Persistence: Journaling
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed
University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed

Persistence: Journaling

Administrivia

@ Project 6 due today, April 16th @ 11:59pm

o Final Exam:

Lec 1 - May 8th, 12:25-2:25 (Biochem 1125)

Lec 2 - May 6th, 2:45-4:45 (Sterling Hall 1310)

McBurney: TBD

If you can't take the exam for a legitimate reason at your designated time,
please fill out the alternate exam form to take the exam with the other
lecture. Legitimate Reasons include:

@ Another exam at the same time, Religious conflict, University Sanctioned
conflict, Scheduled Medical conflict, Civic Duty (e.g. jury duty), Military
Service, Family Caregiving Responsibility, Family Emergency, Serious
Iliness, 3 or more exams scheduled during a 24 hour period

Louis Oliphant & Tej Chajed

Persistence: Journaling

https://docs.google.com/forms/d/e/1FAIpQLSexMvdptwzySf96MDc-PwgPyNtgRppmuOyGKi8imKTivn7KNg/viewform?usp=sf_link

Review Fast File System

@ Treat the disk like it's a disk
e Divide disk into groups
e Each group gets superblock, block bitmap, inode bitmap, inode table, and
data blocks
o Keep related stuff together, keep unrelated stuff far apart
o Place directories in group with low number of directories but high number
of free inodes
o Place files (both data and inode) in group with directory
o Large File Exception

Louis Oliphant & Tej Chajed

Persistence: Journaling

Quiz 19 Fast File System

https://tinyurl.com/cs537-sp24-q19

Louis Oliphant & Tej Chajed

Persistence: Journaling

https://tinyurl.com/cs537-sp24-q19

This lecture: crash consistency

A crash could interrupt the system between any two writes.
How to update the file system safely despite this?

Louis Oliphant & Tej Chajed

Persistence: Journaling

fsck and Journaling

Crash Consistency Problem
Solution 1: fsck

Solution 2: Journaling
e Data Journaling, Recovery, Metadata Journaling

@ Solution 3: Other Approaches

Louis Oliphant & Tej Chajed

Persistence: Journaling

Consistency in File System

The file system consists of several
data structures which need to be
consistent with each other.

Louis Oliphant & Tej Chajed

Bitmaps

Inode Data Inodes Data Blocks
01234567 0 2 3 4 5 6 7

owner : remzi

permissions : read-write

size 1

pointer 4

pointer : null

pointer : null

pointer : null

Persistence: Journaling

Consistency in File System

Before:
. .) Bitmaps
Consider the case of appending a single data Inode Data Inodes Data Blocks
block to an existing file. The following changes j ;
must occur: 01234567 0 1 2 3 4 5 6 7
After
@ Update block bitmap to acquire a free
block 3 . |,,Zg;n ;F:a Inodes Data Blocks
@ Update inode to /[v2] and point to new
data block B[] HEN . N
n 123456 7 o 2 3 a4 5 [7

@ Write data Db to new data block

If a crash happens after one or two of these
writes have taken place, but not all three, the
file system could be left in an inconsistent
state.

Louis Oliphant & Tej Chajed

Persistence: Journaling

3 Crash Scenarios

e Just the data block (Db) is written to disk
o Since the inode and data bitmap are not updated, the block is not
attached to the file and could still be allocated.
e FS is consistent but does not contain the new data in Db.
o Just the updated inode (I[v2]) is written to disk
e Since inode is updated but data was not written to Db, garbage is
attached to the end of the file
o Since data bitmap was not modified, block could be allocated to a
different file (file system inconsistency)
o Just the updated bitmap is written to disk
e data block has not been attached to the file, resulting in a space leak

We want file system updates to happen atomically from one consistent state

to another.

Louis Oliphant & Tej Chajed

Persistence: Journaling

Solution #1: The File System Checker: fsck

Let inconsistencies happen, then fix by running fsck:

@ First check superblock, that it looks reasonable.

Free blocks: scan the inodes, direct blocks, indirect blocks, etc., to build
a list of allocated and free data blocks. Compare this list with the data
bitmap. Do the same for the inode bitmap compared to the inode table.
Inode state: check for corruption, e.g. valid type field.

Inode links: verify the link count

Duplicates: Check for duplicate pointers to same data blocks

Bad Blocks: Check for pointers outside range of valid data blocks
Directory Checks: Integrity check (each directory contains a . and ..
pointer to proper values, inodes exist, each directory linked to once).

Louis Oliphant & Tej Chajed

Persistence: Journaling

Free Blocks Example

inode - block
link_count = | ~ (number 123)
data bitmap
0011001100
for block 123

Block is unallocated but in inode

Louis Oliphant & Tej Chajed

Persistence: Journaling

Link Count Example

inode
link_count = |

Dir Entry \
/

Dir Entry

Link count is wrong

Louis Oliphant & Tej Chajed

Persistence: Journaling

Duplicate Pointers

inode block
link_count = | (number 123)
inode

link_count = |

Block is in two inodes

Louis Oliphant & Tej Chajed

Persistence: Journaling

Bad Pointer

inode
link_count = |

» 9999

super block
tot-blocks=8000

Pointer is to invalid block number

Louis Oliphant & Tej Chajed

Persistence: Journaling

Problems with fsck

@ Not always obvious how to fix
@ Don't know “correct” state, just consistent state

Louis Oliphant & Tej Chajed

Persistence: Journaling

Fundamental problem with fsck: too slow

45007 Phase 1 MPhase 3 ' Phase 5, .,
4000+ % Phase 2 @ Phase4 = ...2.
3500+ 2328,

3000

25001 e

2000
15001 T
1000 -

Checking Time (Second)

) 150GB 300GB 450GB 600GB
File system image size

Checking a 600GB disk takes ~70 minutes

ffsck: fast file system checker
Ao Ma, Chris Dragga, Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau

Louis Oliphant & Tej Chajed

Persistence: Journaling

Solution #2: Journaling (or Write-Ahead Logging)

Before updating the disk, first write down a little note (in the journal on
disk) describing what you are about to do.

On a crash during update, go back and look at the journal.

Super [Journal Group 0 Group 1 ce Group N

Adds a bit of work during update but greatly reduces work required during
recovery

Louis Oliphant & Tej Chajed

Persistence: Journaling

Data Journaling

TxB I[v2] | Bv2] | Db [TxE

Journal

@ Journal write — Write out TxB, [[v2], B[v2], and Db, wait for these to complete

@ Journal commit — Write out TxE, wait for this to complete, transaction is
committed

© Checkpoint — Write the contents of the update to their final on-disk locations

The TxB block contains information about the pending update (e.g. final addresses
for blocks and a transaction identifier)

The disk guarantees any 512-byte write is atomic — the TxE is a single 512-bytes.

Louis Oliphant & Tej Chajed

Persistence: Journaling

Recovery

Crashes can occur at any time:

@ If occurs before the commit, the update is skipped
@ If occurs after the commit but before the checkpoint finishes:
e On boot, scan the log and look for committed transactions and replay
them in order: called redo logging
o In the worse case, a transaction might be performed again

Louis Oliphant & Tej Chajed

Persistence: Journaling

Data journaling timeline

Journal File System
TxB Contents TxE |Metadata Data
(metadata) (data)
issue issue issue
complete
complete
complete
__________________ issue | T T T 7
complete
e issue issue
complete
complete

Data Journaling
o Note the write issues which can occur simultaneously
e Completion time is determined by the /0O subsystem, which may reorder
writes to improve performance
@ Horizontal dashed lines representing barriers waiting for completion of
writes are enforced by FS for protocol correctness

Louis Oliphant & Tej Chajed
Persistence: Journaling

Batching Log Updates

@ This journaling protocol adds a lot of extra disk traffic

@ Some FS do not commit each update one at a time, rather buffer all updates
into a global transaction

Making Log Finite

Journaling file systems treat the log as a circular log adds a 4th step to protocol:

© Free: some time later, mark the transaction free in the journal by updating the
journal superblock

Journal Superblock keeps track of portion of journal with non-checkpointed
transactions.
A

Journall 0 | 1o | Tx3 | Txa
Super

Journal

Tx5

Louis Oliphant & Tej Chajed

Persistence: Journaling

Metadata Journaling

Data journaling has high cost: each data block is written twice
Ordered journaling or metadata journaling only puts metadata in journal

More complicated to get right

Louis Oliphant & Tej Chajed

Persistence: Journaling

Metadata Journaling Protocol

By forcing data write first, a file system can guarantee that a pointer will
never point to garbage — commonly used technique.

© Data write: Write data to final location; wait for completion (optional)

© Journal metadata write: Write the begin block and metadata to log;
wait for completion

© Journal commit: Write the transaction commit block (containing TxE)

© Checkpoint metadata: Write the contents of the metadata to final
locations

© Free: Later, mark the transaction free in journal superblock

TxB I[v2] | Bv2] [TXxE ——»

Journal

Louis Oliphant & Tej Chajed

Persistence: Journaling

Tricky Case: Block Reuse

@ User creates a file in directory foo. FS journal has a write to foo's
inode and its block 1000.

@ User deletes foo, FS frees block 1000.

@ User creates a new file which FS gives block 1000. FS directly writes to
block 1000.

On crash, replay write to block 1000 with old foo contents, but these are
now owned by a file

Linux's ext FS has revoke entries in log. Replaying first checks for these
entries and doesn't replay entries that are revoked

Louis Oliphant & Tej Chajed

Persistence: Journaling

——
Metadata journaling

Metadata Journaling

Journal File System
TxB Contents TxE |Metadata Data
(metadata)
issue issue issue
complete
complete
complete
- issue |
complete
| issue
complete

@ Data is written once
@ ext4 doesn't wait for data to be written - tricky to get right

Louis Oliphant & Tej Chajed

Persistence: Journaling

Solution #3: Other Approaches / ldeas

@ Copy-On-Write (COW)
o Never overwrite in place: write new data, then point to it
o Basis of Log File System (lecture next time), and ZFS and btrfs
@ Soft Updates
o Carefully order all writes to the FS
e Requires intricate knowledge of each FS data structure
@ Backpointer-based Consistency (BBC)
o Developed here at UW
e Every block contains a back-pointer, so data blocks point to the inode

they belong to.
o Consistency can be checked between the forward pointers in the inode

with the backpointers

Louis Oliphant & Tej Chajed
Persistence: Journaling

Summary

@ Crash consistency is a key problem in file systems
@ Journaling is a key technique to make crash consistency easy

Louis Oliphant & Tej Chajed

Persistence: Journaling

