
Paging: Faster Translations (TLBs)
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Administrivia

P3 out, due Feb 20th at 11:59pm
Form to request alternate exam time (see Piazza post)
Tej’s office hours: MW 10-11am, CS 7361

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Review: Paging

Paging is dividing up a process’s address space into equally
sized sections (called pages) and dividing memory into the
same sized sections (called page frames)
A process’s page table keeps track of the mappings from
virtual page number (VPN) to physical frame number
(PFN)
Virtual Address Translation Process:

1 Extract VPN from virtual address
2 Calculate address of PTE
3 Read PTE from memory
4 Extract PFN
5 Build Physical Address
6 Read contents of PA from memory into register

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Paging Example

./paging-linear-translate.py

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Paging Example

./paging-linear-translate.py -c

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Memory access flow

14-bit addresses
0x0010: movl 0x1100, %edi

Assume PT is at phys addr
0x5000
Assume PTEs are 4 bytes
Assume 4KB pages
How many bits for offset? 12

Page table:

Fetch instruction at logical addr 0x0010
Access page table to get ppn for
vpn 0
Mem ref 1:
Learn vpn 0 is at ppn:
Fetch instruction at: (Mem ref
2)

Exec, load from logical addr 0x1100
Access page table to get ppn for
vpn 1
Mem ref 3:
Learn vpn 1 is at ppn:
movl from (Mem ref 4)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Memory access flow

14-bit addresses
0x0010: movl 0x1100, %edi

Assume PT is at phys addr
0x5000
Assume PTEs are 4 bytes
Assume 4KB pages
How many bits for offset? 12

Page table:

Fetch instruction at logical addr 0x0010
Access page table to get ppn for
vpn 0
Mem ref 1: 0x5000
Learn vpn 0 is at ppn: 2
Fetch instruction at: 0x2010 (Mem
ref 2)

Exec, load from logical addr 0x1100
Access page table to get ppn for
vpn 1
Mem ref 3: 0x5004
Learn vpn 1 is at ppn: 0
movl from 0x0100 (Mem ref 4)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Quiz 6: Segmentation and Paging

https://tinyurl.com/cs537-sp24-q6

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)

https://tinyurl.com/cs537-sp24-q6


Paging Disadvantages

What was one memory access becomes two
first to look up the VPN→PFN translation (in the page table)
second to access the memory location

Additional memory must be used to store the page tables
4KB pages with 32-bit virtual addresses requires storing 1M
page table entries per process

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



MMU’s Cache – Reducing Memory Accesses for PTE
lookups

The translation-lookaside buffer (TLB) is part of the CPU’s
memory management unit
It is a hardware cache of virtual-to-physical address translations
The MMU first checks the TLB to see if translation mapping is
there

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



TLBs are important for performance

Typical TLBs might have 32 or 64 entries
Extremely fast hit time
Having high hit rate (# hits / # lookups) in TLB is extremely
important for runtime performance

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



TLB Control Flow Algorithm

VPN = (VirtualAddress & VPN_MASK) >> SHIFT
(Success, TlbEntry) = TLB_Lookup(VPN)
if (Success == True) // TLB Hit

if (CanAccess(TLBEntry.ProtectBits) == True)
Offset = VirtualAddress & OFFSET_MASK
PhysAddr = (TlbEntry.PFN << SHIFT) | Offset
Register = AccessMemory(PhysAddr)

else
RaiseException(PROTECTION_FAULT)

else // TLB Miss (OS or MMU handles)
PTEAddr = PTBR + (VPN*sizeof(PTE))
PTE = AccessMemory(PTEAddr)
if (PTE.Valid == False)

RaiseException(SEGMENTATION_FAULT)
else if (CanAccess(PTE.ProtectBits) == False)

RaiseException(PROTECTION_FAULT)
else

TLB_Insert(VPN, PTE.PFN, PTE.ProtectBits)
RetryInstruction()

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Example: Accessing An Array

Sequential access is fast – only
the first access to an element on
the page yields a TLB miss.
Takes advantage of spatial
locality (referencing items close
in address space)
TLB also takes advantage of
temporal locality
(re-referencing of same address
close in time).
How would hit rate of sequential
access compare to hit rate of
random access?

int sum = 0;
for (i=0; i<10; i++)
{

sum += a[i];
}

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Context Switches

Recall that a page table is unique to a specific process
On a context switch the TLB will be full of translations for old
process
Need to flush the TLB (but causes TLB misses after switch)
Can use Address Space Identifiers (ASID) to divide TLB per
process

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



TLB Contents

Example MIPS TLB Entry

VPN – used for lookup
PFN – change the Virtual address VPN to PFN
G – global bit (shared by all processes, don’t check ASID)
ASID – Address Space Identifier (which process’s Page Table)
D – dirty bit (changed when page has been written to)
V – valid bit (valid translation present in entry)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



TLB Replacement Policy

When installing a new entry in the TLB, need to replace an
old one – which one?
One common approach is evict the Least Recently Used
(LRU) entry
Another typical approach is to evict a random entry

random avoids corner-case behaviors; for example, when a
program loops over n+1 pages with a TLB of size n
– in this case the LRU misses upon every access.

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)



Summary

TLB solves (or at least significantly reduces) the number of
memory lookups for pagetable entries
TLB misses can be handled by hardware (the MMU) or
software (the OS)
Different Strategies for Context Switches (flush or ASID
portion)
Different Replacement policies for TLB entries

Next Time: talk about how to shrink the page table

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Paging: Faster Translations (TLBs)


