires least seek time
(approximate total time with seek time)

Greedy algorithm (just looks for best NEXT decision)

How to implement in OS?

Disadvantages?

SCAN

SCAN or Elevator Algorithm:
– Sweep back and forth, from one end of disk other, serving requests as pass

that cylinder
– Sorts by cylinder number; ignores rotation delays

C-SCAN (circular scan): Only sweep in one direction

Pros/Cons?

SPTF (Shortest POSITIONING Time First)

SATF
(Shortest ACCESS

TIME FIRST)

Schedulers

OS

Disk

Scheduler

Scheduler

Where should the
scheduler go?

What happens?

void reader(int fd) {
char buf[1024];
int rv;
while((rv = read(fd, buf)) != 0) {

assert(rv);
// takes short time, e.g., 1ms
process(buf, rv);

}
}

Assume 2 processes each calling read() with C-SCAN

Work Conservation

Work conserving schedulers always try to do work if there’s work to be done

Sometimes, it’s better to wait instead if system anticipates another request will arrive

Possible improvements from I/O Merging

SUMMARY

Disks: Specific geometry with platters, spindle, tracks, sector

I/O Time: rotation_time + seek_time + transfer_time
Sequential throughput vs. random throughput

Scheduling approaches: SSTF, SCAN, C-SCAN
Benefits of violating work conservation

Have A Great Spring Break!

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: I/O and Disk Devices

