
MEMORY: PAGING AND TLBS

Shivaram Venkataraman
CS 537, Spring 2020

Paging
Goal: Eliminate requirement that address space is contiguous

Eliminate external fragmentation
Grow segments as needed

Idea:
Divide address spaces and physical
memory into fixed-sized pages

Size: 2n, Example: 4KB

Process 1 Process 2

Logical View

Ph
ys

ic
al

 V
ie

w

Process 3

Translation of Page Addresses
How to translate logical address to physical address?

– High-order bits of address designate page number
– Low-order bits of address designate offset within page

page number

frame number

page offset

page offset

Logical address

Physical address

32 bits

translate

20 bits 12 bits

No addition needed; just append bits correctly!

Address Format

Page Size Low Bits (offset)

16 bytes
1 KB
1 MB

512 bytes
4 KB

Given known page size, how many bits are needed in address to specify offset in page?

Address Format

Page Size Low Bits(offset) Virt Addr
Total Bits

High Bits(vpn)

16 bytes 4 10
1 KB 10 20
1 MB 20 32

512 bytes 9 16
4 KB 12 32

Given number of bits in virtual address and bits for offset,
how many bits for virtual page number?

Address Format

Page Size Low Bits (offset) Virt Addr Bits High Bits (vpn)

16 bytes 4 10 6

Virt Pages

1 KB 10 20 10
1 MB 20 32 12

512 bytes 9 16 7
4 KB 12 32 20

Given number of bits for vpn, how many virtual pages can there be in an address space?

VirtUALà Physical PAGE Mapping

How should OS translate VPN to PPN?

0 1 0 1 0 1

VPN offset

1 1 0 1 0 11 0

PPN offset

Addr Mapper

Number of bits in
virtual address

need not equal

number of bits in
physical address

PAGETABLES

What is a good data structure ?

Simple solution: Linear page table aka array

VPN
0

2^n

PER-PROCESS PAGETABLE

Virt Mem

Phys Mem

P2 P3P1

FILL IN PAGETABLE

Virt Mem

Phys Mem

P2 P3P1

0 1 2 3 4 5 6 7 8 9 10 11

Page Tables:

P1 P2 P3

QUIZ 9

Name of approach

Candidates: Segmentation, Static Relocation, Base, Base+Bounds, Time Sharing

Description

1. one process uses RAM at a time

2. rewrite code and addresses before running
3. add per-process starting location to virt addr

to obtain phys addr
4. dynamic approach that verifies address is in

valid range

5. several base+bound pairs per process

https://tinyurl.com/cs537-sp20-quiz9

QUIZ9: HOW BIG IS A PAGETABLE?

Consider a 32-bit address space with 4 KB pages. Assume each PTE is 4 bytes

How many bits do we need to represent the offset within a page?

How many virtual pages will we have in this case?

What will be the overall size of the page table?

WHERE ARE PAGETABLES STORED?
Implication: Store each page table in memory

Hardware finds page table base with register (e.g., CR3 on x86)

What happens on a context-switch?

Change contents of page table base register to newly scheduled process

Save old page table base register in PCB of descheduled process

Other Pagetable info

What other info is in pagetable entries besides translation?
– valid bit
– protection bits
– present bit (needed later)
– reference bit (needed later)
– dirty bit (needed later)

Pagetable entries are just bits stored in memory
– Agreement between HW and OS about interpretation

Memory Accesses with Paging

0x0010: movl 0x1100, %edi

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages
How many bits for offset? 12

Simplified view
of page table

2
0
80
99

Fetch instruction at logical addr 0x0010

Access page table to get ppn for vpn 0

Mem ref 1:

Learn vpn 0 is at ppn ___

Fetch instruction at ______ (Mem ref 2)

Exec, load from logical addr 0x1100

Access page table to get ppn for vpn 1

Mem ref 3:

Learn vpn 1 is at ppn ___

Movl from _____ into reg (Mem ref 4)

14 bit addresses

Memory Accesses with Paging

0x0010: movl 0x1100, %edi

Assume PT is at phys addr 0x5000
Assume PTE’s are 4 bytes
Assume 4KB pages
How many bits for offset? 12

Simplified view
of page table

2
0
80
99

Fetch instruction at logical addr 0x0010

Access page table to get ppn for vpn 0

Mem ref 1: ___0x5000___

Learn vpn 0 is at ppn 2

Fetch instruction at __0x2010__ (Mem ref 2)

Exec, load from logical addr 0x1100

Access page table to get ppn for vpn 1

Mem ref 3: ___0x5004___

Learn vpn 1 is at ppn 0

Movl from __0x0100__ into reg (Mem ref 4)

14 bit addresses

Advantages of Paging

No external fragmentation
– Any page can be placed in any frame in physical memory

Fast to allocate and free
– Alloc: No searching for suitable free space
– Free: Doesn’t have to coalesce with adjacent free space

Simple to swap-out portions of memory to disk (later lecture)
– Page size matches disk block size
– Can run process when some pages are on disk
– Add “present” bit to PTE

Disadvantages of Paging
Internal fragmentation: Page size may not match size needed by process

– Wasted memory grows with larger pages
– Tension?

Additional memory reference to page table àVery inefficient
– Page table must be stored in memory
– MMU stores only base address of page table

Storage for page tables may be substantial
– Simple page table: Requires PTE for all pages in address space

Entry needed even if page not allocated ?

SUMMARY: PAGE TRANSLATION STEPS

For each mem reference:

1. extract VPN (virt page num) from VA (virt addr)
2. calculate addr of PTE (page table entry)
3. read PTE from memory
4. extract PFN (page frame num)
5. build PA (phys addr)
6. read contents of PA from memory into register

Which steps are expensive?

