
Virtualizing Memory
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Administrivia

Project 2 Due Feb 6th, 11:59pm
Pinned Posts on Piazza:

Remote Development Through VSCode
Pregrade Check Script

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Agenda

Goals of Memory Virtualization
Understand Address Space
Memory API (malloc() and free())
Address Translation (Base & Bounds)

CPU Virtualization (2 lectures: mechanism + policy)
Memory Virtualization (6 lectures)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Review: CPU Scheduling

Design scheduling policy:
Understanding Workload (interactive vs. batch programs)
Using metrics to optimize type of performance (turnaround
time, response time)
Incorporating non-preemptive or preemptive concepts

Scheduler Types & Issues:
FIFO/FCFS, SJF, STCF, RR
MLFQ

Using past behavior to predict future behavior
Handling mix of IO vs CPU bound jobs
Handling tricky processes
Tuning length of time slice, number of queues, boosting length

Other Goals/Metrics (fairness) and Policies (Lottery)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

MLFQ Review

Quiz 3 MLFQ: http://tinyurl.com/cs537-sp24-q3

RULES:
Rule 1: If Priority(A) > Priority(B) then A runs
Rule 2: If Priority(A) == Priority(B) then
A&B run in RR
Rule 3: Processes start at top priority
Rule 4: Once a job uses up its time allotment
at a given level (regardless of how many times
it has given up the CPU), its priority is reduced
Rule 5: After some time period S, move all the
jobs in the system to the topmost queue.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

http://tinyurl.com/cs537-sp24-q3

Memory Early Days Multiprogramming Goals

Uniprogramming: One process
runs at a time Transparency: Process is

unaware of sharing
Protection: Cannot corrupt OS
or other processes’ memory
Efficiency: Do not waste
memory or slow down processes
Sharing: Enable sharing between
cooperating processes

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Alternative 1: Time Sharing
Step 1 Step 2

Step 3 Storing process and loading
another is extremely slow!
Better Alternative: Space
Sharing!

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Alternative 2: Space Sharing

Protection becomes extremely important,
don’t want a process to be able to read
or write some other process’s memory.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Abstraction: Address Space

View of memory from program’s
perspective.

Heap can become
fragmented
Stack does not

Demo
vm-intro/va.c

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

What Variables Go Where (Stack, Heap, Code/Static)?

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Memory Access

#include <stdio.h>
#include <stdlib.h>

int main() {
int x;
x = x + 3;

}

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

%rbp is the base pointer: points
to base of current stack frame

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Memory Access (cont.)

Initial %rip = 0x10
%rbp = 0x200

0x10: movl 0x8(%rbp), %edi
0x13: addl $0x3, %edi
0x19: movl %edi, 0x8(%rbp)

%rbp is the base pointer: points
to base of current stack frame
%rip is instruction pointer
(program counter)

Fetch instruction at addr 0x10
Exec: load from addr 0x208

Fetch instruction at addr 0x13
Exec: no memory access

Fetch instruction at addr 0x19
Exec: store to addr 0x208

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Space Sharing Attempt 1 (Static Relocation)

Idea: OS rewrites each program as it is loaded and placed in memory

Change jumps, loads of static data, etc.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Static Relocation Memory Layout

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Static Relocation Disadvantages

No Protection
Process can destroy OS or other processes
No privacy

Cannot move address space after it has been placed
May not be able to allocate new process

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Space Sharing Attempt 2 (Dynamic Relocation)

Requires hardware support (Memory Management Unit
(MMU))
MMU dynamically changes process address at every memory
reference

Process generates logical or virtual addresses (in their address
space)
Memory hardware uses physical or real addresses

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Dynamic Relocation Hardware Support

Kernel Mode: OS runs
Allows instructions for manipulating MMU
OS access to all of physical memory

User mode: process runs
Perform translation of logical address to physical address

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Dynamic Relocation with Base+Bounds

Translation on every memory access of user process

MMU compares logical address to bounds register
if logical address is greater, then generate error
MMU adds base register to logical address to form physical
address

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Base+Bounds Example

Every process has its own set of
base and bounds register values

OS sets registers when loading
process

Process can be moved, just need
to update its base register

Process is restricted to its
address space

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Hardware Requirements

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

OS Requirements

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Limited Direct Execution (Dynamic Relocation) @ Boot

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Good Running Process

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Context Switch

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Bad Process

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Advantages and Disadvantages

Advantages
Provides protection across address spaces
Supports Dynamic relocation – Can place process at different
locations initially and move address spaces later
Simple, inexpensive implementation: few registers, little logic in
MMU
Fast: add and compare in parallel

Disadvantages
Each process must be allocated contiguously in physical
memory – must allocate memory that may not be used by
process
No partial sharing: Cannot share parts of address space

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

Disadvantages

Each process must be allocated contiguously
Must allocate memory that may not be used
by process
No partial sharing: Cannot share parts of
address space

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Virtualizing Memory

