
Persistence: File System API
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Administrivia

Project 6 has been released
Midterm 2 grades have been released

Average: 86%, standard deviation 11%
See Canvas Files for solution with explanations

Project 4 grades out soon

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Review: RAID

RAID 0 (striping)
RAID 1 (mirroring)
RAID 4 and RAID 5 (parity)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Striping

Disk 0 Disk 1 Disk 2 Disk 3

0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

N · S sequential read throughput

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

RAID 5 parity

Disk 0 Disk 1 Disk 2 Disk 3 Disk 3

0 1 2 3 P0
4 5 6 P1 7
8 9 P2 10 11
12 P3 13 14 15
P4 16 17 18 19

N/4 · R random write throughput

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Review: RAID

https://tinyurl.com/cs537-sp24-q16

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

https://tinyurl.com/cs537-sp24-q16

File Systems

Disks alone would be hard to use

A file system is an abstraction for persistent storage

Main concepts: files and directories

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Why care about the file system?

Common to many, many systems: Window, macOS, Linux, Android, iOS

Essentially all storage goes through a file system

You will likely use this API

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

What’s cool about file systems?

User management: you can interact with file system directly

Allocation: file system helps you dynamically allocate storage without
thinking about it too much

Implementation: you’ll be able to understand how the API is implemented

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

File System abstractions

File – A linear array of bytes
that you can read, write, and
resize.
Directory – Contains mappings
from names to other directories
and files. This creates a
directory tree.
File system – Refers to the
whole collection.
Also refers to the
implementation (e.g., ext4,
NTFS, APFS, btrfs).

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Naming a file

API needs a way to refer to a file

Three types of names:

inode number (unique number)
path
file descriptor

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Why not just use paths?

read(char *path, void *buf, size_t nbyte)
write(char *path, void *buf, size_t nbyte)

Disadvantages: expensive traversal on every operation

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

File descriptors

Idea:

do expensive traversal once (in open syscall)
store inode in process memory as file descriptor
do reads/writes/etc via descriptor

Note that we have a per-process file-descriptor table

File descriptors are just indexes into this table

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Creating and opening Files

int fd = open("foo", O_CREAT|O_WRONLY|O_TRUNC, S_IRUSR|S_IWUSR);

"foo" – the relative or absolute pathname of the file to be opened
O_CREAT|O_WRONLY|O_TRUNC – flags indicating creation, write-only,
and truncate if file already exists
S_IRUSR|S_IWUSR – permissions, readable and writable by the owner
fd – file descriptor, an integer into array of opened files, managed by OS
on per-process basis.

struct proc {
...
struct file *ofile[NOFILE]; // Open files
...

}

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Reading and Writing Files

prompt> echo hello > foo
prompt> cat foo
hello
prompt>

prompt> strace cat foo -- prints system calls performed by program
...
open("foo", O_RDONLY|O_LARGEFILE) = 3
read(3, "hello\n", 4096) = 6
write(1, "hello\n", 6) = 6
hello
read(3, "", 4096) = 0
close(3) = 0
...
prompt>

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Reading and Writing, But Not Sequentially

off_t lseek(int fildes, off_t offset, int whence);

fildes – the file descriptor
offset – position within the file
whence – How offset is used

SEEK_SET – the offset is set to the offset in bytes
SEEK_CUR – the offset is set to its current location plus offset bytes
SEEK_END – the offset is set to the size of the file plus offset bytes

struct file {
int ref;
char readable;
char writable;
struct inode *ip;
uint off;

}

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Shared File Table Entries – fork() and dup()

File table entries are shared when calling fork() or dup():
int main(int argc, char *argv[]) {

int fd = open("file.txt", O_RDONLY);
int rc = fork();
if (rc == 0) {

rc = lseek(fd, 10, SEEK_SET);
printf("child: offset %d\n", rc);

} else if (rc > 0) {
(void) wait(NULL);
printf("parent: offset %d\n", (int) lseek(fd, 0, SEEK_CUR));

}
}

prompt> ./fork-seek
child: offset 10
parent: offset 10
prompt>

When file table entry shared, reference count incremented; both processes close file before removed

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Writing Immediately with fsync()

Typically, writes are buffered by the OS for some time (say 5 seconds, or 30
seconds)
fsync(int fd) – forces all dirty data to disk, Only returns after all writes
are complete.

Renaming Files

rename(char *oldpath, char *newpath);
An atomic instruction – file will either be oldpath name or newpath name.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Information About Files

The inode keeps metadata about a file or directory. You can see some of
this information by using the command line tool stat:
prompt> echo hello > file
prompt> stat file

File: 'file'
Size: 6 Blocks: 8 IO Block: 4096 regular file

Device: 811h/2065d Inode: 67158084 Links: 1
Access: (0640/-rw-r-----) Uid: (30686/ remzi) Gid: (30686/ remzi)
Access: 2011-05-03 15:50:20.157594748 -500
Modify: 2011-05-03 15:50:20.157594748 -500
Change: 2011-05-03 15:50:20.157594748 -500

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Removing Files

prompt> rm foo

unlink("foo");

Making Directories

prompt> mkdir foo

mkdir("foo",0777);

An “empty” directory has two entries: "." refers to itself, and ".." refers to
its parent. You can see these by passing the -a flag to ls:
prompt> ls -a
./ ../

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Reading Directories

int main() {
DIR *dp = opendir(".");
struct dirent *d;
while ((d = readdir(dp)) != NULL) {

printf(%lu %s\n", (unsigned long) d->d_ino, d->d_name);
}
closedir(dp);

}

struct dirent {
char d_name[256]; // filename
ino_t d_ino; // inode number
off_t d_off; // offset to next dirent
unsigned short d_reclen; // length of record
unsigned char d_type; // type of file

}

Deleting Directories
prompt> rmdir directory
rmdir("directory");

Can only delete “empty” directories.
Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Hard Links

Hard links create another name to the same inode number:
echo hello > file
ln file file2
echo bye > file
cat file2

That is why unlink is the same as removing a file (if no more references then
inode is deleted)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Symbolic links

Symbolic (soft) links are special files containing linking information. If
underlying file is deleted you can get dangling references.

prompt> echo hello > file
prompt> ln -s file file2
prompt> rm file
prompt> cat file2
cat: file2: No such file or directory

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Permission Bits and Access Control Lists

Unix permission bits control who has access to a file. You can see these
permissions with ls:

prompt> ls -l foo.txt
-rw-r--r-- 1 remzi wheel 0 Aug 24 16:29 foo.txt

First entry is file-type followed by 3 bits (rwx) of owner-permission, 3 bits
(rwx) of group permissions, and 3 bits (rwx) of other permissions.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Access Control List in AFS

AFS permissions do not use the UNIX permission bits.

More flexible in some ways (e.g., ACLs; separate delete, admin
permissions)
Less flexible in others (e.g., only per-directory permissions)

You can read about the CS department’s AFS system
https://csl.cs.wisc.edu/docs/csl/2012-08-16-file-storage/.

fs listacl <path> – lists the access control list for the directory
fs setacl <path> <user> <acl> – Set the access control list for the
user to the path.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

https://csl.cs.wisc.edu/docs/csl/2012-08-16-file-storage/

Making and Mounting File Systems

mkfs.<fs> <device> – creates an empty file system on the given device.

e.g., mkfs.ext4 and mkfs.btrfs

sudo mount -t <type> <device> <mount point> – mounts the
filesystem on the device to the given mount point. After running the
command the contents under mount point will be the file system on the
device.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

Summary

File-system abstractions: files, directories, directory trees
API is based on per-process file descriptors
Several categories of operations: links, directories, permissions
Mounting a file system

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System API

