
Persistence: Fast File System
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Administrivia

Project 6 due April 16th @ 11:59pm
Final Exam:

Lec 1 - May 8th, 12:25-2:25 (Biochem 1125)
Lec 2 - May 6th, 2:45-4:45 (Sterling Hall 1310)
McBurney: TBD
If you can’t take the exam for a legitimate reason at your designated time,
please fill out the alternate exam form to take the exam with the other
lecture. Legitimate Reasons include:

Another exam at the same time, Religious conflict, University Sanctioned
conflict, Scheduled Medical conflict, Civic Duty (e.g. jury duty), Military
Service, Family Caregiving Responsibility, Family Emergency, Serious
Illness, 3 or more exams scheduled during a 24 hour period

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System

https://docs.google.com/forms/d/e/1FAIpQLSexMvdptwzySf96MDc-PwgPyNtgRppmuOyGKi8imKTivn7KNg/viewform?usp=sf_link


Review File System Implementation

Data Structures
Superblock, inode and data bitmap, inode table, data blocks

Access Methods
How does a call like open(), read(), or write() get mapped onto the
data structures of the disk?

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Quiz 18 Inodes & File Systems

https://tinyurl.com/cs537-sp24-q18

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System

https://tinyurl.com/cs537-sp24-q18


Locality and the Fast File System

Original Unix file system was slow, delivering only 2% of overall disk
bandwidth

Treated the disk like it was random-access memory
File system ended up getting fragmented

Original block size was too small, minimizing internal fragmentation,
but bad for transfer as each block might require a positioning overhead

Group at Berkeley built the fast file system designed to be disk aware

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Fast File System Idea

Organize file system structures and allocation policies to be disk aware
Divided disk into collection of cylinder groups
Modern file systems organize drive into similar block groups
(consecutive portion of disk’s address space)

FFS includes all structures of a file system within each group

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Per-Group Data Structures

per-group super-block (needed to mount the file system, if one copy
corrupt can us other copies)

per-group inode bitmap and data bitmap

per-group data blocks

since all structures are per-group, they are close together on disk (less
seek time)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Allocating Files and Directories

Keep related stuff together, keep unrelated stuff far apart.

Placement of Directories
Find cylinder group with low number of allocated directories (to balance
directories across groups) and high number of free inodes (to
subsequently be able to allocate a bunch of files)

Put the directory data here
Put the directory inode here

Placement of Files
Allocate a file’s data blocks in same group as its inode
Place all files in same directory in group with directory

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Example Layout

Directories:
/
/a
/b

Files:
/a/c
/a/d
/a/e
/b/f

group inodes data
0 /--------- /---------
1 acde------ accddee---
2 bf-------- bff-------
3 ---------- ----------
4 ---------- ----------
5 ---------- ----------
6 ---------- ----------
7 ---------- ----------
...

Common Sense suggests files in a directory are often accessed together
FFS will improve performance because (1) inode and data are together and
(2) namespace-based locality

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Measuring File Opening Locality
Analyzing the SEER workload trace
of opening files:
Path Difference Metric measures
how far up directory tree to find
common ancestor:

Same file – 0
Another file, same directory – 1
Another file, parent directory – 2
Etc.

Compared to randomly
reordering file openings
7% were to same file
40% were to same directory

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Large File Exception

A large file (e.g. 30 data blocks) would entirely fill most of the data blocks in a group,
leaving little room for other files in the directory to be placed in the same group
group inodes data
0 /a-------- /aaaaaaaaa aaaaaaaaaa aaaaaaaaaa a---------
1 ---------- ---------- ---------- ---------- ----------
2 ---------- ---------- ---------- ---------- ----------
...

The large file exception (here set to 5 blocks) spreads the file across groups:
group inodes data
0 /a-------- /aaaaa---- ---------- ---------- ----------
1 ---------- aaaaa----- ---------- ---------- ----------
2 ---------- aaaaa----- ---------- ---------- ----------
3 ---------- aaaaa----- ---------- ---------- ----------
4 ---------- aaaaa----- ---------- ---------- ----------
5 ---------- aaaaa----- ---------- ---------- ----------
6 ---------- ---------- ---------- ---------- ----------
...

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Large File Exception (cont.)

Slows access to large files, but if chunk of a file in a group is large
enough, this seeking will be amortized.
FFS used 12 direct block pointers in inode (48KB) placed in group with
inode
Each indirect block pointer (4MB) pointed to block of pointers in
different group, along with the data pointed to by those pointers.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System



Other FFS Innovations
Introduction of sub-blocks (512-bytes) until file needs 4KB, then copy
sub-blocks to a full block

Causes more I/O for each sub-block
Modified libc to buffer and do I/O in 4KB chunks

Used skip-layout (called parameterization) so sequential I/O requests
arrive before head rotates past them

Modern disks cache the entire track in an internal track buffer

Added long file names

Added symbolic links
Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Fast File System


