
Persistence: Journaling
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Administrivia

Project 6 due today, April 16th @ 11:59pm
Final Exam:

Lec 1 - May 8th, 12:25-2:25 (Biochem 1125)
Lec 2 - May 6th, 2:45-4:45 (Sterling Hall 1310)
McBurney: TBD
If you can’t take the exam for a legitimate reason at your designated time,
please fill out the alternate exam form to take the exam with the other
lecture. Legitimate Reasons include:

Another exam at the same time, Religious conflict, University Sanctioned
conflict, Scheduled Medical conflict, Civic Duty (e.g. jury duty), Military
Service, Family Caregiving Responsibility, Family Emergency, Serious
Illness, 3 or more exams scheduled during a 24 hour period

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling

https://docs.google.com/forms/d/e/1FAIpQLSexMvdptwzySf96MDc-PwgPyNtgRppmuOyGKi8imKTivn7KNg/viewform?usp=sf_link


Review Fast File System

Treat the disk like it’s a disk
Divide disk into groups
Each group gets superblock, block bitmap, inode bitmap, inode table, and
data blocks

Keep related stuff together, keep unrelated stuff far apart
Place directories in group with low number of directories but high number
of free inodes
Place files (both data and inode) in group with directory

Large File Exception

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Quiz 19 Fast File System

https://tinyurl.com/cs537-sp24-q19

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling

https://tinyurl.com/cs537-sp24-q19


This lecture: crash consistency

A crash could interrupt the system between any two writes.
How to update the file system safely despite this?

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



fsck and Journaling

Crash Consistency Problem
Solution 1: fsck
Solution 2: Journaling

Data Journaling, Recovery, Metadata Journaling
Solution 3: Other Approaches

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Consistency in File System

The file system consists of several
data structures which need to be
consistent with each other.

owner : remzi
permissions : read-write
size : 1
pointer : 4
pointer : null
pointer : null
pointer : null

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Consistency in File System

Consider the case of appending a single data
block to an existing file. The following changes
must occur:

Update block bitmap to acquire a free
block
Update inode to I[v2] and point to new
data block
Write data Db to new data block

If a crash happens after one or two of these
writes have taken place, but not all three, the
file system could be left in an inconsistent
state.

Before:

After:

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



3 Crash Scenarios

Just the data block (Db) is written to disk
Since the inode and data bitmap are not updated, the block is not
attached to the file and could still be allocated.
FS is consistent but does not contain the new data in Db.

Just the updated inode (I[v2]) is written to disk
Since inode is updated but data was not written to Db, garbage is
attached to the end of the file
Since data bitmap was not modified, block could be allocated to a
different file (file system inconsistency)

Just the updated bitmap is written to disk
data block has not been attached to the file, resulting in a space leak

We want file system updates to happen atomically from one consistent state
to another.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Solution #1: The File System Checker: fsck

Let inconsistencies happen, then fix by running fsck:

First check superblock, that it looks reasonable.
Free blocks: scan the inodes, direct blocks, indirect blocks, etc., to build
a list of allocated and free data blocks. Compare this list with the data
bitmap. Do the same for the inode bitmap compared to the inode table.
Inode state: check for corruption, e.g. valid type field.
Inode links: verify the link count
Duplicates: Check for duplicate pointers to same data blocks
Bad Blocks: Check for pointers outside range of valid data blocks
Directory Checks: Integrity check (each directory contains a . and ..
pointer to proper values, inodes exist, each directory linked to once).

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Free Blocks Example

Block is unallocated but in inode

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Link Count Example

Link count is wrong

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Duplicate Pointers

Block is in two inodes

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Bad Pointer

Pointer is to invalid block number

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Problems with fsck

Not always obvious how to fix
Don’t know “correct” state, just consistent state

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Fundamental problem with fsck: too slow

ffsck: fast file system checker
Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Solution #2: Journaling (or Write-Ahead Logging)

Before updating the disk, first write down a little note (in the journal on
disk) describing what you are about to do.

On a crash during update, go back and look at the journal.

Adds a bit of work during update but greatly reduces work required during
recovery

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Data Journaling

1 Journal write – Write out TxB, I[v2], B[v2], and Db, wait for these to complete
2 Journal commit – Write out TxE, wait for this to complete, transaction is

committed
3 Checkpoint – Write the contents of the update to their final on-disk locations

The TxB block contains information about the pending update (e.g. final addresses
for blocks and a transaction identifier)
The disk guarantees any 512-byte write is atomic – the TxE is a single 512-bytes.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Recovery

Crashes can occur at any time:

If occurs before the commit, the update is skipped
If occurs after the commit but before the checkpoint finishes:

On boot, scan the log and look for committed transactions and replay
them in order: called redo logging
In the worse case, a transaction might be performed again

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Data journaling timeline

Data Journaling
Note the write issues which can occur simultaneously
Completion time is determined by the I/O subsystem, which may reorder
writes to improve performance
Horizontal dashed lines representing barriers waiting for completion of
writes are enforced by FS for protocol correctness

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Batching Log Updates

This journaling protocol adds a lot of extra disk traffic
Some FS do not commit each update one at a time, rather buffer all updates
into a global transaction

Making Log Finite

Journaling file systems treat the log as a circular log adds a 4th step to protocol:
4 Free: some time later, mark the transaction free in the journal by updating the

journal superblock

Journal Superblock keeps track of portion of journal with non-checkpointed
transactions.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Metadata Journaling

Data journaling has high cost: each data block is written twice

Ordered journaling or metadata journaling only puts metadata in journal

More complicated to get right

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Metadata Journaling Protocol

By forcing data write first, a file system can guarantee that a pointer will
never point to garbage – commonly used technique.

1 Data write: Write data to final location; wait for completion (optional)
2 Journal metadata write: Write the begin block and metadata to log;

wait for completion
3 Journal commit: Write the transaction commit block (containing TxE)
4 Checkpoint metadata: Write the contents of the metadata to final

locations
5 Free: Later, mark the transaction free in journal superblock

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Tricky Case: Block Reuse

User creates a file in directory foo. FS journal has a write to foo’s
inode and its block 1000.
User deletes foo, FS frees block 1000.
User creates a new file which FS gives block 1000. FS directly writes to
block 1000.

On crash, replay write to block 1000 with old foo contents, but these are
now owned by a file

Linux’s ext FS has revoke entries in log. Replaying first checks for these
entries and doesn’t replay entries that are revoked

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Metadata journaling

Metadata Journaling

Data is written once
ext4 doesn’t wait for data to be written - tricky to get right

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Solution #3: Other Approaches / Ideas

Copy-On-Write (COW)
Never overwrite in place: write new data, then point to it
Basis of Log File System (lecture next time), and ZFS and btrfs

Soft Updates
Carefully order all writes to the FS
Requires intricate knowledge of each FS data structure

Backpointer-based Consistency (BBC)
Developed here at UW
Every block contains a back-pointer, so data blocks point to the inode
they belong to.
Consistency can be checked between the forward pointers in the inode
with the backpointers

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling



Summary

Crash consistency is a key problem in file systems
Journaling is a key technique to make crash consistency easy

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Persistence: Journaling


