
Distributed Systems Intro
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Distributed Systems Intro

Administrivia

Project 7 due April 30th @ 11:59pm
Final Exam:

Cumulative, focusing on new material
Lec 1 - May 8th, 12:25-2:25 (Biochem 1125)
Lec 2 - May 6th, 2:45-4:45 (Sterling Hall 1310)
McBurney: May 6th, 2:40-6:50 (Nancy Nicholas Hall 1135)
If you can’t take the exam for a legitimate reason at your designated time,
please fill out the alternate exam form to take the exam with the other
lecture. Legitimate Reasons include:

Another exam at the same time, Religious conflict, University Sanctioned
conflict, Scheduled Medical conflict, Civic Duty (e.g. jury duty), Military
Service, Family Caregiving Responsibility, Family Emergency, Serious
Illness, 3 or more exams scheduled during a 24 hour period

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Distributed Systems Intro

https://docs.google.com/forms/d/e/1FAIpQLSexMvdptwzySf96MDc-PwgPyNtgRppmuOyGKi8imKTivn7KNg/viewform?usp=sf_link

Review SSDs

Physical Organization (SLC,MLC,TLC and Blocks and Pages)
IO and translation to Read (a page), Erase (a block), Program (a page)
Operations
Flash Translation Layer (FTL) including mapping tables
Log System, including data organization and garbage collection

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Distributed Systems Intro

Persistence Summary

Managing I/O devices significant part of OS

Disk Drives, SSDs (pages, blocks)

File Systems: OS provided API to access disk

Simple FS: FS layout with supberblock, bitmaps, inodes, datablocks

Fast File System: Key idea – put inode & data close together,
namespace locality

FSCK, Journaling – Handling/Preventing data inconsistencies

Log Structured File System - Organize data based on writes

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Distributed Systems Intro

Quiz 22 SSDs

https://tinyurl.com/cs537-sp24-q22

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Distributed Systems Intro

https://tinyurl.com/cs537-sp24-q22

Distributed Systems

Building Distributed Systems That Work When Components Fail

System objectives of performance, security, communication
Unreliable Communication Layers (UDP)

checksum
Reliable Communication Layers (TCP)

acknowledgement, timeout/retry
sequence counter

Communication Abstractions
Distributed Shared Memory (DSM)
Remote Procedure Call (RPC)

Stub Generator
Run-Time Library
Other Issues: fragmentation/reassembly, byte ordering, synchronicity

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Distributed Systems Intro

What is a Distributed System?

A distributed system is one where a machine I’ve never heard of can cause my program to fail.
— Leslie Lamport

Definition: More than one machine working together to solve a problem

Examples:
– client/server: web server and web client

– cluster: page rank computation

Why Go Distributed?

More computing power

More storage capacity

Fault tolerance

Data sharing

New Challenges

System failure: need to worry about partial failure

Communication failure: links unreliable
- bit errors

- packet loss
- node/link failure

Communication Overview

Raw messages: UDP
Reliable messages: TCP
Remote procedure call: RPC

Raw Messages: UDP

UDP : User Datagram Protocol
API:
- reads and writes over socket file descriptors
- messages sent from/to ports to target a process on machine

Provide minimal reliability features:
- messages may be lost
- messages may be reordered
- messages may be duplicated
- only protection: checksums to ensure data not corrupted

Raw Messages: UDP

Advantages
– Lightweight
– Some applications make better reliability decisions themselves (e.g., video

conferencing programs)

Disadvantages
– More difficult to write applications correctly

Reliable Messages: Layering strategy

TCP: Transmission Control Protocol

Using software to build
reliable logical connections over unreliable physical connections

Technique #1: ACK

Sender
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

Ack: Sender knows message was received
What to do about message loss?

Technique #2: Timeout

Sender
[send message]
[start timer]

… waiting for ack …

[timer goes off]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

TIMEOUT

How long to wait?

Too long?
– System feels unresponsive

Too short?
– Messages needlessly re-sent
– Messages may have been dropped due to overloaded server. Resending makes

overload worse!

LOST ACK PROBLEM

Sender
[send message]

[timeout]
[send message]

[recv ack]

Receiver

[recv message]
[send ack]

[ignore message]
[send ack]

SEQUENCE NUMBERS

Sequence numbers
- senders gives each message an increasing unique seq number
- receiver knows it has seen all messages before N

Suppose message K is received.

- if K <= N, Msg K is already delivered, ignore it
- if K = N + 1, first time seeing this message
- if K > N + 1 ?

TCP

TCP: Transmission Control Protocol

Most popular protocol based on seq nums
Buffers messages so arrive in order
Timeouts are adaptive

Communications Overview

Raw messages: UDP

Reliable messages: TCP

Remote procedure call: RPC

RPC

Remote Procedure Call

What could be easier than calling a function?

Approach: create wrappers so calling a function on another machine feels just
like calling a local function!

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

RPC
int main(…) {

int x = foo(”hello”);
}

int foo(char *msg) {
send msg to B
recv msg from B

}

Machine A
int foo(char *msg) {

…
}

void foo_listener() {
while(1) {

recv, call foo
}

}

Machine B

client
wrapper

server
wrapper

RPC Tools

RPC packages help with two components
(1) Runtime library

– Thread pool

– Socket listeners call functions on server

(2) Stub generation

– Create wrappers automatically
– Many tools available (rpcgen, thrift, protobufs)

Wrapper Generation

Wrappers must do conversions:
- client arguments to message
- message to server arguments
- convert server return value to message
- convert message to client return value

Need uniform endianness (wrappers do this)
Conversion is called marshaling/unmarshaling, or serializing/deserializing

Wrapper Generation: Pointers

Why are pointers problematic?

Address passed from client not valid on server

Solutions? Smart RPC package: follow pointers and copy data

Sender
[call]
[tcp send]

[recv]
[ack]

Receiver

[recv]
[ack]
[exec call]
…

[return]
[tcp send]

RPC over TCP?

Why wasteful?

RPC over UDP

Strategy: use function return as implicit ACK

Piggybacking technique

What if function takes a long time?
then send a separate ACK

Sender
[call]
[udp send]

[recv]

Receiver

[recv]
[exec call]
…

[return]
[tcp send]

Other Issues

Long-running calls, client periodically asks server for results
Data Organization – e.g. Big-Endian vs. Little Endian

Sun’s XDR (eXternal Data Representation) formatting standard
Google’s gRDP uses HTTP/2

Some systems provide both synchronous (i.e. wait for result) and
asynchronous (i.e. return immediately with some type of callback)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Distributed Systems Intro

Summary

UDP for unreliable communication
TCP for reliable communication
RPC often builds on top of UDP layer, handles communication failures
itself

has a stub generator and run-time library
handles issues like fragmentation and byte ordering
Typically synchronous calls (wait for completion)

RPC packages include:
Sun’s RPC system
Google’s gRPC
Apache Thrift
JSON-RPC

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Distributed Systems Intro

