
Complete virtual memory systems
CS 537: Introduction to Operating Systems

Louis Oliphant & Tej Chajed

University of Wisconsin - Madison

Spring 2024

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Administrivia

Project 3 out – Due Feb 20th @ 11:59pm (tonight)
Code reviews: Signup for 15min slot. TA will give feedback on
your P3 code. Grading is based on completion.
Midterm 1 (more details on next slide)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Administrivia: midterm 1

Regular Time: Feb 23rd, 5:45-7:15, Humanities 2650 (Lec
001), Humanities 3650 (Lec 002)
Unable to attend? Fill out this form:
https://forms.gle/7wPNekXjamkam8Q86
Alternate Time: Feb 23rd, 7:30-9pm, CS 1325
McBurney Time: Feb 23rd, 5:45-8pm, CS 1221
Bring #2 Pencil and UW Student ID
Review Material in Canvas → Files → Shared Old Exams

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems

https://forms.gle/7wPNekXjamkam8Q86


Review: Beyond Physical Memory

Idea: store unreferenced pages on disk (swap space)
Mechanisms: Add present bit to PTE to track if page is in
memory or disk, restore them during page fault handler
Replacement policy: which victim page to swap to disk?
(algorithms like LRU, Clock)

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Agenda: what do real virtual memory systems look like?

Kernel virtual memory layout
Lazy optimizations (eg, copy on write)
Huge pages
Security: ASLR and KASLR

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Motivation

Understand virtual memory features beyond the basics
Copy-on-write, larger pages, ASLR

Talk about performance and security

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Kernel virtual memory layout

So far: virtual memory = code + heap + stack

Real layout:

Make page 0 invalid (so NULL dereferences fail)
Map kernel into each process’s virtual memory
Linux: “kernel logical memory” is mapped linearly to physical
memory
Need to protect kernel from user code: privilege bits in PTEs

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



VAX/VMS virtual memory

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Lazy optimizations: demand zeroing

Need to zero a page to clear sensitive data, wasteful if process
doesn’t use the page

Demand zeroing:

On allocation: map page but mark PTE invalid, remember that
it is “to-be-zero’d”
On page fault: zero page and map into process
No work if page is never used

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Lazy optimization: copy-on-write

Copying a page from one process to
another is expensive, wasteful if not
written to
Share physical page until one is
written, then copy
Add a reference count (refcount or
rc) to each physical page

read-only if rc > 1
writable if rc = 1
unused if rc = 0

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Summary: copy-on-write

Useful for shared libraries
Critical to make fork() and exec() work
Technique is more broadly useful with dynamic sharing

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Larger pages

x86-64 supports 2MB and 1GB pages as well

Main motivation: better use of TLB

A 64-entry TLB with 4K pages can hold mappings for only
256KB of memory

Secondary benefit: makes address translation on TLB miss
faster

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



4-level paging

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



2MB page mapping
From Intel SDM chapter 4.5

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Huge pages in Linux

First version: request explicitly in mmap()
Transparent huge pages more recently
Costs: internal fragmentation, slower allocation,
defragmentation costs

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Summary: larger pages

Main idea: better TLB hit rate
Larger memory sizes make this more important
Linux added support incrementally

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Security considerations: buffer overflows

int some_function(char *input) {
char *dest_buffer[100];
strcpy(dest_buffer, input); // buffer overflow

}

What can attacker do with this?
Return-oriented programming (ROP) means essentially anything

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Address space layout randomization (ASLR)

Instead of putting code at predictable locations, randomize virtual
addresses

Should still avoid buffer overflows, but ASLR reduces their impact

Some attacks are still possible

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems



Summary

Real virtual memory systems have more features for performance
and security

Lazy optimizations (demand zeroing, copy-on-write)
Larger page sizes improve TLB performance
ASLR improves security

Louis Oliphant & Tej Chajed University of Wisconsin - Madison
Complete virtual memory systems


