
Persistence: File System Implementations
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Administrivia

Project 6 due April 16th @ 11:59pm

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Review File System

File System Abstractions – Files, Directories, Directory Tree
Refer to a file: path (relative & absolute), inode number, file descriptor
File IO Calls: open, read, write, lseek, fsync, (fd with fork and dup)
Command line programs: stat, rm, ls, mkdir, mkfs, mount, strace
Concepts: soft & hard links, permission bits and ACL, owner & group

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Quiz 17 File API

https://tinyurl.com/cs537-sp24-q17

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations

https://tinyurl.com/cs537-sp24-q17


File System Implementation (Way to Think)

Data Structures
What are the on-disk data structures to implement the file system?

Access Methods
How does a call like open(), read(), or write() get mapped onto the
data structures of the disk?

If you understand the data structures and access methods then you have a
good mental model of the file system.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Overall Organization
A disk with 64 4-KB blocks:

Data Region (D) : Content of user’s files and directories

Inodes (I) : A structure holding metadata for each file or directory

bitmap (d) : A bitmap of free/used data region blocks

bitmap (i) : A bitmap of free/used inodes

Superblock (S) : The superblock contain information about the file system
structure
Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Superblock and Bitmaps

The superblock contains information about the file system: - Number of
inodes (80) and data blocks (56) - Where the inode table begins (block 3) -
Magic Number indicating file system type

In bitmaps, each bit is used to indicate whether the corresponding
object/block is free (0) or in-use (1). - Bitmap for data blocks - Bitmap for
inode table

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Inodes

An inode contains the metadata for a file or directory:

type – regular file, directory, etc.
size – the number of bytes in the file
blocks – number of blocks allocated to file
protection information – Who owns the file and who can access it
time information – last accessed time, creation time, last modified time
location information – Where data blocks reside on disk

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



The Multi-Level Index

A direct pointer refers to one disk block that belongs to the file. Inodes
often contain 12 direct pointers.

An indirect pointer refers to a block of pointers. If disk addresses are
4-bytes, a single 4KB block can hold 1024 pointers.

Max file size with 12 direct pointers and one indirect pointer is
(12 + 1024) · 4K = 4144KB.

For larger files, doubly or triply indirect pointers are used.

One finding of research on file systems is that most files are small.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Directory Organization
A directory has an inode with data blocks. The data blocks hold a list of
(entry name, inode number) pairs.

inum reclen strlen name

5 12 2 .
2 12 3 ..
12 12 4 foo
0 12 5 blah
13 12 4 bar
24 36 28 foobar_is_a_pretty_longname

Deleting a file can leave an empty space in the middle of the directory, use
inode number 0 to mark as empty.
Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Access Methods: Opening a File

Observe what happens when a file (e.g. /foo/bar) is opened, read, and then
closed:

fd=open("/foo/bar", O_RDONLY)

Read root’s inode
Read root’s data, scanning down the entries to find foo
Read foo’s inode
Read foo’s data, scanning down the entries to find bar
Read bar’s inode

Update an entry in the open file table and return the file descriptor.

Notice 5 I/O requests are needed to find bar’s inode and “open” the file.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Access Methods: Reading a File

count=read(fd,buf,4096)

Using the file’s inode number and offset in open file table:
Read inode to find location of first block
Read data block
Write inode to update last access time

Update the offset in open file table

For each block of file that is read, 3 I/O requests are performed.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Access Methods: Opening and Reading a File

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Access Methods: Writing to Disk

Writing is similar to reading:

First, open the file
Write changes to existing blocks
Close file

Gets interesting when a new block must be allocated. This can occur with
writing. Also occurs with create(). The bitmaps are consulted to find an
unused entry.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Caching and Buffering

The file system aggressively caches important, frequently used blocks.

Read I/O can be avoided with a cache, but write traffic has to go to disk to
become persistent.

Write buffering has performance benefits: - Can batch some updates,
reducing the number of I/O requests - Can use scheduling to optimize the
ordering of the requests - Some I/Os can be avoided entirely, if a file is
created and then deleted.

Modern FS buffer writes in memory anywhere from 5 to 30 seconds causing a
trade-off between performance and data loss.

Can use fsync() to force writing to disk.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations



Summary

Metadata information is stored in a structure called an inode
Directories are just specific type of file that store name -> inode-number
mappings
Bitmaps are used to record used/unusued information about the inode
table and data blocks
Understand for each I/O system call the series of I/O requests made to
the file system

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: File System Implementations


