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Administrivia

Project 3 out – Due Feb 20th @ 11:59pm (tonight)
Code reviews: Signup for 15min slot. TA will give feedback on
your P3 code. Grading is based on completion.
Midterm 1 (more details on next slide)
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Administrivia: midterm 1

Regular Time: Feb 23rd, 5:45-7:15, Humanities 2650 (Lec
001), Humanities 3650 (Lec 002)
Unable to attend? Fill out this form:
https://forms.gle/7wPNekXjamkam8Q86
Alternate Time: Feb 23rd, 7:30-9pm, CS 1325
McBurney Time: Feb 23rd, 5:45-8pm, CS 1221
Bring #2 Pencil and UW Student ID
Review Material in Canvas → Files → Shared Old Exams

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems

https://forms.gle/7wPNekXjamkam8Q86


Review: Beyond Physical Memory

Idea: store unreferenced pages on disk (swap space)
Mechanisms: Add present bit to PTE to track if page is in
memory or disk, restore them during page fault handler
Replacement policy: which victim page to swap to disk?
(algorithms like LRU, Clock)
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Agenda: what do real virtual memory systems look like?

Kernel virtual memory layout
Lazy optimizations (eg, copy on write)
Huge pages
Security: ASLR and KASLR
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Motivation

Understand virtual memory features beyond the basics
Copy-on-write, larger pages, ASLR

Talk about performance and security
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Kernel virtual memory layout

So far: virtual memory = code + heap + stack

Real layout:

Make page 0 invalid (so NULL dereferences fail)
Map kernel into each process’s virtual memory
Linux: “kernel logical memory” is mapped linearly to physical
memory
Need to protect kernel from user code: privilege bits in PTEs
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VAX/VMS virtual memory
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Lazy optimizations: demand zeroing

Need to zero a page to clear sensitive data, wasteful if process
doesn’t use the page

Demand zeroing:

On allocation: map page but mark PTE invalid, remember that
it is “to-be-zero’d”
On page fault: zero page and map into process
No work if page is never used
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Lazy optimization: copy-on-write

Copying a page from one process to
another is expensive, wasteful if not
written to
Share physical page until one is
written, then copy
Add a reference count (refcount or
rc) to each physical page

read-only if rc > 1
writable if rc = 1
unused if rc = 0
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Summary: copy-on-write

Useful for shared libraries
Critical to make fork() and exec() work
Technique is more broadly useful with dynamic sharing
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Larger pages

x86-64 supports 2MB and 1GB pages as well

Main motivation: better use of TLB

A 64-entry TLB with 4K pages can hold mappings for only
256KB of memory

Secondary benefit: makes address translation on TLB miss
faster
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4-level paging
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2MB page mapping
From Intel SDM chapter 4.5
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Huge pages in Linux

First version: request explicitly in mmap()
Transparent huge pages more recently
Costs: internal fragmentation, slower allocation,
defragmentation costs
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Summary: larger pages

Main idea: better TLB hit rate
Larger memory sizes make this more important
Linux added support incrementally
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Security considerations: buffer overflows

int some_function(char *input) {
char *dest_buffer[100];
strcpy(dest_buffer, input); // buffer overflow

}

What can attacker do with this?
Return-oriented programming (ROP) means essentially anything
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Address space layout randomization (ASLR)

Instead of putting code at predictable locations, randomize virtual
addresses

Should still avoid buffer overflows, but ASLR reduces their impact

Some attacks are still possible
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Summary

Real virtual memory systems have more features for performance
and security

Lazy optimizations (demand zeroing, copy-on-write)
Larger page sizes improve TLB performance
ASLR improves security
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