
NFS
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Administrivia

Project 7 due April 30th @ 11:59pm
Final Exam:

Cumulative, focusing on new material
Lec 1 - May 8th, 12:25-2:25 (Biochem 1125)
Lec 2 - May 6th, 2:45-4:45 (Sterling Hall 1310)
McBurney: May 6th, 2:40-6:50 (Nancy Nicholas Hall 1135)
If you can’t take the exam for a legitimate reason at your designated time,
please fill out the alternate exam form to take the exam with the other
lecture. Legitimate Reasons include:

Another exam at the same time, Religious conflict, University Sanctioned
conflict, Scheduled Medical conflict, Civic Duty (e.g. jury duty), Military
Service, Family Caregiving Responsibility, Family Emergency, Serious
Illness, 3 or more exams scheduled during a 24 hour period

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS

https://docs.google.com/forms/d/e/1FAIpQLSexMvdptwzySf96MDc-PwgPyNtgRppmuOyGKi8imKTivn7KNg/viewform?usp=sf_link


Review: distributed systems

Transparent: UDP (unreliable), TCP (reliable stream)
RPC abstraction and library

has a stub generator and run-time library
handles issues like fragmentation and byte ordering
Typically synchronous calls (wait for completion)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Quiz 23 Distributed Systems

https://tinyurl.com/cs537-sp24-q23

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS

https://tinyurl.com/cs537-sp24-q23


Distributed file systems

Local FS: processes on one machine access shared files

Network FS: processes on multiple machines access shared files

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Goals for distributed file systems

Transparent access: don’t change applications

Crash recovery: both clients and file server may crash

Reasonable performance?

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Network File System (NFS)

Protocol for sharing files

Many independent implementations: Oracle, NetApp, Windows, Linux

Note: this lecture is NFSv3, NFSv4 has many changes

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



NFS architecture

File server + many independent clients

Communicate via RPCs

Note: client goes through an NFS file system in the kernel

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



NFS overview

Architecture
Stateless network API
Caching and cache coherency

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Protocol design: failed attempt 1

First thought for protocol: same as UNIX system calls
int fd = open("foo", O_RDONLY);
read(fd, buf, MAX);
... // server crash here!
read(ff, buf, MAX);

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Attempt 2: put all info in requests

pread(char *path, buf, size, offset)
pwrite(char *path, buf, size, offset)

Stateless: server maintain no state about clients

Pros: server can crash and reboot, no state lost
Cons: slow, server must look up path on each request

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



NFSv3: file handles

open(char *path) -> file_handle
pread(fh, buf, size, offset)
pwrite(fh, buf, size, offset)

file handle = <volume ID, inode number, generation number>

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



What about append?

open(char *path) -> file_handle
pread(fh, buf, size, offset)
pwrite(fh, buf, size, offset)

append(fh, buf, size) // what if we add this?

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Idempotent operations

Design API so no harm to executing an RPC more than once

If f() is idempotent, then f() as same effect as f(); f()

If f() is idempotent and server doesn’t respond, client can safely retry

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



What operations are idempotent?

Idempotent: read, pwrite

Not idempotent: append

Sort of: mkdir, create

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Cache consistency

NFS clients cache data to avoid server requests

Multiple clients means cache consistency issues

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



Oddities caused by caching

1 Update visibility: when one client updates a file, when are they
propagated to the server/other clients?

2 Stale cache: when a client has a cached file, when is it invalidated due
to changes by other clients?

Provide “close-to-open” consistency (“flush-on-close”): flush on close, so
open sees any writes before close

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



NFSv2 solution: GETATTR

Clients track the modified time of files

Cache modified time and update periodically (e.g., every 3 seconds)

(NFSv3 has a slightly better solution called “weak cache consistency”)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS



NFS summary

Architecture: many clients accessing one server
Stateless protocol design
Caching and cache consistency issues

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
NFS


