
CPU Virtualization: Processes
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Administrivia

Check that you have a ~cs537-1/handin/<username>/P1/
directory and that you can write to it. This is where you should
turn in your project 1 solution.
Want to learn the GNU/Linux Command Line? Read the online
book at https://linuxcommand.org

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

http://linuxcommand.org/tlcl.php

Agenda

Today

What is a process and what is its lifecycle? (abstraction)
How does an OS manage processes? (mechanism)
How can you create and work with processes? (API)

Next Time

How should the OS decide which process gets to execute and
for how long (policy)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Aside – CS Terms

Abstraction a concept-object that mirrors common features or
attributes of non-abstract objects.

Mechanism Low-level machinery (methods or protocols) that
implement a needed piece of functionality.

Policy An algorithm for making some decision within the OS.
API Application Program Interface is a type of public

interface a program offers as a service to other
programs.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Process

A program is a passive collection
of instructions (typically on disk).

A process is the abstraction
provided by the OS of a running
program.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Machine State of a Process

The machine state: What a program can read or change when it is
running.

Registers (general purpose, stack pointer, program counter,
frame pointer, etc.)
Address space (heap, stack, etc.)
Open files

OS will need to save this state to context switch between processes

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

OS Control of Processes

Create – When you type a command (or click on an
application icon), the OS is invoked to create a new process.
Destroy – OS provides a way to forcefully destroy a process.
Wait – It is useful to be able to wait for a process to stop
running.
Miscellaneous Control – e.g. suspend (temporarily stop) a
process and resume it again.
Status – Get information about a process (e.g. how long has it
run for?)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Creation of A Process by OS

Load data from disk to memory
Allocate space for the run-time stack and initialize the stack
with arguments (i.e. fill in the parameters for argc and argv)
* Allocate memory for program’s heap. Initially small, but OS
may grow the heap as needed.
Setup initial file descriptors (stdin, stdout, stderr).
Transfer control of the CPU to the newly-created process
(i.e. main()).

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Aside – OSTEP Homeworks

Optional homeworks corresponding to chapters in book
Little simulators to help you understand
Can generate problems and solutions

https://github.com/tchajed/ostep-homework

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

https://github.com/tchajed/ostep-homework

Process Life Cycle

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Process Scheduling

./process-run.py -l 3:100,3:50

All IO takes 5 time slices

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Direct Execution

For efficiency, we want processes to run directly on hardware

Problems

1 Process could do something illegal
e.g., read/write other processes’ memory

2 Process could run forever
OS needs to be able to switch between processes

3 Process could do something slow
OS wants to use resources efficiently

Solution

LIMITED DIRECT EXECUTION – OS and hardware maintain
some control

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Limited Direct Execution Prob #1 – Restricted Ops

How can we ensure user process can’t harm others?

Solution – Privilege Levels Supported by Hardware (bit of status)

User processes run in user mode (restricted mode)
OS runs in kernel mode (not restricted)

Instructions for interacting with devices
Could have many privilege levels (advanced topic)

How can process perform restricted instruction?

Ask the OS to do it through a system call
Change privilege level as system call is made (trap)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

System Call

Figure 1: System Call

P can only see its own memory because it runs in user mode.
P wants to call read() but no way to call it directly.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

xv6 Traps and System Calls

trap.h syscall.h

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

System Call

Figure 2: System Call

movl $5, %eax;

int $64

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

System Call

Figure 3: System Call

Kernel can access user memory to fill in user buffer
return-from-trap at end to return to Process P

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Figure 4: Limited Direct Execution
Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Limited Direct Execution Prob #2 CPU Sharing

Cooperative Approach: Could wait for current process to
yield the CPU
True multi-tasking: Could interrupt current process to regain
control

Guarantee OS can obtain control periodically
Hardware generates timer interrupt, allowing OS to context
switch

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Context Switch

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Intialize Trap Table and Start Timer

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

OS Data Structures for Managing Processes

Process control block (PCB) and Process list

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

Quiz 1 - Processes

Processes

You must use your UW-Madison account to access.

https://tinyurl.com/cs537-sp24-q1

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

https://tinyurl.com/cs537-sp24-q1

Linux API for Processes

fork() – Used to create a new process
exec() – Replaces the current process image with a new
process image (whole family of functions: execl(), execlp(),
execle(), execv(), execvp(), execvpe())
wait() – Waits for a child process to stop or terminate

Demo

Run chapter 5’s demo code from cpu-api (the programs p1, p2, p3,
and p4) to see how these three system calls work.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
CPU Virtualization: Processes

https://github.com/tchajed/ostep-code/tree/master/cpu-api

